

Environmental Compliance Report

Bakers Junction Waste Transfer Station

DWER Works Approval Number W6565/2021/1

19 April 2022

City of Albany 2022

102 North Road, Yakamia, WA 6330 | PO Box 484, Albany, WA 6331 Tel: (08) 6820 3000 | Email: staff@albany.wa.gov.au | Website: www.albany.wa.gov.au

Quality Assurance

Document	Approval						
Document	Development Offi	cer:	Document Owner: (Member of EMT)				
Manager –	Engineering & Sust	Executive Director Infrastructure Development Environment					
Document	Control						
File Number	er - Document	WM.AUD.1					
Document Number:	Reference	RPT13760					
Status of Document:		Final					
Quality Assurance:		Executive Director Infrastructure Development & Environment					
Distributio	n:	Statutory Document					
Document	Revision History						
Version	Author	Version	Description	Date Completed			
0.1	, Manager – Engineering & Sustainability	Draft for internal review.	17/03/2022				
1.0	Manager – Engineering & Sustainability	Final document. Approved 19/04/2022.	by Executive Director on	19/04/2022			

Table of Contents

Qι	uality A	ssurance	2
Gl	ossary	of terms and acronyms	4
1.	Intr	oduction	5
	1.1.	Scope of Response	6
2.	Infr	astructure Works	6
	2.1.	Hardstand	6
	Des	ign	6
	As c	onstructed	7
	2.2.	Drainage Infrastructure	10
	Des	ign	10
	As c	onstructed	10
	2.3.	Detention basin	11
	Des	ign	11
	As (Constructed	11
	2.4.	Changes	12
	2.5.	Works still left to complete	12
3.	Cer	tification	12

Appendix 1 – As built plans

Appendix 2 – Testing Reports

Appendix 3 – Geo grid technical specification

Glossary of terms and acronyms

AEP	Annual Exceedance Probability							
CBD	Central Business District							
DWER	Department of Water and Environmental Regulation							
FOGO	Food organics and garden organics collected by local governments from households							
Putrescible	The component of the waste stream likely to become putrid – including wastes that contain organic materials such as food wastes or wastes of animal or vegetable origin, which readily bio-degrade within the environment of a landfill							
WMF	Waste Management Facility							
WTS	Waste Transfer Station							

1. Introduction

The City of Albany lodged a 'Works Approval' application with the Department of Water Environmental Regulation (DWER) on 1 April 2021, to receive, decontaminate and temporarily store food organics and garden organics (FOGO) at a specifically designed transfer station at the Bakers Junction Waste Management Facility (WMF).

Bakers Junction WMF is a Class II putrescible landfill located adjacent to Chester Pass Road, about 13km from the City of Albany CBD. The landfill is operated under DWER prescribed premises license L7048/1997/11. The WMF services regional properties mainly and has limited opening hours of Tuesday morning and all day Saturday.

The FOGO is to be stored at a specifically constructed transfer station on a bunded asphalt hardstand, with leachate directed to the site's existing leachate basin. This leachate basin is designed to capture any potential leachate / stormwater from the proposed FOGO Waste Transfer Station (WTS). The proposed WTS is located on the southern side of the Bakers Junction WMF and comprises 2,000 m² (refer Figure 1).

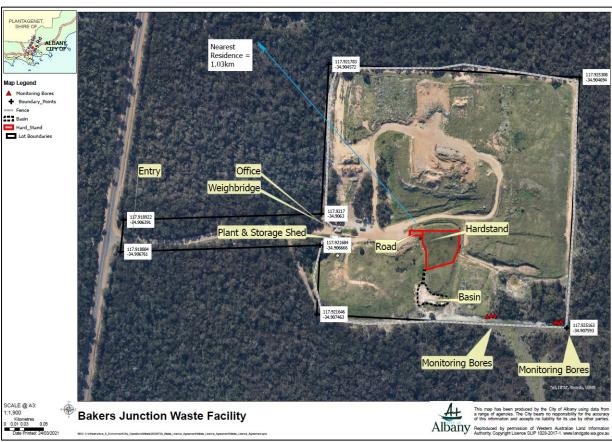


Figure 1: Proposed FOGO waste transfer station at Bakers Junction Waste Management Facility

In July 2021, the Department of Water and Environmental Regulation issued a Works approval number W6565/2021/1 for the receivals of FOGO at the Bakers Junction Waste Management Facility, limit of 4,500 tonnes per annual period.

Approvals were for a Category 62: Solid waste depot: premises on which waste is stored or sorted, pending final disposal or re-use.

1.1. Scope of Response

DWER has requested an Environmental Compliance Report. This report is in response to this request, which requires the works approval holder, within 30 calendar days of installation of an item of infrastructure, to:

- Undertake an audit of their compliance with the requirements of Condition 1.
- Prepare and submit to the CEO an Environmental Compliance Report on that compliance.

The Environmental Compliance for Stage 1 works covers:

- Hardstand
- Drainage infrastructure
- Detention basin

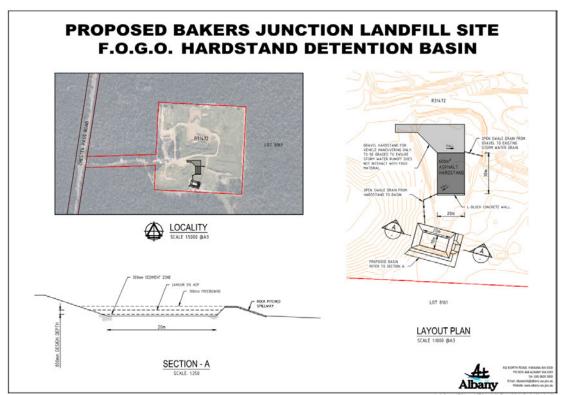


Figure 2: Hardstand and leachate basin original design

2. Infrastructure Works

As constructed plans for all elements are included in Appendix 1.

2.1. Hardstand

Design

600m² hardstand requirements:

- (a) Constructed of asphalt with a minimum 2% fall that is capable of direction all water that has been in contact with FOGO waste materials to the leachate system.
- (b) Designed and constructed to support, without sustained damage, the load of the material on it and any machinery used on the surface.

- (c) All asphalt and foundation compaction to be completed with the specification listed in Schedule 1, Figure 2.
- (d) Surface and bunding (including joining seals) to be constructed to achieve a permeability of 1 x 10⁻⁹ m/s or less to prevent any potential leachate surface runoff and seepage.

The design was based on 100mm top soil strip, 150mm gravel sub base, 200mm basecourse, primer seal and 30mm asphalt surfacing course.

As constructed

Construction works commenced end July 2021 with top soil stripping and surface preparation.

Figure 3: Top soil removal and laying of limestone sub base.

Limestone for use as sub base was delivered and placed in accordance with specifications. This layer was meant to be 150mm thick but due to poor ground conditions the as built thickness was on average 500mm thick and was laid and compacted in 150mm thick layers.

As the hardstand is above a landfill, there was considerable settlement in this area and a geo grid was used to ensure compaction requirements were met. This is a minor modification to the approved design. The grid used was Secugrid 40/40. See Appendix 3 for more information and Figure 4 for an installation photo.

Gravel basecourse was laid above the geo grid 200mm thick. Due to unseasonable bad weather, works stopped at the end of July 2021 and recommenced at end November 2021.

Figure 4: Installation of Geo Grid above limestone sub base.

Figure 5: Prepared hardstand prior to sealing

Sealing of the hardstand was completed in January 2022, including the installation of 1.6m high precast concrete bund wall. The hardstand was sealed with primer seal and 30mm asphalt surfacing course.

Access around the structure has been provided to enable maintenance and other activities to be undertaken. Pad has a fall into the lined drain.

Figure 6: Partially sealed hardstand with Bund wall.

Figure 7: Fully Sealed hardstand

2.2. Drainage Infrastructure

Design

Drainage from hardstand to detention basin

- (a) A defined drainage channel is to be installed to direct all leachate surface run-off and seepage to the detention basin.
- (b) The drainage channel is to be lined to achieve a permeability of 1/10⁻⁹ m/s or less.
- (c) The drainage channel and associated infrastructure is to be designed to convey water from a 24-hour, rainfall event with an annual exceedance probability of 5% to the detention basin without overflow.
- (d) All pipework, fittings and joints are to be constructed of impervious material and free from leans and defects (if applicable).

As constructed

The existing drainage channel has been dug out and realigned to ensure that only drainage from the hardstand will flow into the leachate pond. Lining using a geosynthetic clay liner was undertaken in accordance with manufacturer's recommendations – see Figure 8. For more information regarding the liner see detention basin section. A kerb has been installed to ensure water flow from sealed pad is directed to lined drainage channel.

Figure 8: lined drainage channel

2.3. Detention basin

Design

- (a) The detention basin is to be designed to be able to store a 24-hour, rainfall event with an annual exceedance probability of 5% without utilizing freeboards capacity.
- (b) Lined to achieve a permeability of 1 x 10⁻⁹ m/s or less.
- (c) Must be free from leaks and defects.
- (d) Must be provided with access points for the removal of wastewater where required to maintain basin freeboard.

As Constructed

The existing leachate basin has been reshaped and lined with ELCOSEAL geosynthetic GCL Clay Liners (X1000) which has a permeability of over 3×10^{-11} . ElcoSeal has bentonite impregnated longitudinal overlaps that allowed simple on-site joining. Anchor trenches were used at the top of the basin.

The City's operations team installed the liner and has used the liner in previous projects. The volume of the basin is 397kL compared to the 250kL plus 500mm freeboard required by the design.

Figure 9: Lined leachate pond

2.4. Changes

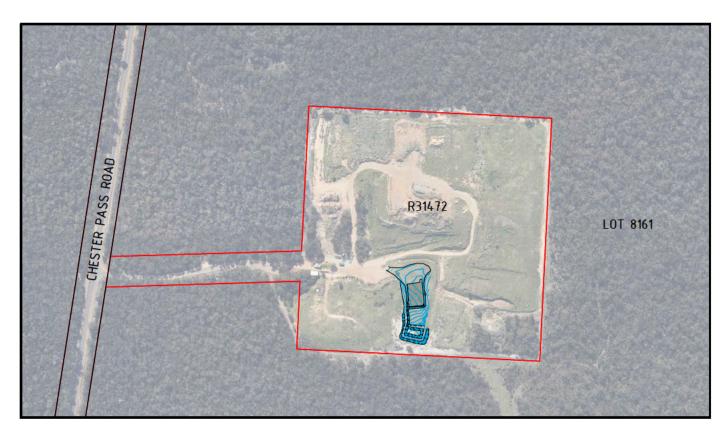
The above outlines changes to the original design. All changes referenced in the document are as follows:

- a. Minor in nature and does not materially change or affect the infrastructure.
- b. Does not increase risks to public health, public amenity or the environment.
- c. Do not affect other conditions in the works approval which are still all satisfied.

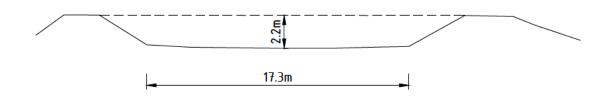
2.5. Works still left to complete

The following works are still to be finished:

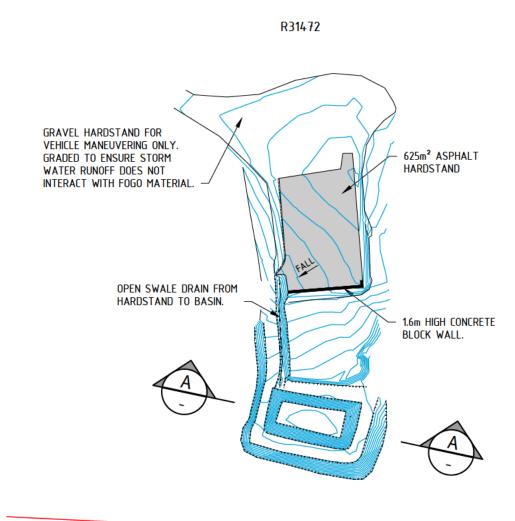
- Backfill behind the concrete bund wall.
- White lining on the sealed hardstand to create delivery lanes.
- Access road on the eastern side this will allow maintenance of the leachate pond area and allow FOGO to be pushed off the hardstand into waiting vehicles. This is a change of scope, which will require a variation. The works involve the installation of 2.1/2.4m high precast concrete L beams. This does not affect the environmental aspects of the work and therefore deemed minimal in nature. Full details will be provided by a separate letter requesting approval of variation.


3. Certification

In accordance with condition 3, 4 and 5 of the Works Approval the following can be confirmed:


- a. All works are certified by Engineering and Sustainability at City of Albany – see signed drawing in Appendix 1. Works have been carried out in accordance with Section 2 with minor modification as outlined in the report.
- b. There are no results of a liner integrity test as this type of liner does not require it. However, the installation was undertaken by experienced personnel and in accordance with manufacturer's requirements.
- c. As constructed plan, including detailed levels for the infrastructure specified in condition 1 is included in Appendix 1.
- d. Labelled photographic evidence is included in the body of section 2 of this report.
- e. Departures from condition 1 of the Works Approval are outlined in the relevant sections in section 2 of this document including description and reason for the departure.
- f. Signature on the as built drawing in Appendix 1 is an authorized person to represent the works approval holder and contains the printed name and position of that person.

Appendix 1 – As built plans


BAKERS JUNCTION LANDFILL SITE F.O.G.O. HARDSTAND AND DETENTION BASIN AS CONSTRUCTED SURVEY

SECTION - A

LOT 8161

102 NORTH ROAD, YAKAMIA WA 6330 PO BOX 484 ALBANY WA 6331 Tal: (08) 6820 3000 Email: cityassets@albany.wa.gov.au Website: www.albany.wa.gov.au

Appendix 2 – Testing Reports

5a 209 Chester Pass Rd, Milpara WA 6330

Phone: 0407 903 297

Email: Info@gsgeotechnics.com WWW.GSGEOTECHNICS.COM Job No: 5733 Report No: 5733 / 1 Page No: 1 of 2

Client: Great Southern Sands
Project: Bakers Junction Tip
Section: FOGO Hardstand

Client Number: PO 61561
Date Sampled: 16/02/2020
Date Received: 16/02/2020

Field Nuclear Density Test Report

Test Method - AS 1289 Method 1.1. 2.1.1. 5.4.1. 5.8.1

Road		-			Material [Description	Sandy	Material Description Sandy GRAVEL		
Layer Type		Basecourse		-						
Date NDM Tested	16/02/2020	Layer De	Layer Depth (mm)		Preparation Method		AS1289.1.1			
Date MC Tested	16/02/2022	Test Dep	oth (mm)	150	Sampling Method		AS 1289.1.2.1 Proc 6.4			
Test & Sample Locations	S - AS 1289 1 2 1, Site Selected	by Client								
Sample No.	5733G1									
Site No.	1									
Time Sampled	12:30									
Easting	6136911									
Northing	584353									
Offset From	-									
Determination of field d	ensity and field moisture	content of a soil using	g a nuclear surf	face moisture - de	ensity gauge - d	irect transmissi	on mode AS 1289	5 8 1,AS 1289		
DT Test Depth (mm)	150									
Wet Density (t/m ⁵)	2.49									
Field Moisture Content (%)	7.9									
Dry Density (t/m ⁵)	2.31									
Determination of the dr	y density/moisture conte	ent relation of a soil us	sing modified co	ompactive effort	- AS 1289 5 2 1,	AS 1289 2 1 1				
Maximum Dry Density (MDD) (t/m³)	2.15	<u> </u>	Г	T		Г	Τ	Π		
Adjusted MDD (t/m³)	2.20									
Optimum Moisture Content (OMC) (%)	11.0									
Adjusted OMC (%)	9.5									
Wet) Oversize Retained 19.0mm (%)	12									
Wet) Oversize Retained 37.5mm (%)	N/A									
Dry) Oversize Retained 19.0mm (%)	12									
(Dry) Oversize Retained 37.5mm (%)	N/A									
Compaction Control - As	1289 5 4 1	•	•	-	1	•	-	•		
Dry Density Ratio (%)	105.0									
Moisture Ratio (%)	83.0									
Moisture Variation (%)	1.5									

NATA
WORLD RECOGNISED
ACCREDITATION

Comments:

Distribution: Laboratory File / Ben Hill

Document ID: WS_AS_FND_Rev6_Jun2020

Accredited for compliance with ISO/IEC 17025 - Testing - Accreditation No. 20092

Name:

Function:

Laboratory Supervisor

Date:

17/02/2022

Approved

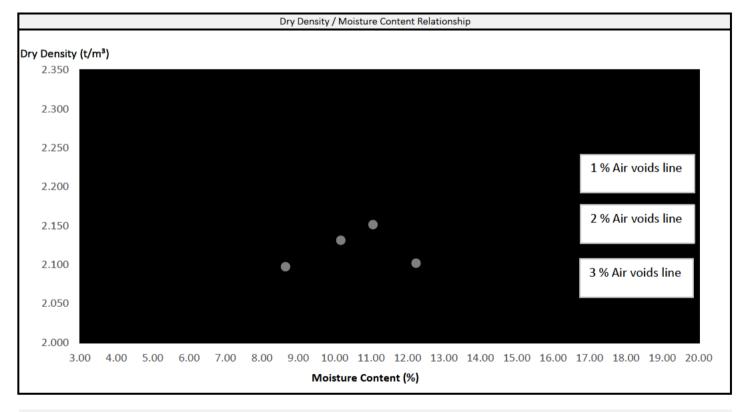
Signatory:

5a 209 Chester Pass Rd, Milpara WA 6330

Phone: 0407 903 297

Email: Info@gsgeotechnics.com WWW.GSGEOTECHNICS.COM

Job No: 5733 Report No: 5733 / 1 Page No: 2 of 2


Client: **Great Southern Sands** Client Number: PO 61561 Project: **Bakers Junction Tip** Date Sampled: 16/02/2020 Section: FOGO Hardstand Date Received: 16/02/2020

Dry Density & Moisture Content Relation of Soil Test Report

AS 1289.5.2.1: Modified Test Method -

Road		-	Test Depth (mm)	150	Preparation Method	AS1289.1.1			
Layer Type	Basecourse		Layer Depth (mm) 200		Sampling Method	AS 1289.1.2.1 Proc 6.4			
Sample No	573361	Material Description	Sandy	GRAVEI		Curing Pariod Water			

Sample No.	5733G1	Material Description	Sandy (GRAVEL		Curing Perio	d Water
						2	hrs
Easting	Easting 6136911 Northing 584353 Offset From -				Stabiliser Cur	ring Time	
						N/A	hrs
Retained 19.0mm (%)		12	Liquid Limit Method	Visual/Tactile assessment by competent		Stabiliser Added	
Retained 3	Retained 37.5mm (%)		tech		nician	N/A	%
Moisture Content (%) AS 1289.2.1.1		8.7	10.2	11.1	12.2		
Dry Density (t/m³)		2.10	2.13	2.15	2.10		

Maximum Dry Density (t/m³) 2.15	Optimum Moisture Content (%)	11.0
---------------------------------	------------------------------	------

ACCREDITATION

Comments:

Distribution: Laboratory File / Ben Hill Document ID: WS_AS_FND_Rev6_Jun2020

Accredited for compliance with ISO/IEC 17025 - Testing - Accreditation No. 20092

Name:

Function: Date:

Laboratory Supervisor 17/02/2022

Approved Signatory:

Appendix 3 – Geo grid technical specification

ELCOSEAL Geosynthetic Clay Liners (GCLs) are used as a lining system in landfills and waste containment structures, and for liquid containment in effluent ponds, wetlands and canals.

Australian made ELCOSEAL GCLs consist of a layer of bentonite bonded between two layers of woven and nonwoven geotextiles. The needle-punching process reinforces the bentonite layer with thousands of fibres, maximising the product's internal resistance. An additional heat treating process called "thermal locking" secures the needle-punched fibres, further improving strength and performance.

ELCOSEAL GCLs have been used in environmental, civil and landfill liner applications since 1996. They have an unmatched sealing capability and are cheaper to install than natural clay layers. When hydrated, the sodium bentonite layer forms a barrier that prevents contamination of surrounding groundwater.

ELCOSEAL GCLs can replace thick, compacted clay layers in composite landfill liners and caps, thanks to the fast swelling sodium bentonite clay liner. This creates a highly effective containment barrier for landfill final cover systems and base landfill liner systems. ELCOSEAL GCLs can self-heal around holes or punctures so there is less chance of leaks due to installation damage.

SUGGESTED SECTOR APPLICATIONS

ELCOSEAL GEOSYNTHETIC CLAY LINERS

The values published in this leaflet are to the best of our knowledge true and correct. The product specification may change at any time without prior notice. No warranty is expressed or implied. Manufactured by Geofabrics Australasia Pty Ltd to the ISO 9001:2015 Quality Management System Standard.

DRODERTY		TECT METUOD	MQC¹	LIMITC	ELCOSEAL® GRADE			
PROPERTY		TEST METHOD	REQUENCY	UNITS	X800	X1000	X2000	X3000
GCL Hydraulic Properties								
Under die Cood ook ok de	MaxArv ²	ACTNA DE 007	10.000	,	3.5 x 10 ⁻¹¹	2.8 x 10 ⁻¹¹	3 x 10 ⁻¹¹	2.4 x 10 ⁻¹¹
Hydraulic Conductivity, k	Typical³	ASTM D5887	40,000 m²	m/s	2.5 x 10 ⁻¹¹	1.9 x 10 ⁻¹¹	2.4 x 10 ⁻¹¹	1.7 x 10 ⁻¹¹
Bentonite Characteristics								
Swell Index	Typical	ASTM D5890	40,000 m ²	mL/2g	≥ 24	≥ 24	≥ 24	≥ 24
Fluid Loss	Typical	ASTM D5891	40,000 m²	mL	≤ 15	≤ 15	≤ 15	≤ 15
GCL Components - Mass								
Cover Nonwoven Geotextile Mass	MARV⁴	10.07001	10 0002	= /m2	220	220	220	260
per Unit Area	Typical	AS 3706.1	10,000 m²	g/m²	250	250	250	300
Bentonite Mass per Unit Area @	MARV		2.500		3,700	4,000	3,700	4,250
0% Moisture Content	Typical	ASTM D5993	2,500 m²	g/m²	4,100	4,500	4,250	4,700
Carrier / Composite Geotextile	MARV	AC 270C 4	70.000?	- /2	110	110	320	350
Mass per Unit Area	Typical	AS 3706.1	70,000 m²	g/m² g/m² kN/m	110	110	360	380
Geotextile Configuration (Carrier / Co	ver)		,		W / NW ⁵	W/NW	W+NW / NW	W+NW / NW
GCL - Mass								
GCL Total Mass per Unit Area @ 0%	MARV	ASTM D5993	2,500 m²	g/m²	4,030	4,330	4,240	4,860
Moisture Content	Typical				4,460	4,860	4,860	5,380
GCL - Strength Properties								
Strip Tonsilo Strongth (MAD)6	MARV	ASTM D6768	10,000 m²	kN/m	7	8	12	12
Strip Tensile Strength (MD) ⁶	Typical	ASTIVI D6768			10	11	15	16
CDD Strongth	MARV	AS 3706.4	25 000 m²	N	1,400	1,600	3,500	4,100
CBR Strength	Typical	AS 5700.4	25,000 m²	IN	2,000	2,100	4,100	5,300
CBR Elongation	MARV	AS 3706.4	25 000 m²	0/	10	15	30	30
CBN Eloligation	Typical	A3 3700.4	25,000 m²	%	30	40	80	80
GCL - Shear Strength Properties								
Hydrated Peak Internal Shear Strength @ 10kPa Normal Stress	Typical ⁷	ASTM D6243	Periodic	kPa	30	30	35	40
Hydrated Peak Internal Shear Strength @ 30kPa Normal Stress	Typical	ASTM D6243	Periodic	kPa	50	50	60	70
GCL Longitudinal Edge Treatment					l .			
Bentonite Impregnation - Width ≥ 30	0 mm - Typica	 [-	٧	٧	√	٧
Edge Sealing Performance	Typical ⁷	ASTM STP 1308 (Mod.)10,11	Periodic	m/s	2.5 x 10 ⁻¹¹	1.9 x 10 ⁻¹¹	2.4 x 10 ⁻¹¹	1.7 x 10 ⁻¹¹
GCL Roll Dimensions								
Standard Roll Dimensions (Width x Le	ength)			m	4.7 x 45	4.7 x 35	4.7 x 30	4.7 x 30
Typical Roll Mass (standard roll length lengths are available to suit project re		er custom roll	(Weighed every roll)	kg	1,395	1,050	960	950
GCL Spreader Bar Requirement				-	Heavy-Duty ⁸	Heavy-Duty ⁸	Standard®	Standard ⁹
4 NOS Marriforturios Quality Control on accesi				l .	, -,	, -,		l

- MQC = Manufacturing Quality Control an ongoing system that monitors and tests materials during manufacture to ensure compliance with certification documents and contract specifications.

 MaxARV = Maximum Average Roll Value a MaxARV is defined as the Mean or Typical values plus 2 standard deviations. Mathematically, it is implied that 97.5% of the results of the tested specimens will be less than the MaxARV. A MaxARV provides a confidence level of 97.5%. NOTE in reference to GCL Permeability, LOWER IS BETTER.

 Typical = A typical value is the arithmetic mean of a set of results. This implies that 50% of the tested specimens will typically exceed this value and 50% will typically not meet this value.

 MARV = Minimum Average Roll Value a MARV is defined as the Mean or Typical values less 2 standard deviations. Mathematically, it is implied that 97.5% of the results of the tested specimens will exceed the MARV. A MARV provides a confidence level of 97.5%.
- W= Woven, NW= Nonwoven. MD = Roll Machine Direction

- Peak Value reported at 10kPa or 30kPa normal stress. [The reported values are not intended to replace site specific internal shear or interface friction testing required for design].

 Heavy-Duty WLL (Working Load Limit) = 1,400kg.

 Standard WLL (Working Load Limit) = 1,000kg.

 Reference Daniel, D.E. Trautwein, S.J. and Goswami, P.K. 1997. Measurement of Hydraulic Properties of Geosynthetic Clay Liners Using a Flow Box, Testing and Acceptance Criteria for Geosynthetic Clay Liners, ASTM
- 11. Modification Reference Kendall, P.M., Austin, R. A. 2014. Investigation of GCL Overlap Techniques Using a Large Scale Flow Box, 7th International Congress on Environmental Geotechnics, 38-3, p. 746-753.

IMPORTANT NOTICE - DISCLAIMER - The information contained in this brochure is general in nature. In particular the content of this brochure does not take account of specific conditions that may be present at your site. Site conditions may alter the performance and longevity of the product and in extreme cases may make the product wholly unsuitable. Actual dimensions and performance may vary. If your project requires accuracy to a certain specified tolerance level you must advise us before ordering the product from us. We can then advise whether the product will meet the required tolerances. Where provided, installation instructions cover installation of product in site conditions that are conducive to its use and optimum performance. If you have any doubts as to the installation instructions or their application to your site, please contact us for clarification before commencing installation. This brochure should not be used for construction purposes and in all cases we recommend that advice be obtained from a suitably qualified consulting engineer or industry specialist before proceeding with installation. © Copyright held by Geofabrics Australasia Pty Ltd. All rights are reserved and no part of this publication may be copied without prior permission. Publication date: December 2020

