Odour Management Plan
Moore River South – Waste Water Treatment Plant

AQUASOL
82-86 BERINGARRA AVE, MALAGA, PERTH WA 6090
TEL: 08 9248 7533 FAX: 08 9209 3975
ENQUIRIES@AQUASOL.COM.AU
ABBREVIATIONS

DEC: Department of Environment and Conservation

DOH: Department of Health

ERA: Economic Regulation Authority

NIMP: Nutrient Irrigation Management Plan

OMP: Odour Management Plan

WWTP: Waste Water Treatment Plant

CCP: Critical Control Points
1. Introduction to Odour Management Plan

The objective of the Odour Management Plan is to ensure that the Moore River South WWTP is designed, constructed and operates in a manner so as to manage the potential impacts of odour.

For the proposed Moore River South project, Aquasol will measure performance against standards or prescribed indicators of effectiveness, efficiency, and environmental responsibility such as cycle time, productivity, waste reduction, and regulatory compliance using guidelines from the DoH, DWER and NIMP.

The requirements for the Odour Management Plan includes a description of the odour control measures to be adopted to limit odour releases (covers, odour treatment units and stacks), periodic monitoring during operations, contingency plans and complaint procedures.

Aquasol will implement this plan in Moore River South WWTP, which means that all operations must use the odour control facilities provided in the design and document the procedures to be followed in operations and maintenance to keep odour emissions within necessary levels to meet the objective.
2. Description of Service

The subject site is located within the Shire of Gingin, approximately 75 kilometres North West of the Perth central business district, just south of the Guilderton town site on Swan Location 2802 and portions of Swan Location 2424 and 2914.

This application considers servicing the Stage 1 of the development, building a 450kL/day plant.

The proposed methodology is to treat waste water to such a quality that it can be irrigated in surrounded public open space within the Development.

3. WWTP Flow Diagram

The system consists of an array of 6 water/sewage tanks and associated equipment. The process includes grinding and screening, anaerobic and aerobic treatment, vent and scrubber/odour control, clarification, media and UF filtration, disinfection and storage prior to irrigation.
4. Odour Management Plan

In previous consultation with DWER, it was suggested that best practice to develop an OMP should be to follow notes based on an Informative Odour Management Plan Template taken from Scottish EPA’s (SEPA) “Odour Guidance 2010” document. Odour management will consider alongside, and integrate with, other aspects of the plant management systems, including:

- **Commitment:**
 - Corporate policy commitment, refer to Figure 1 below.
 - Senior management statement, refer to Figure 2 below.

- **Procedures:**
 - Odour complaint recording and investigation procedure, refer to Figures 3 below
 - Cycle Review, refer to Figures 5 below

In the event of an electrical failure, additional capacity in tanks will provide sufficient time to rectify problem, if by any chance tanks fill up, they will be connected to emergency leach drains to dispose any partially treated water in a confined area avoiding uncontrolled run offs.

- **Monitoring and supervision:**

Identification of parameters that need to be monitored will be based on the Critical Control Point (CCP) identified in the process, see enclosed Figure 4 for guideline followed. CCPs are activities, procedures or processes where a control can be applied and that is essential for preventing, eliminating or managing a hazard to an acceptable level.

Locations of Critical Control Points on Moore River South WWTP are described in table below.
CCP WWTP:

<table>
<thead>
<tr>
<th>Control Point Limits</th>
<th>Alarm System</th>
<th>Affected Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suction Pump, Pump Station</td>
<td>Pump blocked</td>
<td>Non flow to the plant; stand by pump to start automatically.</td>
</tr>
<tr>
<td>Screen Blockage</td>
<td>Flow blockage</td>
<td>Low flow to the plant; stand by Screen to start automatically.</td>
</tr>
<tr>
<td>Aeration tank 2 - Aerator</td>
<td>Block or low flow / An automatic alarm will indicate the incorrect function of the aeration.</td>
<td>Alarm notification</td>
</tr>
<tr>
<td>Aeration tank 3 - Aerator</td>
<td>Block or low flow / An automatic alarm will indicate the incorrect function of the aeration.</td>
<td>Alarm notification</td>
</tr>
<tr>
<td>Aerobic tank 3 – Delivery pump</td>
<td>Blockage / An automatic alarm will indicate the incorrect function of the pump.</td>
<td>Alarm notification. Stand by pump to start automatically.</td>
</tr>
<tr>
<td>SBR tank 4 – Aerator</td>
<td>Block or low flow / An automatic alarm will indicate the incorrect function of the pump.</td>
<td>Alarm notification</td>
</tr>
<tr>
<td>SBR tank 4 – Delivery pump</td>
<td>Blockage / An automatic alarm will indicate the incorrect function of the pump.</td>
<td>Alarm notification. Stand by pump to start automatically.</td>
</tr>
<tr>
<td>Polish tank 5 – Delivery pump</td>
<td>Blockage / An automatic alarm will indicate the incorrect function of the pump.</td>
<td>Alarm notification. Stand by pump to start automatically.</td>
</tr>
<tr>
<td>Irrigation tank 6 – Delivery pump</td>
<td>Blockage / An automatic alarm will indicate the incorrect function of the pump.</td>
<td>Alarm notification. Stand by pump to start automatically.</td>
</tr>
<tr>
<td>Chemical injection</td>
<td>Low injection / Aquasol staff will check levels and refill tanks periodically.</td>
<td>Dose pump will be set to dose chemicals for a certain period of time. Alarm will also warn on low levels.</td>
</tr>
<tr>
<td>Blockage Media Filtration</td>
<td>Pressure gage installed will warn any unusual pressure drop. Automatic backwash can be carried out.</td>
<td>Alarm in place to detect problem.</td>
</tr>
<tr>
<td>Blockage UF</td>
<td>Pressure gage installed will warn any unusual pressure drop.</td>
<td>Alarm in place to detect problem.</td>
</tr>
<tr>
<td>Power Failure</td>
<td>Breakdown of the energy supply / manual inspection</td>
<td>For emergency power failure, water will stop running and kept in tanks using buffer capacity.</td>
</tr>
</tbody>
</table>
Odour Sources & Release Points

Most sewer odour problems are caused by the presence of hydrogen sulphide (H2S) gas. This is formed by the anaerobic breakdown of sulphates in solution form sulphides. These sulphides then become available to bond with hydrogen to become H2S gas. At neutral pH, H2S gas is only slightly soluble in sewage and is able to evolve from the liquid phase as a gas. The presence of H2S gas results in unacceptable odour problems even at relatively low levels.

Possible locations of odour source in the wastewater treatment facilities include:

- Collection systems
- In-system pump stations,
- Water tanks lids

Failure events

A wastewater treatment plant odour event can be caused by the failure or over exceeding the capacity of odour control equipment, process upsets, scheduled maintenance of process, failing to adequately clean emergency storage sumps and overflows or spills.

Any overflow must be cleaned up immediately to avoid environmental harm or/and odour releases. Clean-up involves three basic steps, usually taken in the following order:

- Removing wastewater and solids to the maximum practicable amount
- Washing the spill area to dilute any remaining wastewater and conduct it to the collection point on site, especially where there is the potential for high public exposure.
- Disinfecting hard surfaces in high public exposure areas to reduce the risk to human health.

Aquasol will also provide employees with the company safety and health policies and procedures at induction; this will include the provision, use, storage and maintenance of PPE, particularly the risks caused by incorrect use or maintenance of the equipment.
Odour Control

The addition of specific chemicals into the sewage at the beginning of the treatment aims to increase the pH of the sewage to above pH 8, reducing the odours emanating from sewage collection systems in two ways. The ideal condition for biological conversion of dissolved sulphates to hydrogen sulphide occurs between pH 6.8 and pH 7.2. By introducing Sodium Hypochlorite to the sewage, the pH level can be raised above this, resulting in less hydrogen sulphide being produced.

If total sulphide concentration is reduced then solubility of H2S is greatly increased.

The relationship between the solubility of H2S and sewage pH is shown in figure below. Increasing the pH of the sewage from pH 7 to pH 8.5 increases the solubility of the hydrogen sulphide to over 97%. This increase in the solubility of hydrogen sulphide directly corresponds to a much lower H2S headspace levels and therefore greatly reduced odours.

The treatment tanks on site will also be covered and ventilated in order to prevent fugitive emissions of odorous gases. The covers are designed to minimise odour leakage and ensure negative pressure under the covers during normal operation. All contaminated air from tanks will be conducted through a scrubbing system before release into the atmosphere.

Scrubber to absorb gases will be designed as a wet scrubber where gas molecules (odorant) are taken up by a liquid (solution of water + liquid chlorine).
Industrial wet scrubber similar to the one proposed for Moore River South WWTP.

In relation to sludge management, the media filter backwash, sludge build-up in the base of the aeration tanks and periodic pump outs from the base of the clarifier will be collected in the sludge tank. The sludge tank acts as a secondary sludge clarifier to further dewater the sludge to reduce disposal costs.

The high flocculant content of the process clarifier sludge helps to settle the sludge and filter backwash in the base of the sludge tank. Backwashing and clarifier sludge dumping are timed to allow settling periods in the sludge tank. During this period sludge/solids fall to the base of the tank and a layer of water forms at the top of the tank. This water then overflows back to the anaerobic tank for re treatment.

Dewatered sludge from the base of the sludge tank will be pumped out periodically by a licensed waste removal/disposal company.

In the event of any failure, or if odour is noticed in or around the plant, the protocol described in the complaint procedure / form will be activated.
Identification of corrective action

After WWTP is running and odour sources identified a ‘walk around’ assessment will be carried out following “Odour Guidance 2010”. This type of assessment does not involve measuring or predicting emissions - instead it relies upon a subjective assessment of whether odour is present or not, and how strong it is (Figure 5 to be kept on site). During the walk around an assessor will consider where odours come from and under what circumstances eg:

- How much does odour increase during occasional operations such as raw material delivery, equipment cleaning and removal of waste - are complaints related to these activities?
- Waste storage areas - are these covered or uncovered? Where are they located in relation to village?
- Are there uncovered skips or bins?
- Are there spills, leaks or deposits of raw or waste materials on floors or external yards or roadways?

Spend at least 3 minutes at the point(s) nearest to housing and, if odour is detectable, record figures by using FIDOL (Frequency, Intensity, Duration, Location) scales described below.

Frequency: relates the number of events, which could be repeat events on the same day and can be defined from 1 -5 as follows:
1. - Rare, perhaps first recorded occurrence;
2. - Infrequent, 2 or 3 events per year;
3. - Occasional, 1 or 2 per month; or several short duration events in any one day;
4. - Frequent, 1 or 2 per week; or routine short duration events over same period;
5. - Very frequent, perhaps 3 or more events per week or numerous/repeated short duration events over same period.

Intensity: categories may be defined from 1–5, as follows:
1. - No detectable odour
2. - Faint (need to inhale facing into wind)
3. - Moderate (easily detected while breathing normally, possibly unpleasant character
4. - Strong (bearable but distinctly unpleasant odour)
5. - Very strong (very unpleasant odour, possibly causing nausea).
Duration: categories may also be defined from 1-4 as follows:
1. - Transient, e.g. whiff (only detectable for brief intermittent spells)
2. - Sporadic discrete <5 to 10 minutes or <50% of total assessment time if less than 30 minutes
3. - Persistent greater than 50% of assessment time but not continuous, fairly localised
4. - Continuous, present throughout assessment period.

Location: categories may also be defined from 1–5 as follows:
1. - On site or at boundary only
2. - Short distance from boundary but not impacting any sensitive receptors (<25m)
3. - At nearby sensitive receptors (<250m)
4. - In wider locality out with immediate area of site (<500m)
5. - Widespread, affecting large areas.

The results will be recorded against the time, date and the appropriate monitoring location. The name of the person undertaking the assessment should be recorded. The cloud cover, wind direction and wind speed should also be noted.

Look at the odour sources and consider if there are any corrective actions which can be undertaken to prevent or reduce the odour. Prioritise those sources or activities which do cause a problem on the installation and the types of corrective actions that you propose. Transfer the relevant information into the odour management plan, identifying each odour problem/source and corrective actions.
Cycle Review

The plan will be reviewed periodically, with the period set dependant on the odour potential from the site. The plan may also need to be reviewed following the receipt of complaints or after any corrective actions have been undertaken.

Template below will be used to fill in when necessary, Figure 5 to be kept on site.

<table>
<thead>
<tr>
<th>Odour source process area</th>
<th>Release point (Point Source/Fugitive) (**lid, leakage, etc)</th>
<th>Failure events</th>
<th>Resultant actions (record maintained, stop pumping, clean site, etc)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Scenario (**failure of..)</td>
<td>Potential outcome (**odour complaints)</td>
</tr>
<tr>
<td>Point source</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collection systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In-system pump stations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water tanks lids</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5. Conclusions

The following conclusions are based on relevant information of the provided plan.

- The work described was based on previous consultation with DWER, and on an Informative Odour Management Plan Template taken from Scottish EPA's (SEPA) “Odour Guidance 2010” document.

- This Report is developed upon information collected by Aquasol’s experience and technical advice/design from its qualified professionals.

- Facility could be a source of odour complaint but the proposed plan would result in a significant odour control.

- The human nose is an acceptable detector of odour and can be used to establish the presence of odour.

- The scrubber will consistently operate at a very high level of abatement and only by trained personnel. There will also the need of a very effective and proactive monitoring and management of the scrubber for a long term consistency of performance.

- As per the identified Odour Sources & Release Points, together with the identification of CCP, there are no uncontrolled odour emissions. Taking account of the nature of these relatively optimistic assumptions, it is important the plant operators perform constant monitoring as per enclosed Attachment 8G - Routine Maintenance Plan.

- The Odour Management Plans includes provisions to the effect that operators should be ready and trained to reduce, or temporarily stop, the operations if they are unable to control odour impact to a satisfactory level.

- As necessary, the plan will be reviewed frequently, with the period set dependant on the odour potential from the site. The plan may also need to be reviewed following the receipt of complaints or after any corrective actions have been undertaken.
Recycled Water Policy

Aquasol supports and promotes the responsible use of recycled water and the application of a management approach that consistently meets the *National Guidelines on Water Recycling*, as well as recycled water user and regulatory requirements.

To achieve this, Aquasol will:

- Ensure that protection of public and environmental health is recognised as being of paramount importance.

- Maintain communication and partnerships with all relevant agencies involved in management of water resources, including waters that can be recycled.

- Engage appropriate scientific expertise in developing recycled water schemes.

- Recognise the importance of community participation in decision-making processes and the need to ensure that community expectations are met.

- Manage recycled water quality at all points along the delivery chain from source to the recycled water user.

- Use a risk-based approach in which potential threats to water quality are identified and controlled (irrigation system, odour management plan, treatment process, etc).

- Integrate the needs and expectations of our users of recycled water, communities and other stakeholders, regulators and employees into planning processes.

- Establish regular monitoring of control measures and recycled water quality and establish effective reporting mechanisms to provide relevant and timely information, and promote confidence in the recycled water supply and its management.

- Develop appropriate contingency planning and incident-response capability.

- Participate in and support appropriate research and development activities to ensure continuous improvement and continued understanding of recycled water issues and performance.

- Contribute to the development of industry regulations and guidelines, and other standards relevant to public health and the water cycle.

- Continually improve our practices by assessing performance against corporate commitments and stakeholder expectations.

Aquasol will implement and maintain recycled water management systems consistent to effectively manage the risks to public and environmental health.
Aquasol is committed to achieve total customer satisfaction through vigorous innovation and constant improvement of its processes, and also supports and promotes the responsible use of recycled water.

The company mission is to successfully deliver to customer’s high effluent quality, cost effective products and services on time.

To fulfill the mission, Aquasol embraces the following key principles:

• The satisfaction of customers, both external and internal, shall be the primary focus of the quality management activities.

• Systems and controls shall be prevention based to foster more effective decision making.

• Staff shall be encouraged and empowered to participate in quality improvement activities through teamwork and training.

• Regular monitoring of the quality of effluent water and effective reporting mechanisms to provide relevant and timely information, and promote confidence to consumers.

• Ensure incident and emergency response plans are in place.

• Ensure all employees are aware of and actively seek to achieve the aims of this policy.

• Communicate this policy to the community and people related to it.

Aquasol will implement and maintain a recycled water quality management system consistent with the Guidelines for the Use of Recycled Water in Western Australia.

All managers and employees involved in the supply of waste water treatment are responsible for understanding, implementing, maintaining and continuously improving the treated water quality management system.
Odour Complaint Report Form / Investigation Procedure

<table>
<thead>
<tr>
<th>Time and date of complaint:</th>
<th>Name and address of complainant:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Telephone number of complainant:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Date of odour:

<table>
<thead>
<tr>
<th>Time of odour:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location of odour, if not at above address:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Weather conditions (i.e., dry, rain, fog, snow):

Temperature (very warm, warm, mild, cold or degrees if known):

Wind strength (none, light, steady, strong, gusting):

Complainant's description of odour:

- **What does it smell like?**
- **Intensity (see below):**
- **Duration (time):**
- **Constant or intermittent in this period:**
- **Does the complainant have any other comments about the odour?**

Any other relevant information:

<table>
<thead>
<tr>
<th>Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 No odour</td>
</tr>
<tr>
<td>1 Very faint odour</td>
</tr>
<tr>
<td>2 Faint odour</td>
</tr>
<tr>
<td>3 Distinct odour</td>
</tr>
</tbody>
</table>

What was happening on site at the time the odour occurred?

Actions taken:

<table>
<thead>
<tr>
<th>Form completed by:</th>
<th>Date</th>
<th>Signed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hazard Analysis and Critical Control Point
Plan/ Guideline.

Introduction
HACCP is a management system in which Water treatment system is addressed through the analysis and control of biological, chemical, and technician hazards. For successful implementation of a HACCP plan, management must be strongly committed to the HACCP concept.

Education and Training
The success of a HACCP system depends on educating and training of all Aquasol members (see “General Training Introduction” and “Roles and Responsibilities”). It is important to recognize that employees must first understand what HACCP is and then learn the skills necessary to make it function properly. Management must provide adequate time for thorough education and training. Personnel must be given the materials and equipment necessary to perform these tasks. Effective training is an important prerequisite to successful implementation of a HACCP plan.

Assemble the HACCP Team
The first task in developing a HACCP plan is to assemble a HACCP team consisting of individuals who have specific knowledge and expertise appropriate to the product and process. It is the team's responsibility to develop the HACCP plan. The team should be multi-disciplinary and also include (if necessary) local personnel who are involved in the operation as they are more familiar with the variability and limitations of the operation.

Develop a Flow Diagram which Describes the Process
The purpose of a flow diagram is to provide a clear, simple outline of the steps involved in the process. The scope of the flow diagram covers all the steps in the process which are directly under the control of the establishment. For each project a different flow diagram will be prepared following the necessary steps to accomplish treatment.

Conduct a Hazard Analysis
The purpose of the hazard analysis is to develop a list of hazards which are of such significance that they are reasonably likely to cause injury or illness if not effectively controlled. Hazards that are not reasonably likely to occur would not require further consideration within a HACCP plan. It is important to consider in the hazard analysis chemicals and materials, each step in the process, product storage and distribution, and final treatment before final use. When conducting a hazard analysis, safety concerns must be differentiated from quality concerns. The process of conducting a hazard analysis involves two stages. The first, hazard identification, where team reviews the activities conducted at each step in the process and the equipment used, the final product and its method of storage and distribution, and the intended
use. Based on this review, the team develops a list of potential hazards which may be introduced, increased, or controlled at each step in the production process. After the list of potential hazards is assembled, in stage two, the hazard evaluation is conducted. In stage two, the team decides which potential hazards must be addressed in the HACCP plan. During this stage, each potential hazard is evaluated based on the severity of the potential hazard and its likely occurrence.

Determine Critical Control Points (CCPs)
A critical control point is defined as a step at which control can be applied and is essential to prevent or eliminate hazard or reduce it to an acceptable level. The potential hazards that are reasonably likely to cause illness or injury in the absence of their control must be addressed in determining CCPs.

Establish Critical Limits
A critical limit is a maximum and/or minimum value to which a biological, chemical or physical parameter must be controlled at a CCP to prevent, eliminate or reduce to an acceptable level the occurrence of any hazard. A critical limit is used to distinguish between safe and unsafe operating conditions at a CCP.

Establish Monitoring Procedures
Monitoring is a planned sequence of observations or measurements to assess whether a CCP is under control and to produce an accurate record for future use in verification. Monitoring is essential to water treatment safety management in that it facilitates tracking of the operation. If monitoring indicates that there is a trend towards loss of control, then action can be taken to bring the process back into control before a deviation from a critical limit occurs.

Establish Corrective Actions
An important purpose of corrective actions is to prevent treatment process which may be hazardous from reaching staff members or final disposals. Where there is a deviation from established critical limits, corrective actions are necessary. Therefore, corrective actions should include the following elements: (a) determine and correct the cause of non-compliance; (b) determine the disposition of non-compliant product and (c) record the corrective actions that have been taken.

Implementation and Maintenance of the HACCP Plan
The successful implementation of a HACCP plan is facilitated by commitment from the management. The next step is to establish a plan that describes the individuals responsible for developing, implementing and maintaining the HACCP system. Initially, the HACCP coordinator and team are selected and trained as necessary. The team is then responsible for developing the initial plan and coordinating its implementation. Aquasol makes sure the implementation of the HACCP system involves the continual application of the monitoring, record-keeping, corrective action procedures and other activities as described in the HACCP plan.

For each project Aquasol will develop an individual HACCP plan according with the plant and specifications of each project maintaining an effective HACCP system depends largely on regularly scheduled verification activities. The HACCP plan should be updated and revised as needed. An important aspect of maintaining the HACCP system is to assure that all individuals involved are properly trained so they understand their role and can effectively fulfil their responsibilities.
Cycle Review, Odour Management Plan

<table>
<thead>
<tr>
<th>Odour source process area</th>
<th>Release point (Point Source/Fugitive) (**lid, leakage, etc)</th>
<th>Failure events</th>
<th>Resultant actions (record maintained, stop pumping, clean site, etc)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Scenario (**failure of..)</td>
<td>Potential outcome (**odour complaints)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Point source</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collection systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In-system pump stations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water tanks lids</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any other, or comments</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Identification of corrective action
 - How much does odour increase during occasional operations such as raw material delivery, equipment cleaning and removal of waste - Are complaints related to these activities?
 - Are there waste storage areas? Are these covered or uncovered? Where are they located in relation to local houses?
 - Are there spills, leaks or deposits of raw or waste materials on floors or external yards or roadways?
 - Are there uncovered skips or bins?

- 'Walk Around' assessment, spend at least 3 minutes at the odour source points and record (mark with a circle):

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Name of assessor</th>
<th>Comments on wind conditions</th>
</tr>
</thead>
</table>
Frequency

relates the number of events, which could be repeat events on the same day and can be defined from 1 -5 as follows:

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rare, perhaps first recorded occurrence;</td>
</tr>
<tr>
<td>2</td>
<td>Infrequent, 2 or 3 events per year;</td>
</tr>
<tr>
<td>3</td>
<td>Occasional, 1 or 2 per month; or several short duration events in any one day;</td>
</tr>
<tr>
<td>4</td>
<td>Frequent, 1 or 2 per week; or routine short duration events over same period;</td>
</tr>
<tr>
<td>5</td>
<td>Very frequent, perhaps 3 or more events per week or numerous/repeated short duration events over same period</td>
</tr>
</tbody>
</table>

Intensity

categories may be defined from 1–5, as follows:

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No detectable odour</td>
</tr>
<tr>
<td>2</td>
<td>Faint (need to inhale facing into wind)</td>
</tr>
<tr>
<td>3</td>
<td>Moderate (easily detected while breathing normally, possibly unpleasant character</td>
</tr>
<tr>
<td>4</td>
<td>Strong (bearable but distinctly unpleasant odour)</td>
</tr>
<tr>
<td>5</td>
<td>Very strong (very unpleasant odour, possibly causing nausea).</td>
</tr>
</tbody>
</table>

Duration

categories may also be defined from 1- 4 as follows:

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Transient, e.g. whiff (only detectable for brief intermittent spells)</td>
</tr>
<tr>
<td>2</td>
<td>Sporadic discrete <5 to 10 minutes or <50% of total assessment time if less than 30 minutes</td>
</tr>
<tr>
<td>3</td>
<td>Persistent greater than 50% of assessment time but not continuous, fairly localised</td>
</tr>
<tr>
<td>4</td>
<td>Continuous, present throughout assessment period.</td>
</tr>
</tbody>
</table>

Location

categories may also be defined from 1–5 as follows:

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>On site or at boundary only</td>
</tr>
<tr>
<td>2</td>
<td>Short distance from boundary but not impacting any sensitive receptors (<25m)</td>
</tr>
<tr>
<td>3</td>
<td>At nearby sensitive receptors (<250m)</td>
</tr>
<tr>
<td>4</td>
<td>In wider locality out with immediate area of site (<500m)</td>
</tr>
<tr>
<td>5</td>
<td>Widespread, affecting large areas.</td>
</tr>
</tbody>
</table>