

28 March 25

[Document Number]

Revision 1.00

28/03/2025

TABLE OF CONTENTS

1.	Proje	ct Descr	iption	4				
2.	Purpo	ose		4				
3.	Scope	e Of wor	ks Approval and Existing Approvals	4				
4.	EXIST	ING ENV	VIRONMENT	8				
	4.1	Landsc	ape	8				
	4.2	Climate	e	8				
	4.3	Landfo	rms and Soils	9				
	4.4	Flora S	pecies and Vegetation Communities	9				
	4.5	Fauna S	Species and Habitat	10				
	Purpose 4 Scope Of works Approval and Existing Approvals 4 EXISTING ENVIRONMENT 8 4.1 Landscape 8 4.2 Climate 8 4.3 Landforms and Soils 9 4.4 Flora Species and Vegetation Communities 9 4.5 Fauna Species and Habitat 10 4.6 Subterranean Fauna 11 4.7 Hydrology 11 4.8 Hydrogeology 12 4.9 Social Setting and Cultural Heritage 13 4.9.1 Social Setting 13 4.9.2 Aboriginal Cultural Heritage 13							
	4.3 Landforms and Soils 9 4.4 Flora Species and Vegetation Communities 9 4.5 Fauna Species and Habitat 10 4.6 Subterranean Fauna 11 4.7 Hydrology 11 4.8 Hydrogeology 12 4.9 Social Setting and Cultural Heritage 13 4.9.1 Social Setting 13 4.9.2 Aboriginal Cultural Heritage 13 Proposed Activity – Integrated Waste Landform Tailing Storage Facility Stage 4 17 5.1 Background 17 5.2 TSF Design 17 5.3 Storage Capacity 20 5.4 Tailings Materials Characterisation 20 5.5 Freeboard 21							
2. Purpose 3. Scope Of works Approval and Existing Approvals 4. EXISTING ENVIRONMENT		12						
	4.9	Social S	Setting and Cultural Heritage	13				
		4.9.1	Social Setting	13				
		4.9.2	Aboriginal Cultural Heritage	13				
5.	Propo	osed Act	ivity – Integrated Waste Landform Tailing Storage Facility Stage 4	17				
	5.1	Backgro	ound	17				
	5.2	TSF Des	sign	17				
	5.3	Storage Capacity						
	5.4	Tailings	s Materials Characterisation	20				
	5.5	Freebo	ard	21				
	5.6	Seepag	ge	22				
		5.6.1	Seepage Assessment	22				
		5.6.2	Seepage Control Measures	23				
		5.6.3	Monitoring	24				
	5.7	Water	and Tailings Management	26				
		5.7.1	Cyanide Management within the IWLTSF Decant	26				
	5.8							
	5.9	Preliminary Dam Break Assessment						
	5.10	Water	Balance	27				
	5.11	Project	: Timing and Phases	28				
	5.12	Time Li	imited Operations	28				

[Document Number]

Revision 1.00

7.	Compliance	29
	7.1 Legislative Framework	29
8.	Control of emissions	32
	8.1 Risk Assessment Overview	32
	8.2 Risk and Impact Assessment	33
9.	References	
Арі	pendix A: IWLTSF Stage 4 North and STage 4 South Detailed Design Report Bellev	ue Gold Project
(KE	EC, 2025)	39
	FIGURES	
Figi	ure 1: Project Location	6
_	rure 2: Prescribe Premises Boundary in Relation to the IWLTSF Stage 4	
_	ure 3: Leinster Aero (Site No. 012314) Climate Data BOM	
_	ure 4: IWLTSF Stage 4 Total Catchment (REC, 2025)	
_	ure 5: Sensitive Receptors in Relation to IWLTSF Stage 4	
	re 6: IWLTSF Stage 4 North and Stage 4 South General Arrangement (Plan) (REC, 2025)	
_	ure 7:Typical Section IWLTSF Stage 4 North Embankment (REC, 2025)	
_	ure 8: Typical Section IWLTSF Stage 4 South Embankment (REC, 2025)	
	ure 9: Typical Section IWLTSF Stage 4 Embankment Extension, including Cut-off Trench Co	
202	25)	20
Figu	ure 10: IWLTSF Stage 2, 3 and 4 Underdrainage System Layout	24
Figu	ure 11: Existing Monitoring Bore Locations	25
Figu	ure 12: Existing Embankment Instrumentation	25
	TABLES	
Tab	ble 1: AHIS Registered Aboriginal Sites	14
Tab	ble 2: Design Storage Capacities and Sequencing Order Stage 4 (REC, 2025)	20
Tab	ble 3: Freeboard Limits and Requirements (REC, 2025)	22
Tab	ble 4: Results of Seepage Analysis	23
Tab	ble 5: Slope Stability Results for Section 1	27
Tab	ble 6: Slope Stability Results for Section 2	27
Tab	ble 7: Environmental Legislative Framework	29
Tab	ble 8: Likelihood Categories	32
Tab	ble 9: Consequence Categories	33
	ble 10: Risk Matrix	
Tab	ble 11 : Risk and Impact Assessment	34

[Document Number]

Revision 1.00

28/03/2025

1. PROJECT DESCRIPTION

The Bellevue Gold Project (BGP) is owned and operated by Golden Spur Resources Pty Ltd (a wholly owned subsidiary of Bellevue Gold Limited (BGL)). Bellevue is listed on the Australian Stock Exchange as ASX:BGL.

The BGP is a historic gold mining operation located within Mineral Field 36 in the North-eastern Goldfields Region of WA, approximately 430 km north of Kalgoorlie-Boulder and 40 km north of Leinster, in the Northern Goldfields region, within the Shire of Leonora (Figure 1). The Project is adjacent to the Goldfields Highway which passes through the tenements to the west of the historic Bellevue Mine. Processing of gold recommenced at the BGP in October 2023 at the newly constructed Processing Plant.

An overview of the BGP tenure and the infrastructure in relation to this Works Approval application is presented in Figure 2. The Prescribed Premise boundary for this Works Approval is the current prescribed premise boundary of M36/24, M36/25 and M36/299 all of which are held by Golden Spur Resources Pty Ltd.

All compliance and regulatory requirements regarding this assessment document should be forwarded by e-mail, post or courier to the following address:

Proponent: Bellevue Gold Limited

2. PURPOSE

This document constitutes "Attachment 3B" of the Works Approval application and provides additional information to support the Works Approval application dated 28 March 2025.

3. SCOPE OF WORKS APPROVAL AND EXISTING APPROVALS

The BGP was previously mined by open cut and underground methods from 1988 to 1997. Approval under the *Mining Act 1978* for the consolidation of previous Mining Proposals was approved through the Department of Mines, Industry Regulation and Safety (DMIRS) on the 28 May 2023, further iterations of this Mining Proposal have been approved with the latest version approved on 26 February 2025. An update to this version will be undertaken to include the latest tailings dam design.

[Document Number]

Revision 1.00

28/03/2025

BGP currently operates under Licence L9259/2020/1 for the following Prescribed Premises:

- Category 5: Processing or beneficiation of metallic or non-metallic ore: premises on which (a)
 metallic or non-metallic or is crushed, ground, milled or otherwise processed; or (b) tailings
 from metallic or non-metallic ore are reprocessed; or (c) tailings or residue from metallic or nonmetallic ore are discharged into a containment cell or dam (50 000 tonnes or more per year).
- Category 6: Mine dewatering premises on which water is extracted and discharged into the environment to allow mining of ore (50,000 tonnes or more per year).
- Category 52: Electric power generation.
- Category 54: Sewage Facility.
- Category 64: Class II or III putrescible landfill site.
- Category 70: Screening etc. of material.

This Works Approval application requests approval to construct the next stage of the Integrated Waste Landform TSF (IWLTSF), namely the IWLTSF Stage 4. The IWTLTSF Stage 4 in relation to the Prescribed Premise boundary is illustrated in Figure 2.

The proposed Prescribed Premises cateogry for this Works Approval is:

 Category 5: Processing or benefication of metallic or non-metallic ore; comprising crushing or grinding, or tailings storage or reprocessing (production or design capacity of 50,000 tonnes or more per year).

This Works Approval application support document describes the receiving environment and provides details on management of emissions and pollution control. Assessment of risks associated with this amendment demonstrates that emissions can be effectively managed to ensure there are no material impacts to sensitive receptors.

[Document Number]

Figure 1: Project Location

[Document Number]

Revision 1.00

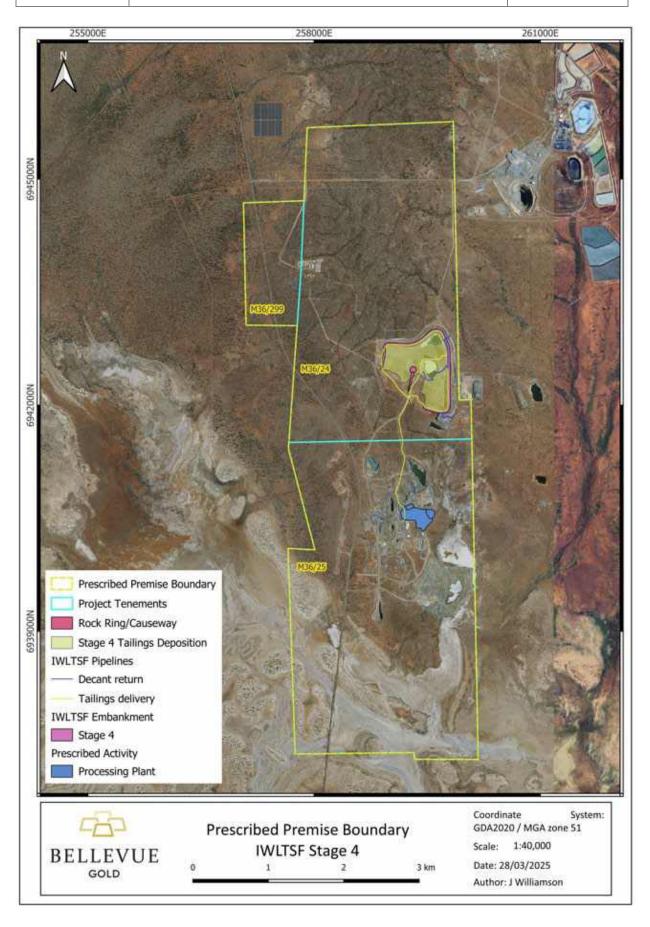


Figure 2: Prescribe Premises Boundary in Relation to the IWLTSF Stage 4

[Document Number]

Revision 1.00

28/03/2025

4. EXISTING ENVIRONMENT

4.1 Landscape

The Project is in the semi-arid North-Eastern Goldfields region of Western Australia, on the fringes of Lake Miranda. The Project lies within the East Murchison subregion of the Interim Biogeographic Regionalisation for Australia (IBRA) Murchison bioregion, defined by Cowan (2001):

"Internal drainage and extensive areas of elevated red desert sandplains with minimal dune development. Salt lake systems are associated with the occluded Paleodrainage system. Broad plains of red-brown soils and breakaway complexes as well as red sandplains are widespread. Vegetation is dominated by Mulga Woodlands often rich in ephemerals, hummock grasslands, saltbush shrublands and Halosarcia shrublands."

The Austin Botanical District in which the Project is located, is described by Beard (1990) as being typified by Mulga (*Acacia aneura*) woodlands on the plains, scrub and shrublands on hills and rises, Mulga and *Eremophila* shrublands on stony plains, and chenopod communities on duplex soils. Vegetation communities are strongly correlated with landforms and soils (Pringle et al., 1994; Beard 1990).

4.2 Climate

The Bellevue Gold Project is in an area characterised by a semi-arid climate, with warm to hot summers and cool to mild winters. The nearest Bureau of Meteorology (BOM) weather station to the Project is located 43 km south at Leinster Aero (Site Number 012314) (BOM, 2024). A summary of the climate data is provided in Figure 3.

The mean maximum temperature is 37.3°C in January and mean minimum temperature of 6.2°C in July (BOM, 2024). The average annual rainfall as recorded at Leinster Aero Station is approximately 245.2 mm with an average of 30.6 days of rain per year. Rainfall generally comes from locally generated thunderstorms (during winter) and dissipating tropical cyclones tracking southeast from the Pilbara coast (during summer). The highest average rainfall occurs in February with 39.9 mm and the lowest occurring in September with 4.1 mm (BOM, 2024).

Design storm events and the Probably Maximum Precipitation is discussed in the Resource Engineering Consultants (REC) Detailed Design Report (DDR) for the IWLTSF Stage 4 (Appendix A).

[Document Number]

Revision 1.00

28/03/2025

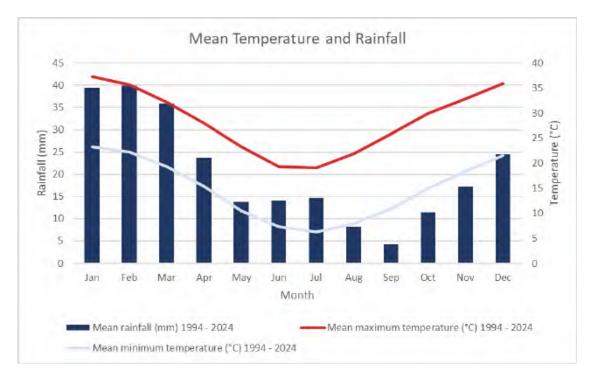


Figure 3: Leinster Aero (Site No. 012314) Climate Data BOM

4.3 Landforms and Soils

MBS Environmental (2021) identified several commonly occurring landforms across the greater Project area including:

- o Greenstone Hills and ridges supporting Acacia and mixed chenopod shrublands;
- Undulating gravel plains with low stony rises and minor saline plains; supporting groved mulga, bowgada and chenopod shrublands;
- Salt lakes with fringing saline alluvial plains, kopi dunes and sandy banks; supporting halophytic shrublands and Acacia tall shrublands;
- o Broad plains with mantle of ironstone gravel supporting mulga shrublands and grasses; and
- o Sandplains supporting *Triodia* grasslands with mallees and *Acacia* shrubs.

The soil types identified within the Prescribed Premises area is described as a "Red Shallow Loam" which occurs commonly across the broader Project area. These loams occur over a shallow hardpan and are located over flat to gently sloping areas. Soils were typically covered with a dense cover of ferruginous and/or siliceous gravel and stony lag material.

4.4 Flora Species and Vegetation Communities

Two detailed flora surveys across the Project site covered 2,428.4 ha. RPS Australia West Pty Ltd (RPS) undertook five field surveys between August 2018 and October 2019. RPS Group (2020) identified a total of 345 vascular flora species across the Project area. There were no Threatened Flora species identified within the Project area; however Three Priority Flora species were identified:

- Grevillea inconspicua (Priority 4);
- o Hibiscus sp. Perrinvale Station (Priority 3); and
- o Goodenia lyrata (Priority 3).

[Document Number]

Revision 1.00

28/03/2025

A total of 19 vegetation communities were described across the Project area.

- H01 Mulga spp. Isolated Trees to Low Open Woodland over Acacia tetragonophylla, Eremophila galeata and Hakea preissii Tall Sparse Shrubland over Ptilotus obovatus var. obovatus and mixed Chenopod Low Sparse Shrubland over Aristida contorta and Enneapogon caerulescens Sparse Tussock Grassland on stony plains and lower hill slopes
- <u>H06:</u> Mulga spp.and Acacia doreta (long phyllode form) Low Open Woodland with Isolated Eremophila oldfieldii subsp. angustifolia over A. xanthocarpa Tall Isolated Shrubs over Eremophila exilifolia, E. forrestii subsp. forrestii and Senna artemesioides Mid Sparse Shrubland over Ptilotus obovatus var. obovatus and Maireana spp. Low Sparse Shrubland over Aristida contorta Sparse Tussock Grassland on stony hill slopes, spurs and crests
- <u>H07</u> Acacia doreta (long phyllode form) Low Open Woodland over A. xanthocarpa Tall Sparse to Open Shrubland over Senna sp. Meekatharra and S. artemisioides subsp. Helmsii Mid Sparse Shrubland over Ptilotus obovatus var. obovatus Low Shrubland on stony hillslopes, spurs and crests
- H09 Mulga spp. Low Open to Closed Forest over Acacia xanthocarpa Tall Sparse to Open Shrubland over Eremophila exilifolia and Senna spp. Mid to Low Open Shrubland over Aristida contorta Sparse to Open Tussock Grassland in drainage lines on stony hill slopes
- <u>P02</u> Mulga spp. Low Open Woodland to Isolated Trees over *Eremophila pantonii* and *E. galeata* Tall Open to Sparse Shrubland over *Senna* sp. Meekatharra Mid Open Shrubland over *Ptilotus obovatus* var. *obovatus* and mixed Chenopods Low Open to Sparse Shrubland over *Aristida contorta* Sparse Tussock Grassland in drainage lines on stony hardpan plains
- <u>Cleared/Highly Modified</u>: Highly modified and cleared areas devoid of native vegetation includes roads, tracks, buildings, mining infrastructure, historical pits, processing areas and camps.

The Violet Range (Perseverence Greenstone) BIF Priority Ecological Community (PEC) occurs within the broader Project area. The majority of the PEC in the BGP is in a degraded state due to historical mining activities (NVS 2022). Activities related to the works approval amendment do not directly impact this area.

There are no Threatened Ecological Communities (TECs) listed under the *Environment Protection and Biodiversity Conservation Act 1999* (Cth) (EPBC Act), or the *Biodiversity Conservation Act 2016* (WA) (BC Act).

4.5 Fauna Species and Habitat

Bamford Consulting Ecologists Pty Ltd (Bamford) undertook a detailed terrestrial fauna and habitat assessment for the Project in 2018 and 2019. Bamford identified six Vegetation and Substrate Associations (VSAs) across the broader Project area to help describe the types of habitats available to local fauna species. The VSA's recorded within the Prescribed Premises include:

- Long-leaf Mulga over shrubs and tussock grass on rocks and loam of undulating hills;
- Broad-leaf Mulga over shrubs and tussocks grass on sandy-loam plains;
- Isolated trees over open shrubland on gypsum soils close to Lake Miranda;
- Samphire marsh in loam clay on margins and across parts of Lake Miranda;
- · Lake Miranda; and
- Degraded area.

A total of 110 vertebrate fauna species were observed within the broader Project area (Bamford Consulting Ecologists 2020) consisting of:

[Document Number]

Revision 1.00

28/03/2025

- 1 Amphibian;
- 32 Reptiles;
- 64 Birds; and
- 13 Mammals (9 native, 4 introduced).

Of these confirmed fauna species, five were identified as being species of conservation significance, including:

- Common Greenshank (Tringa nebularia) Listed under the EPBC Act as Marine & Migratory
- Sharp-tailed Sandpiper (Calidris acuminata) Listed under the EPBC Act as Marine & Migratory
- Sandplain worm-lizard (Aprasia repens) Listed as a species of local significance
- Australian Bustard (Ardeotis australis) Listed as a species of local significance
- Bush Stone-curlew (Burhinus grallarius) Listed as a species of local significance

Several other species of conservation significance were identified as potentially occurring within the broader Project area (primarily migratory wetland birds); however, they were not identified during the survey program.

4.6 Subterranean Fauna

Invertebrate Solutions Pty Ltd (Invertebrate Solutions) undertook a preliminary subterranean fauna species and habitat assessment for the Project in 2021. The technical memorandum served as a preliminary assessment of records by the Western Australian Museum (WAM) and DBCA. Desktop results for stygofauna and troglofaunal records found in the vicinity of the BGP are limited to calcrete outcrops, including Miranda East and Miranda West calcretes. These habitats have not been identified in the Project area.

The absence of stygofauna records outside of calcrete geology in the Project area would suggest that stygofauna habitats are generally absent or present in low abundance. However, it is unknown what sampling intensity has previously been undertaken and the lack of records may be due to a scarcity of sampling. The groundwater within the BGP is almost saline to hypersaline with salinity ranging from 17,900 mg/L TDS up to 155,000 mg/L in Vanguard pit, further reducing the likelihood of stygofauna within local aquifers. Whilst stygofauna have occasionally been recorded in hypersaline groundwater, this has mostly been associated with aquifers at the edges of salt lakes. Most hypersaline waters have not been found to contain stygofauna. Core photos examined for the saturated zone confirm the general absence of suitable fracturing that provides interconnected void space in the rock strata that may provide a habitat for stygofauna (Invertebrate Solutions Pty Ltd, 2021).

Whilst overlaying colluvium, known as the Mesovoid Shallow Substratum, is virtually unsampled, it is increasingly known worldwide to contain troglobiont communities. However, the colluvium across the BGP is dominated by sand and soil, making it unlikely to contain troglofaunal in this area. Additionally, core photos examined for the unsaturated zone confirm the absence of suitable fracturing that provides interconnected void space in the rock strata that may provide a habitat for troglofauna (Invertebrate Solutions, 2021).

4.7 Hydrology

The broader Project area is situated on a gently undulating landscape which consists of minor ridges, undulating plains to the east and hills to the west and salt-lake features to the south (Lake Miranda). There are no wetlands or permanent surface water features on the site. All streams are ephemeral, driven by the erratic nature of rainfall in the region.

[Document Number]

28/03/2025

Revision 1.00

The existing open pits are aligned with the local topographical high of the greenstone belt, which also defines the top of the local surface water catchments in the area. Drainage near the site is generally to the south towards Lake Miranda (salt-lake with periodic inundation driven by seasonal rainfall events). East of the site lies a braided streambed with four major tributaries that converge at a point about 2 km east of the southernmost point of the site. Substantial surface run-off occurs following thunderstorms or cyclonic activity, resulting in intermittent and short duration surface water flows in the local drainage lines. Run-off rates during these large rainfall events are generally high.

2D food modelling determined that whilst the Project could be affected by a 1 in 100-year flood event, the predicted water velocities are typically non-destructive to earth structures and unlikely to impact the Project. Additional modelling was completed for a 1 in 500-year flood event to account for extreme rainfall events due to climate change. The assessment identified that flood extents would increase by up to 40 m laterally compared to the 1 in 100-year events. The Water Management Plan describes this type of flood event as very low and that the site topography naturally encourages water to flow away from the Project (RPS 2021).

The total catchment area for the proposed IWLTSF Stage 4 is estimated to be approximately 69.9 ha. This includes contributions from the upstream catchment area of 15.1 ha, which partially drains into the facility, and direct runoff from the tailings beach catchment area of 54.8 ha (REC, 2025). The combined rainfall runoff volume from these catchments is estimated to be approximately 0.64 Mm³. The IWLTSF Stage 4 catchment area is illustrated in Figure 4.

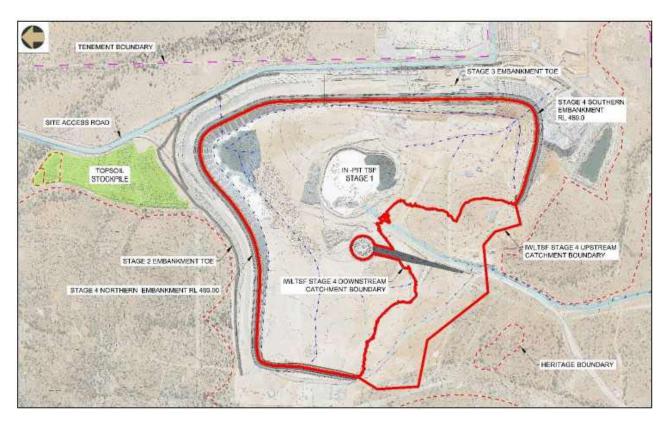


Figure 4: IWLTSF Stage 4 Total Catchment (REC, 2025)

4.8 Hydrogeology

The known paleochannel aquifer systems are to the south and east of the Project area. The main aquifer of relevance to mining and dewatering is the fractured-rock aquifer, which is comprised of greenstones, granitoids and minor intrusive rocks. The greenstone belt in the project area is aligned in a north to south

[Document Number]

28/03/2025

Revision 1.00

orientation, with the associated faults and fracture sets also aligned in this direction. The fractured rock aquifer characterises the extents and degree of fracturing and the interconnectedness of such fractures along strike. Typically, such fractured rock aquifers are quite localised and low in groundwater storage. This preferred orientation for faulting also gives an asymmetry to the preferential flow paths for groundwater, with drawdown propagation expected to extend further along strike (north south), while being more limited across strike (east west).

The pre-mining groundwater levels at Bellevue range between 15 m to 30 m below ground level (mbgl), depending on topography, equivalent to about ~460 m above height datum (m AHD). The levels indicate are latively flat groundwater gradient regionally towards the south, which is consistent with the regional groundwater flow direction following the major paleo-drainage lines. Groundwater is hypersaline with TDS in the range of 90,000 to 120,000 mg/L.

Groundwater within the Project area flows south from the mine area to the Lake. The lake acts as a groundwater sink where water is lost to the environment and salts concentrate. Water levels at the lake are typically far shallower than at the mine area at less than two meters below the surface (REC 2022).

Natural groundwater ingress to the current workings at Bellevue was originally believed to be low, however following a hydrogeological investigation by the hydrogeology consultants SRK in 2023 underground water inflows were found to be much higher. The estimated seepage rate into the underground workings from the Henderson pit is between 23 and 24 L/s and for Westralia pit 2 to 3 L/s.

4.9 Social Setting and Cultural Heritage

4.9.1 Social Setting

A review of the environmental and social setting surrounding the greater BGP has guided the identification of potential sensitive receptors that have been considered when assessing this Project's risks and potential emissions. The relevant potential sensitive receptors identified include (Figure 5):

- Local flora, fauna and vegetation.
- Heritage sites outside the agreed development envelope.
- Yakabindie Pastoral Lease homestead approximately 10 km from the Project.
- Leinster townsite (located approximately 40 km to the south).
- Lake Miranda

Although not considered a sensitive receptor under the EP Act, BGL has also considered the potential for impacts at the Mining Administration Building and Accomodation Village.

4.9.2 Aboriginal Cultural Heritage

The BGP tenements are located within an area of high cultural heritage significance. Bellevue executed a Native Title Agreement (NTA) with Tjiwarl (Aboriginal Corporation) RNTBC (Tjiwarl AC) as the holder on trust for the Tjiwarl Native Title Holders, being the native title rights and interests' holders and traditional owners of the land, which hosts the BGP. The NTA ensures that important cultural and heritage considerations have been included in the surface design and layout of the Project, protecting sensitive areas and developing a co-designed Cultural Heritage Management Plan (CHMP) to manage future activities.

The Project area has been extensively and thoroughly surveyed for Aboriginal ethnographical and archaeological sites with registered sites shown in Table 1. In addition to the registered sites on the Aboriginal Heritage Inquiry System (AHIS) register, there are 13 sites which are lodged and are awaiting formal assessment before entry into the Register by the Registrar of Aboriginal Sites. Many of these sites have been mapped by the Department of Planning, Lands and Heritage (DPLH) with large extended

[Document Number]

28/03/2025

boundaries and overlapping large polygons that do not reflect the actual location of the site and completely cover the Project area. As a result of consultation with the Aboriginal Consultation Group and additional heritage survey work, heritage sites' locations and cultural values within the Project area are well understood. BGL and TAC signed a Native Title Agreement in September 2022 of which a comprehensive CHMP formed a part. As a result of the consultation and cultural mapping that took place ahead of writing the CHMP all cultural heritage values were captured within the immediate project area and a process was defined that would lead to Bellevue and TAC agreeing to those areas where Bellevue would be permitted to expand its current extent.

Under the CHMP, Bellevue must provide Tjiwarl AC with copies of all approval applications sent to regulatory agencies. Accordingly, this application has been sent to Tjiwarl AC in parallel. Additionally, the CHMP requires Bellevue to obtain authorisation from Tjiwarl AC before it is permitted to complete any activities outside of activities already approved under the CHMP.

The Stage 4 IWLTSF as proposed in this document is within the scope of the CHMP, which states a specific total area of the IWLTSF of 92 ha and maximum heigh of approximately 23 m (~492 mRL) along the eastern embankment.

Table 1: AHIS Registered Aboriginal Sites

Tenement	Site ID	Legacy ID	Site Name	Site Type
M36/24	459	W02261	Sir Samuel Camp	Ceremonial, Camp
	38870	-	Wati Kutjarra Old Lore Ground	Ceremonial
	460	W02262	Mother's Camp	Historical
	22277	20	Violet Range 2	Mythological, Natural feature.
M36/25	464	W02262	Katatjuna	Ceremonial, Mythological
	819	W02164	Mitan	Ceremonial, Mythological, Water Source
	823	W02168	Ngunan	Artefact/Scatter, Ceremonial, Man-Made Structure, Mythological
	1200	W01966	Lake Miranda North	Artefacts/Scatter, Quarry
	1295	W01896	Matintjiti	Artefacts/Scatter, Ceremonial, Mythologica
	1376	W01818	Yakabindie S./Pilkari Kutji	Mythological
	1377	W01819	Yakabindie S.E./Yulkapa	Mythological
M36/25 and	22183	(4)	Vanguard South Scatter 1	Artefacts/Scatter, Other: Grindstone
M36/24	1301	W01902	Lake Miranda (Katawill)	Ceremonial, Mythological, Plant Resource
	1304	W01905	Ingkatala	Artefacts/Scatter, Ceremonial, Man-Made Structure, Repository/Cache, Skeletal Material/Burial, Camp.

[Document Number]

Revision 1.00

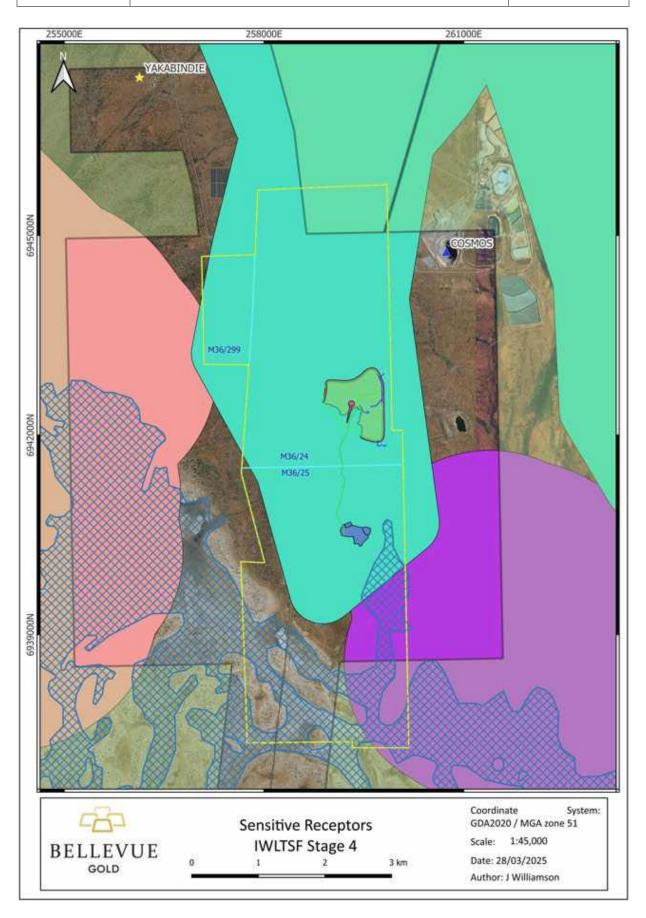


Figure 5: Sensitive Receptors in Relation to IWLTSF Stage 4

[Document Number]

Revision 1.00

GL Threatened Priority Communities	Presci	ribed Activity
Lake Miranda east calcrete groundwater assemblage types on Carey palaeodrainage on Yakabindie Statio	1	Processing Plant
Lake Miranda west calcrete groundwater assemblage types on Carey palaeodrainage on Yakabindie Statio	n IWLT	SF Embankments
Violet Range (Perseverance Greenstone Belt) vegetation complexes (banded ironstone formation)		Stage 4
Yakabindie calcrete groundwater assemblage type on Carey palaeodralnage on Yakabindie Station		Rock Ring_Causeway
Prescribed Premise Boundary	- 3	Tailings deposition
Tenements	A	Cosmos
VLTSF Pipelines		Lake Miranda
— Decant return	*	Yakabindie Homestead
Tailings delivery		Pastoral Lease

[Document Number]

Revision 1.00

28/03/2025

5. PROPOSED ACTIVITY – INTEGRATED WASTE LANDFORM TAILING STORAGE FACILITY STAGE 4

The following sections provide detail and design information for Stage 4 of the Integrated Waste Landform Tailings Storage Facilty (IWLTSF). The IWLTSF Stage 4 consists of two sections: Stage 4 North and Stage 4 South. Resource Engineering Consultants (REC) completed a Detailed Design Report (DDR) for the Stage 4 North and Stage 4 South IWLTSF, this is provided at Appendix A.

5.1 Background

Tailings is currently stored in the Vanguard in-pit Tailings Storage Facility (IPTSF) (Stage 1) and Stage 2 of the Integrated Waste Landform Tailings Storage Facility (IWLTSF). The IPTSF and the IWLTSF Stage 2 and Stage 3 were approved under Works Approval W6724/2022/1. The IPTSF has been transferred to the Prescribed Premise Licence L9259/2020/1 and the IWLTSF Stage 2 is currently in Time Limited Operations and in the process of being transferred to the site Prescribed Premise Licence. Construction of the IWLTSF Stage 3 was completed at the end of February with the Critical Containment Infrastructure Report submitted to the DWER on 12 March 2025, following approval of this report Stage 3 will also be in Time Limited Operations.

Stages 1 to 3 of the IWLTSF were designed to be constructed and operated sequentially. Stage 1 is the IPTSF which utilised the depleted Vanguard open pit. Stage 2 and 3 are starter embankments of the IWLTSF which encapsulate the IPTSF. Stage 2 provides containment to the north and northern portion of the eastern side of the storage basin, while Stage 3 forms the south and southern portion of the eastern side of the storage basin. The integrated Stage 2 and Stage 3 emankments provide a continous perimeter embankment around the north, east and south of the storage basin at an elevation RL 484.5 m.

To support continuous operation and tailings storage beyond 2026 (which is the current life of the IWLTSF Stage 3), the IWLTSF requires further expansion through the construction of proposed IWLTSF Stage 4 North and Stage 4 South raises (also described in this document as IWLTSF Stage 4).

5.2 TSF Design

To enable construction and continuation of tailings delivery, Stage 4 will be split into two sections; Stage 4 North (footprint in red outline - Figure 6) and Stage 4 South (footprint in green outline - Figure 6) embankment raise. The design of the IWLTSF Stage 4 North and Stage 4 South embankment raise has been developed to optimise storage capacity, maximise tailings densit, achieve water recovery in the range of 55% of the slurry water, reduce seepage and minimise the environmental and societal impact of the facility.

The Stage 4 North and Stage 4 South have been designed in a downstream embankment configuration with an embankment raise height of 4.5 m, increasing the IWLTSF elevation to RL 489 m.

The IWLTSF Stage 4 North and Stage 4 South embankments will be constructed using mine waste (Zone 3A and Zone 3B) sourced from underground mining waste, compacted in lifts through traffic compaction. Zone 3B will form the bulk of the downstream embankment and will be constructed in maximum 1.0m traffic-compacted lifts, followed by Zone 3A in maximum 0.5 m traffic compacted lifts. The upstream batter, Zone 3C will be constructed using transitional mine waste material sourced from the historic Vanguard waste dump and other suitable borrow pitstockpiles.

[Document Number]

Revision 1.00

28/03/2025

The embankment upstream face will incorporate a High Density Polyethylene (HDPE) liner, underlain by a suitable subgrade and Bidim A24 geotextile (or equivalent) to provide enhanced puncture protection. An anchor trench will be constructed at the crest and the HDPE liner will be keyed in for stability.

The Stage 4 embankment extension (Figure 6), extending across natural ground beyond the existing Stage 2 and Stage 3 embankments, will include a cutoff trench and toe drain that will integrate with the existing Stage 2 and Stage 3 cutoff trenches and underdrainage network. The HDPE liner in this section will be anchored at the bottom of the cutoff trench. The cutoff trench is proposed to be constructed with low permeability material from obtained from suitable laterite sources available across the site. The cutoff trench aims to intercept lateral seepage through and beneath the embankments (Figure 9).

The embankment geometrics are presented in Figure 7 to Figure 9 . The IWLTSF Stage 4 detailed deign drawings are included in the REC DDR in Appendix A.

ITWLTSF Stage 4 decant water recovery will be facilitated by the construction of a rock ring with access provided via a decant causeway extending from ridgeline to the south of the IWLTSF (Figure 6). The rock ring construction has been postponed from Stage 3 and repositioned from original design locations based on an updated understanding of the surrounding ground conditions and elevations identifed through removal of the nearby Vanguard pit waste dump.

Additionally, a buttress will be constructed at the downstream toe of the IWLTSF embankment located at the southeast corner of the facility, where the Stage 3 embankment has been built to a minimum 10.0 m crest width. This buttress is designed to reinforce the embankment. It will be constructed at an elevation of 468.0 m with a maximum height of 5.0 m.

Tailings deposition will be deposited using sub-aerial deposition techniques (as with Stage 2 and 3) from the perimeter embankments from multi spigot locations, the spigot intervals will be not less than 20 m and not more then 50 m.

IWLTSF Stage 4 North and Stage 4 South have been designed in accordance with the Australian National Committee on Large Dams (ANCOLD) Guidelines (ANCOLD, 2012), with a Dam Failure Consequence Category of 'High C' assigned to the facility. Similarly, an assessment based on the Department of Mines and Petroleum (DMP) Code of Practice (DMP 2013, Table 1) determined a 'Medium' hazard rating, while classification under Table 2 of the DMP Code of Practice (DMP 2013, Table 2) designates IWLTSF Stage 4 North and Stage 4 South as a 'Category 1' facility.

[Document Number]

Revision 1.00

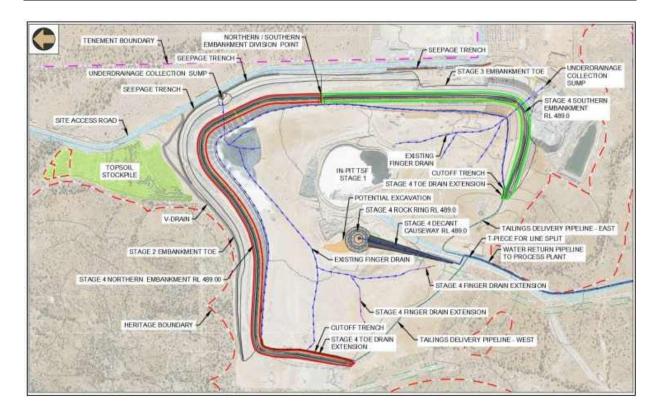


Figure 6: IWLTSF Stage 4 North and Stage 4 South General Arrangement (Plan) (REC, 2025)

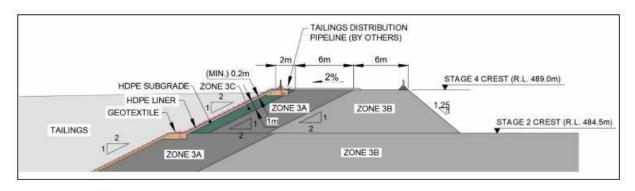


Figure 7:Typical Section IWLTSF Stage 4 North Embankment (REC, 2025)

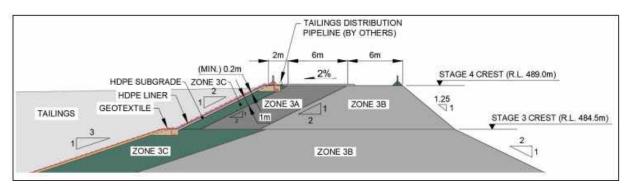


Figure 8: Typical Section IWLTSF Stage 4 South Embankment (REC, 2025)

[Document Number]

Revision 1.00

28/03/2025

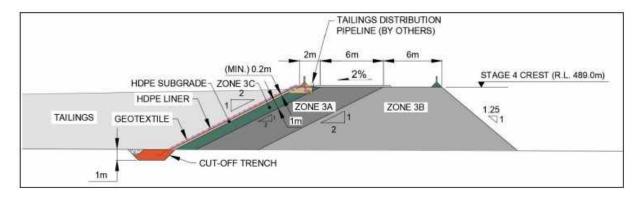


Figure 9: Typical Section IWLTSF Stage 4 Embankment Extension, including Cut-off Trench Configuration (REC, 2025)

5.3 Storage Capacity

The Stage 4 embankment is proposed to be constructed in two phases – Stage 4 North and Stage 4 South to ensure uninterrupted operations during construction. A deposition sequencing plan has been developed to facilitate the timely completion of Stage 4 construction while maintaining a centralized pond within the IWLTSF. The IWLTSF Stage 4, at an assumed dry density of 1.4 t/m³, is projected to provide 2.11 Mm³ of storage capacity for 2.95 Mt of tailings. The overall Stage 4 North and Stage 4 South storage capacities, along with their sequencing order, are summarised in Table 2.

Table 2: Design Storage Capacities and Sequencing Order Stage 4 (REC, 2025)

Parameter	Stage 4			
Parameter	North Intermediate	South Intermediate	Remaining North & South	
Crest Elevation (m RL)	489.0	489.0	489.0	
Crest Height (m)	27.0	27.0	27.0	
Maximum Discharge Elevation (m RL)	486.2	486.2	488.7	
Assumed Average Dry Density (t/m³)	1.40	1.40	1.40	
Storage Capacity (Mt)	0.64	0.55	1.76	
Cumulative Tailings (Mt)	0.64	1.19	2.95	
Storage Capacity (Mm³)	0.46	0.39	1.26	
Cumulative Capacity (Mm³)	0.46	0.85	2.11	
Stage Life (years)	0.4	0.3	1.1	
TSF Cumulative Life (years)	0.4	0.7	1.8	
Stage Average Rate of Rise (m/y)	12.7	10.3	3.4	

5.4 Tailings Materials Characterisation

Tailings samples representing each of the four lodes and one ore sample (Tribune lode) were assessed by MBS (2021) and were classified as Potentially Acid Forming (PAF). These findings are consistent with the percent levels of pyrrhotite (iron sulfide) identified in ore and tailings.

[Document Number]

Revision 1.00

28/03/2025

All tailings samples were enriched in copper; molybdenum and tellurium, whilst individual ore and tailings samples were enriched in bismuth, rhenium, selenium, and tungsten. These enrichments reflect those of the waste rock and the BGP mineralisation.

Further kinetic testing was completed by Graeme Campbell (completed in 2024), the results from this test work showed when kept moist, acidification of tailings occurred after approximately 80 weeks (i.e. roughly 18 months) during which solubility of minor elements (metals and metalloids) was tightly constrained. The design of the Stage 4 IWLTSF has given consideration to the lag time, ensuring that previously deposited tailings are not exposed longer than 18 months before being covered with fresh tailings.

5.5 Freeboard

To ensure no overtopping of the IWLTSF the IWLTSF Stage 4 freeboard was been calculated and assessed based on the requirements of both DEMIRS and ANCOLD guidelines for Tailings Storage Facilities (TSFs). For the purpose of the assessment, the IWLTSF Stage 4 was assumed to receive rainfall runoff from the upstream catchment (Section 4.7). The freeboard was evaluated for both the Stage 4 North intermediate tailings storage scenario and the Stage 4 full capacity tailings storage scenario.

Both the Stage 4 North intermediate and the final configuration of the IWLTSF Stage 4 provides capacity for the 1:100-year annual exceedance probability (AEP) 72- hour storm event, incorporating DEMIRS required freeboard and ANCOLD additional freeboard. A summary of the freeboard limits and requirements for Stage 4 North and Stage 4 South, along with their sequencing order, is presented Table 3.

During operational life of the TSF the risk of overtopping is significantly reduced as the incidental rainfall is contained on thetilings beach on a depression away from the perimeter embankments. Removal of stormwater is managed by designing the decant pumps to extract not only the volume of water required for the target dry density, but also the volume of water expected from the Probable Maximum Precipitation.

[Document Number]

Revision 1.00

28/03/2025

Table 3: Freeboard Limits and Requirements (REC, 2025)

Parameter	Stage 4 North Intermediate	Stage 4 South Intermediate	Stage 4 North & South (Remaining)
Facility Classification			
ANCOLD	High C	High C	High C
DEMIRS	Category 1	Category 1	Category 1
Embankment Elevations		10	
Embankment Elevation (RL m)	489.0	489.0	489.0
Contingency Storage Allowance		v.	
Tailings Operational Freeboard (DEMIRS minimum)	0.3 m	0.3 m	0.3 m
Beach Freeboard (DEMIRS minimum)	0.2 m	0.2 m	0.2 m
Additional Freeboard (ANCOLD 2019)	0.5 m	0.5 m	0.5 m
Total Freeboard (Minimum to Max. Operating Pond)	1.0 m	1.0 m	1.0 m
Extreme Storage Allowance		Air.	1/-
Design Storm Event (1:100-year AEP, 72-hour event)	0.26	0.26	0.26
Normal Operating Pond			
Minimum Normal Operating Pond Freeboard (m)	1.26	1.26	1.26
Maximum Normal Operating Pond (RL m)	483.24*	487.74	487.74

Note: * Calculated based on Stage 3 embankment elevation (RL 484.5 m), with Stage 4 South under construction and containment not ye provided to the full Stage 4 embankment elevation (RL 489.0) on south.

5.6 Seepage

5.6.1 Seepage Assessment

A seepage assessment and modelling was conducted by REC and included in the DDR in Appendix A, the seepage assessment was conducted at two locations on the Northeast and Southeast sides of the proposed IWLTSF Stage 4 embankment, these locations were identified as critical sections where the embankment height is the greatest.

The estimated seepage flux and resulting seepage volumes for the modelled case are presented in Table 4. A conservative seepage volume estimate through the embankment, based on the resulting flux estimates, is approximately 5.5 m³/day for the south eastern embankment (994 m length) and approximately 1.5 m³/day for the north eastern embankment (1,516 m length). A localised groundwater mound can likely be anticipated beneath the facilities during their operating life.

The seepage water quality is hypersaline, which is the quality of the groundwater utilised in the Processing Plant, the TDS is in the range of 90,000 - 120,000 mg/L.

[Document Number]

28/03/2025

Table 4: Results of Seepage Analysis (REC, 2025)

Section	Facility	Embankment Height (m)	Estimated Flux Facility (m³/day)/m	Total Embankment Length (m)	Seepage Estimate (m³/day)
1	IWLTSF	27	0.005556	1,516	5.5
2	IWLTSF	12	0.000990	994	1.5

5.6.2 Seepage Control Measures

Design measures and operational controls aimed at minimising seepage include:

- Design measures
 - Underdrainage;
 - o Low permeability floor;
 - Cut off trench.
- Operational controls
 - Sub-aerial deposition to promote air-drying (evaporation) whilst continually depositing in thin lifts to minimise dust generation;
 - o Maintaining a small decant pond away from the embankment;
 - High rate of water recovery with a target of ~55% of the water from the tailings slurry being recovered;
 - o Monitoring of pore pressure development within and downstream of the embankments; and
 - Monitoring of groundwater levels and groundwater quality downstream of the embankments.

The primary seepage management strategy for the TSF is to limit the amount of seepage by means of the underdrainage system. An underdrainage system currently exists within the Stage 2 and Stage 3 storage areas and will extend into the Stage 4 storage area. The IWLTSF stage 2, 3 and 4 underdrainage system layout is illustrated in Figure 10.

The extension of the underdrainage network system comprises of extension of toe drains and finger drains an integrated with existing underdrainage network system.

[Document Number]

Revision 1.00

28/03/2025

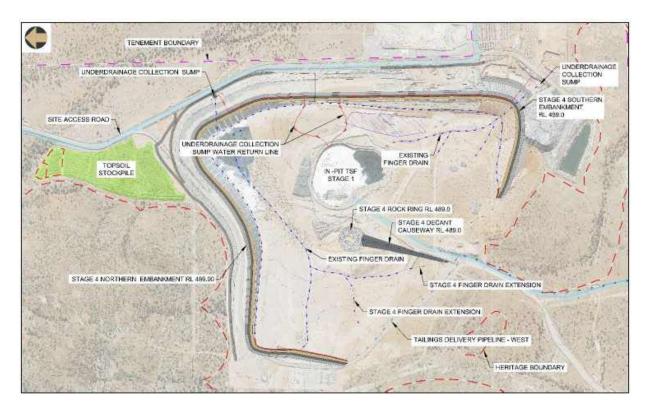


Figure 10: IWLTSF Stage 2, 3 and 4 Underdrainage System Layout (REC, 2025)

5.6.3 Monitoring

The existing network of monitoring bores provides adequate coverage for the proposed Stage 4 embankment, allowing effective monitoring of groundwater levels and quality (against background groundwater quality) downstream of the facility. There are currently 9 monitoring bores installed around the IWLTSF (Figure 11). Sampling and analysis of these monitoring bores have been completed regularly as per licence conditions for the IWLTSF Stage 2 and 3. Analysis results have been provided in the Time Limited Operations report for Stage 2 and the Critical Containment Construction report for Stage 3.

The existing monitoring instrumentation provides adequate coverage for the proposed Stage 4 embankment. The instrumentation includes 12 vibrating wire piezometers (VWPs) at various depths in five locations on the embankment (Figure 12). No new instruments will be installed, only the existing VWP cables will need to be extended to the Stage 4 embankment level, and the logger setup will be repositioned on top of the new embankment.

[Document Number]

Revision 1.00

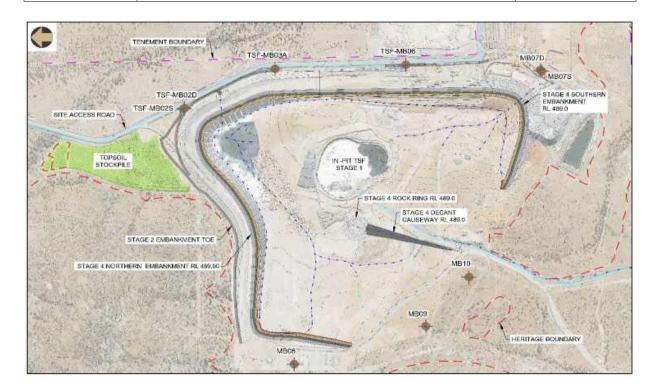


Figure 11: Existing Monitoring Bore Locations (REC, 2025)

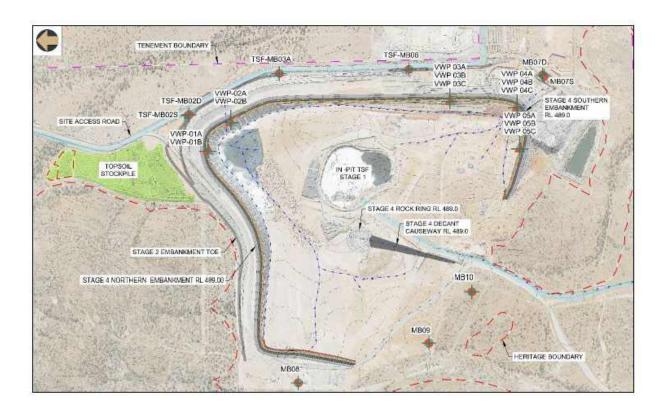


Figure 12: Existing Embankment Instrumentation (REC, 2025)

[Document Number]

Revision 1.00

28/03/2025

5.7 Water and Tailings Management

Tailings are to be deposited from the main embankment of the IWLTSF in a sub-aerial manner in thin lifts and beaching away from the perimter embankments. The decant pond shall be developed from the perimeter embankment of the IWL TSF. The spigotting sequence will be such that the supernatent water pond is always maintained away from the perimter embankments, initally near the IPTSF and later progressing towards the rock ring as the beach develops.

The position and extent of the supernatent pond is controlled by the water recovery which is to be maximised, the decant pumping system will be capacble of recovering additional water during the wet season.

A new turret pump will be installed within the rock ring to manage the pond formed by tailings deposition from the western and northern embankments. Later as the beach develops the decant pond will naturally drain into the rock ring.

5.7.1 Cyanide Management within the IWLTSF Decant

The processing plant has been designed to a standard that will allow Bellevue Gold to manage cyanide according to best practice standards.

Measures to ensure cyanide levels are managed within the decant pond include:

- Introduction of operating and management systems to minimise cyanide use during the processing phase, thereby limiting the concentration of cyanide in the tailings.
- Lime and sodium hydroxide is used as a pH inhibitor to control the generation of hydrogen cyanide (HCN) in leaching and elution process to an agreed safe working limit.
- Inclusion of a Weak Acid Dissociable (WAD) cyanide analyser in the process plant. Where levels
 exceed operating target WAD cyanide levels, hydrogen peroxide will be applied as the
 destruction technology, if and when required.
- Regular monitoring of WAD cyanide levels in the decant pond.

To ensure fauna are not attracted to ponding water and to reduce risk of cyanide poising to fauna, the decant pond will be as small as possible this will be achieved by:

- Use of thickeners during the processing of ore to increase tailings to 55% solids w/w prior to being pumped to the TSF and therefore minimise the amount of decant water on the IWLTSF.
- Deposition of tailings via spigot management is according to approved design to avoid ponding
 of water in areas other than decant area.

Continued use of hypersaline water in the Processing Plant acts as a natural deterrent to fauna species drinking and utilising decant water in the tailings facilities (Commonwealth of Australia, 2008). Bellevue wil continue to conduct regular monitoring for fauna at the IWLTSF.

5.8 Stability Assessment

A stability assessment was also completed by REC at two critical sections for the Stage 4 embankment. The predicted slope stability Factor of Safety (FoS) for each case analysed along with the recommended minimum FoS for both sections are summarised in Table 5 and Table 6. It can be concluded that the assessed cross sections exceed the minimum recommended FoS for the assessed soil stress condition.

[Document Number]

Revision 1.00

28/03/2025

Table 5: Slope Stability Results for Section 1 (REC, 2025)

Case	Recommended Minimum	Calculated Factor of Safety
Drained	1.50	1.54
Undrained	1.50	1.54
Seismic	1.20	1.33
Post Seismic (Tailings Liquified)	1.0* - 1.20	1.24

Table 6: Slope Stability Results for Section 2 (REC, 2025)

Case	Recommended Minimum	Calculated Factor of Safety
Drained	1.50	1.68
Undrained	1.50	1.55
Seismic	1.20	1.45
Post Seismic (Tailings Liquified)	1.0* - 1.20	1.31

5.9 Preliminary Dam Break Assessment

A preliminary dam break analysis was conducted under both 'Sunny Day' and 'Rainy Day' conditions to assess the potential impacts of an embankment breach of the IWLTSF Stage 4 at two critical sections. The 'Sunny Day' analyses assessed dam breaches where potential energy drives a tailings flow slide failure downstream of the facility, whereas the 'Rainy Day' analyses assessed dam breaches under worst conditions due to overtopping under extreme storm events over the facility and its catchment.

Based on the Linear Method, the IWLTSF Stage 4 (full) during Sunny Day conditions could potentially release tailings which runout between 760 m to 1,180 m and 510 m to 860 from the south-eastern and north-eastern embankment respectively.

Breach modelling for the IWLTSF Stage 4 embankment crest geometry indicated that under PMP Rainy Day conditions a potential peak run-out flow of 161 m³/s could be expected from a failure on the southeast corner of the facility over a period of 4 hours. The Rainy Day breach could potentially result in tailings runout reaching the Plant Site approximately 1.25 km south of the facility.

5.10 Water Balance

A water balance for the IWLTSF inclusive of Stage 4 was completed, under average rainfall and evaporation, the preliminary water balance indicates an average daily water return to the plant of 1,715 $\,$ m 3 /day or 71.4 $\,$ m 3 /hr, equivalent to 48% of the total slurry water.

The site has a overall water balance, which takes into account water into and out of the Processing Plant. This water balance is updated monthly from readings taken from flow meters and other monitoring equipment.

[Document Number]

Revision 1.00

28/03/2025

5.11 Project Timing and Phases

The Stage 4 embankment is proposed to be constructed in two phases: Stage 4 North and Stage 4 South, following the same approach as Stages 2 and 3, to ensure the continuous operation of the IWLTSF during construction. The Stage 4 North will be constructed after the completion of Stage 2's intermediate operation, once Stage 3 is commissioned and during its operational period. During this time, tailings will be pushed from the Stage 3 south and eastern embankments towardthe IPTSF, keeping the pond positioned close to the IPTSF.

Upon the conclusion of Stage 3's operation, when the remaining storage in Stage 2 is resumed for operation, Stage 4 South will be constructed. During this period, tailings will be pushed from the Stage 4 North across the north and eastern embankmentstowards the IPTSF and rock ring, while the pond is ultimately navigated towards the rock ring.

5.12 Time Limited Operations

Time-limited operations is proposed as part of this Works Approval application to faciliate using the IWLTSF Stage 4 North and Stage 4 South after construction is complete until the amendment to Licence L9259/2020/1 is prepared, assessed and approved. During time-limited operations, the proposed IWLTSF Stage 4 North and Stage 4 South will commence operations sequentially under conditions specified in the granted Works Approval accepting tailings from the processing plant.

[Document Number]

Revision 1.00

28/03/2025

7. COMPLIANCE

7.1 Legislative Framework

A summary of the relevant environmental legislation applicable to this application is provided in Table 7.

Table 7: Environmental Legislative Framework

Relevant Legislation	Environmental Factor	Relevant Approval or Requirement
Aboriginal Heritage Act 1972 (WA) (AH Act)	Protection of Aboriginal heritage sites and matters.	BGL continues to work closely with Tjiwarl Aboriginal Corporation (TAC) under a Cultural Heritage Management Plan. Disturbance to Aboriginal cultural heritage will only be performed under consultation with Tjiwarl and where a permit issued under Section 18 of the AH Act has been approved.
Native Title Act 1993 (Cth)	Provides a national system for the recognition and protection of native title and for its co-existence with national land management system.	The BGP lies within the Tjiwarl and Tjiwarl #2 Native Title area (WCD 2017/001). A Native Title Agreement (NTA) was signed between BGL (and its subsidiaries) and Tjiwarl Aboriginal Corporation (TAC) Registered Native Title Body Corporate (RNTBC) as the holder on trust for the Tjiwarl Native Title Holders on 3 October 2022. The NTA secures the protection and upholding of cultural values at the Project while maintaining the Project's development schedule and forecast industry-leading economic ouputs.
Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act) (Cth)	Impacts to matters of national environmental significance.	It is considered unlikely that the BGP will have a significant impact on matters of national environmental significance. The BGP is not considered to trigger referral under the EPBC Act.
Environmental Protection Act 1986 (WA) (EP Act) - Part IV	Proposals that have the potential to result in significant environmental impacts.	The Project was referred to the Environmental Protection Authority (EPA) on 7 December 2021 where details of the environmental factors including flora and vegetation, terrestrial fauna, social surroundings and inland waters were presented. The EPA considered that the likely environmental effects of the proposal were not so significant to warrant formal assessment, due to the proposal being within a historically disturbed area. The decision was announced on 27 May 2022.

[Document Number]

Revision 1.00

Relevant Legislation	Environmental Factor	Relevant Approval or Requirement
EP Act - Part V (Division 2): Clearing of native vegetation.	Assessment against the 10 clearing principles (biological diversity, significant fauna rare flora, threatened ecological community, remnant vegetation, association with watercourse or wetland, land degradation, impact on a conservation area; impact surface or underground water quality, cause or exacerbate flooding).	A Native Vegetation Clearing Permit (NVCP) has been assessed and approved under Part V of the EP Act for the BGP. CPS 9951/2 approves 338.38 ha's of clearing of native vegetation during 11 February 2023 and 10 February 2028.
EP Act - Part V (Division 3) — Prescribed premises, works approvals and licences.	Emissions and discharges to the environment from prescribed premises.	Works Approvals held by Golden Spur for the BGP include: W6724/2022/1 (issued on 4 Nov 2022): Category 5: Processing or beneficiation of metallic or non-metallic ore up to 1,000,000 tonnes per annum. Category 6: Mine dewatering up to 1,000,000 tonnes per year. W6865/2023/1 (issued on 12 June 2024): Category 5: Processing or beneficiation of metallic or non-metallic ore up to 400,000 m3 per annum. Golden Spur hold Licence: (L9259/2020/1) for: Category 6: Mine dewatering up to 1M tonnes per year. Category 5: Processing or beneficiation of metallic or non-metallic ore up to 1M tonnes per year. Category 5: Processing or beneficiation of metallic or non-metallic ore up to 1M tonnes per year. Category 52: Electric power generation of 30 MW. Category 54: Sewage facility up to 150 m³ per day. Category 64: Class II or III putrescible landfill site up to 500 tonnes per annual period. Category 70: Screening of material <50,000

[Document Number]

Revision 1.00

Relevant Legislation	Environmental Factor	Relevant Approval or Requirement
		tonnes per annual period
Biodiversity Conservation Act 2016 (WA) (BC Act)	Threatened Flora, Fauna and Ecological Communities.	No threatened flora or fauna species, or ecological communities protected under the BC Act will be impacted by the activities described in the Site Wide MP. Baseline studies have been completed across the Project area.
Mining Act 1978 (WA) (Mining Act)	Compliance with tenement conditions. Mining proposals and mine closure plan.	BGL are committed to continue complying with all tenement conditions from the BGP. The Project has an approved consolidated site wide Mining Proposal and Mine Closure Plan.
Rights in Water and Irrigation Act 1914 (WA) (RIWI Act)	Impacts to groundwater as a result of the abstraction of groundwater.	The Project holds two licences under the RIWI Act: GWL202960 (expiry 30 March 2031) Approves annual abstraction of up to 150,000 kL from the Goldfields combined, fractured rock west, fractured rock aquifer from M36/25, M36/660, M36/328, M36/24 and M36/162. GWL202924 (expiry 30 March 2031) Approves annual abstraction of up to 1,200,000 kL from the Goldfields combined, fractured rock west, fractured rock aquifer from M36/24 and M36/25.
Dangerous Goods Safety Act 2004 (WA)	The storage, transport and use of dangerous goods:	The Project currently has dangerous goods licencing for the explosives and detonators (ETS002841). The Project also has a dangerous goods site licence for diesel fuel storage (DGS022620) and the processing plant dangerous goods (DGS022620).
Health (Miscellaneous Provisions) Act 1911	Approval to treat and dispose of domestic sewage.	All existing treatment and disposal of domestic sewage is undertaken in accordance with provisions under the Health (Miscellaneous Provisions) Act 1911 through the Shire of Leonora.

[Document Number]

28/03/2025

8. CONTROL OF EMISSIONS

8.1 Risk Assessment Overview

A risk assessment was completed in accordance with DWER Guidance Statement: Environmental Risk Assessments Framework (DWER, 2017) and the DWER Guidance Statement: Environmental Siting (DWER, 2016). The risk assessment process identified the following:

- The sources of pollution and where available, quantification of emissions.
- The pathway which pollution follows from the source to the receptor.
- The environmental and health receptors.
- The potential impacts on the receptors from this source of pollution.
- The controls and mitigation measures applied to the Project.
- The likelihood, consequence and overall risk rating associated with this factor.
- The requirement for monitoring.

Likelihood and consequence categories (Table 8 and Table 9) were derived from these Guidance Statements and used to develop the associated risk matrix is presented in Table 10.

Table 8: Likelihood Categories

Likelihood of Occurrence	Probability	
Almost Certain	The risk event is expected to occur in most circumstances.	
Likely	The risk event will probably occur in most circumstances.	
Possible	The risk event could occur at some time.	
Unlikely	The risk event will probably not occur in most circumstances.	
Rare	The risk event may only occur in exceptional circumstances.	

[Document Number]

28/03/2025

Revision 1.00

Table 9: Consequence Categories

Consequence Category	Environmental Consequence	Public Health and Amenity Consequence
Severe	 Onsite impacts: catastrophic Offsite impacts local scale: high level or above Offsite impacts wider scale: mid-level or above Mid to long-term or permanent impact to an area of high conservation value or special significance Specific Consequence Criteria (for environment) are significantly exceeded 	 Loss of life Adverse health effects: high level or ongoing medical treatment Specific Consequence Criteria (for public health) are significantly exceeded. Local scale impacts: permanent loss of amenity
Major	 Onsite impacts: high level Offsite impacts local scale: mid-level Offsite impacts wider scale: low-level Short-term impact to an area of high conservation value or special significance Specific Consequence Criteria (for environment) are exceeded 	 Adverse health effects: mid-level or frequent medical treatment Specific Consequence Criteria (for public health) are exceeded. Local scale impacts: high-level impact to amenity
Moderate	Onsite impacts: mid-level Offsite impacts local scale: low-level Offsite impacts wider scale: minimal Specific Consequence Criteria (for environment) are at risk of not being met	Adverse health effects: low-level or occasional medical treatment Specific Consequence Criteria (for public health) are at risk of not being met Local scale impacts: mid-level impact to amenity
Minor	Onsite impacts: low-level Offsite impacts local scale: minimal Offsite impacts wider scale: not detectable Specific Consequence Criteria (for environment) likely to be met	 Specific Consequence Criteria (for public health) are likely to be met. Local scale impacts: low-level impact to amenity
Slight	Onsite impact: minimal Specific Consequence Criteria (for environment) met	Local scale: minimal to amenity Specific Consequence Criteria (for public health) met

Table 10: Risk Matrix

	Consequence					
Likelihood	Slight	Minor	Moderate	Major	Severe	
Almost Certain	Medium	High	High	Extreme	Extreme	
Likely	Medium	Medium	High	High	Extreme	
Possible	Low	Medium	Medium	High	Extreme	
Unlikely	Low	Medium	Medium	Medium	High	
Rare	Low	Low	Medium	Medium	High	

8.2 Risk and Impact Assessment

Potential impacts, control measures and risk evaluation associated with the proposal is summarised in Table 11. This assessment also considered the sensitive receptors identified in Section 4.

[Document Number]

Revision 1.00

Table 11: Risk and Impact Assessment

Emission Source/Event	Pathway	Receptor	Event Impacts	Control Measures	Consequence on Receptor	Likelihood of Event Impact (After Controls)	Level of Risk
Emissions to Land a	nd Water	₩ + 7		5	0.2	2	V.
Spillage of tailings material – pipeline rupture	Spillage to land and water	 Flora and vegetation. Fauna Lake Miranda Groundwater Surrounding soils 	 Degradation of vegetation. Contamination of soils. 	 All tailings and associated return water pipelines (excluding pipelines which are situated on the IWLTSF embankments) are within an earthen bund which is sufficient to contain any spill for a period of time equal to the time between inspections. Scour pits are constructed and located at low points along the length of the pipeline corridor. Daily visual inspections of pipelines and regular monitoring of pipelines. Immediate reporting and cleanup of all tailing's spills. Flow meters installed on tailings pipelines. 	Moderate	Possible	Medium

[Document Number]

Emission Source/Event	Pathway	Receptor	Event Impacts	Control Measures	Consequence on Receptor	Likelihood of Event Impact (After Controls)	Level of Risk
Seepage of contaminated water from IWLTSF	Vertical seepage to groundwater Lateral seepage to Lake Miranda. Groundwater mounding, seepage expression.	Flora and vegetation adjacent to TSF. Fauna Lake Miranda Groundwater Surrounding soils	Degradation of vegetation. Contamination of groundwater.	 IWLTSF embankments have been constructed with compacted mine waste, low permeability materials and HDPE liner on the inner wall to minimize seepage. An underdrainage system (finger drains and toe drains) has been installed to lower the phreatic water table against the IWLTSF embankment. Groundwater levels and quality in the vicinity of the TSF will be monitored in accordance with a DWER Environmental Protection licence and works approvals. Cut-off trench (compacted clayey low permeability materials) constructed to restrict potential seepage under the perimeter embankment. Decant water recovery to maximise consolidation of tailings. Maintaining small decant pond away from main embankments. Use of pre-leach and tailings thickeners to minimize water to tailings. Sub-aerial deposition in think lifts to promote air-drying 	Moderate	Unlikely	Medium

[Document Number]

28/03/2025

Revision 1.00

Emission Source/Event	Pathway	Receptor	Event Impacts	Control Measures	Consequence on Receptor	Likelihood of Event Impact (After Controls)	Level of Risk
Failure of TSF embankments (spillage of tailings material) Release of contaminated water during high rainfall events.	Vertical seepage to groundwater. Spillage to land and water.	Flora and vegetation. Fauna Lake Miranda Groundwater Surrounding soils	 Degradation of vegetation. Contamination of groundwater. Contamination of soils. 	 TSF design conforms to Australian National Committee on Large Dams (ANCOLD) and DMIRS Guidelines. TSF constructed as per design and documented in Critical Containment Infrastructure Report. Design freeboard is as a minimum for 1:100 Annual Exceedance Probability (AEP), 72 hour rainfall event. Maintenance of freeboard. Regular monitoring of VWPs. Regular geotechnical audit of TSF. 	Moderate	Rare	Medium
Excessive levels of WAD CN in the decant water on the TSF/return water dams	Direct ingestion by fauna of surface water from the decant/return water dams	• Fauna	 Death of fauna species. 	 Regular monitoring of CN in the tailing's material with a CN analyser in the plant. Addition of H²O² as required for destruction of CN if CN levels above set internal limits. Daily inspections of tailings facilities and process water ponds. Regular monitoring of the usage of the TSF and TSF return water ponds by fauna. Groundwater levels and quality in the vicinity of the TSF will be monitored in accordance with a DWER Environmental Protection licence. Hypersaline water used in processing acts as a natural deterrent to fauna ingesting water on a regular basis. Decant water in the IWLTSF is minimized through the use of pre-leach and tailings thickeners during processing. Small decant pond 	Moderate	Unlikely	Medium

Works Approval IWLTSF Stage 4 Supporting Document

[Document Number]

Revision 1.00

28/03/2025

Emission Source/Event	Pathway	Receptor	Event Impacts	Control Measures	Consequence on Receptor	Likelihood of Event Impact (After Controls)	Level of Risk
Noise Emissions		36	*	7	3	V	-337
Noise during construction and operations (mobile equipment)	Direct noise emissions (air/wind)	 Yakabindie Pastoral Lease holders. Fauna 	Noise is anticipated to be a negligible addition to the operating mine site. Due to separation distances, impacts to receptors are not anticipated.	 Regular maintenance of vehicles and plant equipment. Where possible, noise attenuating equipment will be installed and maintained on vehicles and equipment. Adherence to the Environmental Protection (Noise) Regulations 1997. 	Minor	Rare	Low
Air Emissions			<u>.</u>		A		-1114
Dust generated during construction and operation.	Air/windborne	■ Vegetation	Dust is anticipated to be a negligible addition to the operating mine site. Due to separation distances, impacts to receptors are not anticipated.	 Moisture content of the tailings will be maintained to minimize dust during operations. Water carts to be utilized during construction as required. Water carts to be utilized regularly on tracks during operation. All vehicles to remain on designated roads and access tracks. 	Minor	Rare	Low

Works Approval IWLTSF Stage 4 Supporting Document

[Document Number]

Revision 1.00

28/03/2025

9. REFERENCES

ANCOLD (2012). Australian National Committee on Large Dams: Guidelines on the Consequence Categories for Dams

Bamford, M., Gamblin, T. and Everard, C. (2020). (Bamford) Bellevue Gold Limited *Level 2 (Detailed) Fauna Assessment: Bellevue Gold Project.*

Bureau of Meteorology (BOM). (2024). Climate statistics for Australian locations. http://www.bom.gov.au/climate/averages/tables/cw_012090.shtml

Cowan, M., Graham, G., & McKenzie, N. (2001). *Murchison 1 (MUR1 – East Murchison subregion). The Biodiversity Audit of Western Australia*; Eds McKenzie, N.L., May, J.E. and McKenna, S.

DMP (2013). Code of Practice (CoP): Tailings Storage Facilities in Western Australia

Graeme Campbell and Associates Pty Ltd (2024). 'Kinetic-Testwork' Programme over 2.5 years for "Nonsaline Tailings" and "Saline Tailings" Cases – Implications for Tailings Management.

Invertebrate Solutions Pty Ltd. (2021). Invertebrate Solutions-Technical Memorandum Preliminary Assessment of subterranean fauna species habitat for the Bellevue Gold Project, Northern Goldfields region, Western Australia.

MBS Environmental (MBS). (2021). Bellevue Gold Project Baseline Soil and Landform Assessment.

NVS (Native Vegetation Solutions). (2022). Reconnaissance Flora and Vegetation Survey of the Proposed Solar Farm and Borefield Areas. RPS Australia West Pty Ltd (RPS). (2018). *H1 Hydrogeological Assessment. Bellevue Gold Project.*

Resource Engineering Consultants (REC) (2022). WSD, IPTSF, TSF and IWLTSF Detailed Design Report. Bellevue Gold Project, Western Australia. Rev 1.

Resource Engineering Consultants (REC) (2025). IWLTSF Stage 4 North and Stage 4 South Detailed Design Report – Bellevue Gold Project.

RPS Australia West Pty Ltd (RPS). (2020). *Detailed Flora and Vegetation Assessment. Prepared for the Bellevue Gold Project.*

RPS Australia West Pty Ltd (RPS). (2021). Bellevue Gold Water Management Plan.

SRK Consulting (SRK). (2023). Technical Memorandum – Bellevue Hydrogeololgical Review.

Works Approval IWLTSF Stage 4 Supporting Document

[Document Number]

Revision 1.00

28/03/2025

APPENDIX A: IWLTSF STAGE 4 NORTH AND STAGE 4 SOUTH DETAILED DESIGN REPORT BELLEVUE GOLD PROJECT (REC, 2025)

REPORT REF P19-11-PR-29-R01

25 MARCH 2025

IWLTSF Stage 4 North and Stage 4 South
Detailed Design Report
Bellevue Gold Project
Bellevue Gold Limited

CLIENT DETAILS

REC DETAILS

Bellevue Gold Limited

Efficiency

www.rec.com.au

Revision No: 0

Resource Engineering Consultants Pty Ltd

ACN: 626 931 753

Trading as REC

ABN: 66 626 931 753

Limitations, Uses and Reliance

This document, once read in its entirety, may be relied upon for the purposes stated within the limits of:

Geotechnical investigations and assessments are undertaken in accordance with an agreed term of reference and timeframe and may involve intrusive investigations of subsurface conditions, generally at a few selected locations. Although due care, skill and professional judgement are applied in the interpretation and extrapolation of geotechnical conditions and factors to elsewhere, the potential for variances cannot be discounted. Therefore, the results, analyses and interpretations presented herein cannot be considered absolute or conclusive. REC does not accept any responsibility for variances between the interpreted and extrapolated and those that are revealed by any means. Specific warning is given that many factors, natural or artificial, may render conditions different from those that prevailed at the time of investigation, and should they be revealed at any time subsequently, they should be brought to our attention so that their significance may be assessed, and appropriate advice may be offered. Users are also cautioned that fundamental assumptions made in this document may change with time and it is the responsibility of any user to ensure that assumptions made, remain valid.

The comments, findings, conclusions, and recommendations contained in this document represent professional estimates and opinions and are not to be read as facts unless expressly stated to the contrary. In general, statements of fact are confined to statements as to what was done and/or what was observed; others have been based on professional judgement. The conclusions are based upon information and data, visual observations and the results of field and laboratory investigations and are therefore merely indicative of the environmental and geotechnical conditions at the time, including the presence or otherwise of contaminants or emissions. In addition, presentations in this document are based upon the extent of the terms of reference and/or on information supplied by the client, agents and third parties outside our control. To the extent that the statements, opinions, facts, conclusions and/or recommendations in this document are based in whole or part on this information, those are contingent upon the accuracy and completeness of the information which has not been verified unless stated otherwise. REC does not accept responsibility for omissions and errors due to incorrect information or information not available at the time of preparation of this document and will not be liable in relation to incorrect conclusions should any information be incorrect or have been concealed, withheld, misrepresented, or otherwise not fully disclosed. We will not be liable to update or revise the document to take into account any events, emergent circumstances or facts occurring or becoming apparent after the date of this document.

Within the limitations imposed by the terms of reference, the assessment of the study area and preparation of this document have been undertaken and performed in a professional manner, by suitably qualified and experienced personnel, in accordance with generally accepted practices and using a degree of skill and care ordinarily exercised by geotechnical consultants under similar circumstances. No other warranty, expressed or implied, is made.

This document has been prepared for the purposes stated herein. Every care was taken in the interpretation of geotechnical conditions and the nature and extent of impacts, presentation of findings and recommendations which are provided in good faith in the general belief that none of these are misleading. No responsibility or liability for the consequences of use and/or inference by others is accepted.

Intellectual and copyright in the information, data, and representations such as drawings, appendices, tabulations and text, included in this document remain the property of REC. This document is for the exclusive use of the authorised recipient(s) and may not be used, copied or reproduced in whole, or in part, for any purpose(s) other than that for which it was prepared for. No responsibility or liability to any other party is accepted for any consequences and/or damages arising out of the use of this document without express and written consent.

The above conditions must be read as part of the document and must be reproduced where permitted. Acceptance of this document indicates acceptance of these terms and conditions.

Report

Title:	IWLTSF Stage 4 North and Stage 4 South Detailed Design Report
File:	P19-11-PR-29-R01
Author(s):	
Client;	Bellevue Gold Limited
Contact:	
	This document presents the detailed design of Integrated Waste Landform Storage Facility (IWLTSF) Stage 4 North and Stage 4 South at the Bellevue Gold Limited Bellevue Gold Project.

Revision

Date	Revision	Purpose	
8 MAR 2025	DRAFT	ISSUED FOR REVIEW AND COMMENT	
19 MAR 2025	Α	ISSUED FOR FURTHER REVIEW AND COMMENT	
25 MAR 2025	0	ISSUED FOR USE	
		ble for eliminating all superseded documents in their possession	2200

Distribution

Date	Revision	Recipient(s)	No of Copies
08 MAR 2025	DRAFT	BELLEVUE GOLD LIMITED	1. PDF
19 MAR 2025	A	BELLEVUE GOLD LIMITED	1. PDF
25 MAR 2025	0	BELLEVUE GOLD LIMITED	1. PDF

© REC 2025

Revision No: 0

Executive Summary

Resource Engineering Consultants Pty Ltd (REC) has been engaged to prepare this Detailed Design Report (DDR) for Stage 4 North and Stage 4 South of the Integrated Waste Landform Tailings Storage Facility (IWLTSF) at the Bellevue Gold Limited (BGL) Bellevue Gold Project (BGP). The report follows the format outlined in the Government of Western Australia Department of Energy, Mines, Industry Regulation and Safety (DEMIRS) Guide to the Preparation of a Design Report for Tailings Storage Facilities.

The BGP is located in the Sir Samuel region of Western Australia's North-Eastern Goldfields, approximately 430 km north of Kalgoorlie and 40 km north of Leinster, adjacent to the Goldfields Highway. The project is situated within the Agnew-Wiluna Greenstone Belt, a major gold and nickel sulphide-producing region, with a total project area covering 3,650 km² across mining, exploration, and prospecting leases.

Stages 1 to 3 of the Tailing Storage Facilities (TSFs) were designed to be constructed and operated sequentially. Stage 1 is an In-Pit Tailings Storage Facility (IPTSF) which utilised the depleted Vanguard open pit. Stage 2 and Stage 3 are starter embankments of the IWLTSF which encapsulate the IPTSF. Stage 2 provides containment to the north and northern portion of the eastern side of the storage basin, while Stage 3 forms the south and southern portion of the eastern side of the storage basin. The integrated Stage 2 and Stage 3 embankments provide a continuous perimeter embankment around the north, east and south of the storage basin at an elevation RL 484.5m.

IPTSF (Stage 1) was operated between late October 2023 and late October 2024. To maintain freeboard requirements, operations continued until the maximum pond elevation reached RL 473.0 m, at which point operations were terminated, despite additional storage capacity being available within the IPTSF. This freeboard is no longer relevant following the completion of the Stage 3 embankment containment. The remaining storage capacity will be utilised along with the IWLTSF Stage 2 and Stage 3 operations.

IWLTSF Stage 2 commenced operation in late October 2024 and is currently in operation. Stage 2 will be operated to an intermediate storage elevation of RL 482.5 m, expected to be reached by May 2025. This intermediate level prevents tailings from entering the IPTSF, with the decant pond managed within the IPTSF. Once the Stage 3 beach forms, reaching into the IPTSF from the south, the Stage 2 remaining storage will resume operation, pushing tailings into and around the IPTSF.

IWLTSF Stage 3 construction was completed at the end of February 2025 and is currently awaiting operational approval from the relevant government authorities. Once approved, Stage 3 will commence operation, aligning with the completion of the Stage 2 intermediate storage. During Stage 3 operation, the decant pond will be managed within IPTSF and the adjacent low laying area, eliminating the immediate need for the decant infrastructure originally planned for Stage 3. The combined operation of Stage 2 and Stage 3 at full capacity is expected to provide tailings storage up to August 2026 (16 months), supporting a throughput of 1.35 Mtpa to 1.60 Mtpa at an assumed dry density of 1.40 t/m³.

This DDR has been prepared to support the proposed Stage 4 North and Stage 4 South embankment raises of the IWLTSF to provide ongoing tailings storage at the BGP. Stage 4 North and Stage 4 South have been designed in a downstream embankment configuration with an embankment raise height of 4.5 m, increasing the facility elevation to RL 489.0 m. The proposed IWLTSF Stage 4 raise provides approximately 2.1 Mm³ or 2.95 Mt of tailings storage capacity, based on an assumed average tailings dry density of 1.40 t/m³. At a maximum planned throughput of 1.6 Mtpa, this provides a minimum storage life of approximately 1.8 years.

The IWLTSF Stage 4 North and Stage 4 South embankments will be constructed using mine waste (Zone 3A and Zone 3B) derived from underground mine development works, compacted in lifts through traffic compaction. The upstream batter (Zone 3C) will be constructed using transitional material sourced from the historic Vanguard waste dump and other suitable borrow pit stockpiles. The embankment upstream face will incorporate a High-Density Polyethylene (HDPE) liner, underlain by a suitable subgrade and Bidim A24 geotextile (or equivalent) to provide enhanced puncture protection.

The construction of the decant infrastructure (rock ring and decant causeway), which was initially postponed from IWLTSF Stage 3 construction, is now planned to take place after the commissioning of Stage 3, with the current focus remaining on Stage 3 commissioning activities. The rock ring of this planned development will serve as the central decant for Stage 4 water recovery.

Revision No: 0

IWLTSF Stage 4 North and Stage 4 South have been designed in accordance with the Australian National Committee on Large Dams (ANCOLD) Guidelines (ANCOLD, 2012), with a Dam Failure Consequence Category of 'High C' assigned to the facility. Similarly, an assessment based on the Department of Mines and Petroleum (DMP) Code of Practice (DMP 2013, Table 1) determined a 'Medium' hazard rating, while classification under Table 2 of the DMP Code of Practice (DMP 2013, Table 2) designates IWLTSF Stage 4 North and Stage 4 South as a 'Category 1' facility. The IWLTSF Stage 4 North and Stage 4 South have capacity for the 1:100-year annual exceedance probability (AEP) 72-hour storm event, DMP required freeboard and ANCOLD additional freeboard.

Construction work for the IWLTSF Stage 4 North and Stage 4 South must be undertaken in accordance with drawings and an earthworks specification. Furthermore, the operation of these facilities must be executed in accordance with the intent of the design and Operating Manual (OM). Tailings are to be deposited from the perimeter embankment of the IWLTSF Stage 4 North and Stage 4 South in a sub-aerial manner in thin lifts and beaching towards the rock ring at the centre of the facility to form a decant pond away from the main embankments.

The proposed IWLTSF Stage 4 North and Stage 4 South design has been developed in consultation with the client. The design considers the existing landforms (both natural and those formed by previous mining activities) and drainage requirements. The proposed IWLTSF Stage 4 North and Stage 4 South marries waste from the proposed mining activities into existing natural landforms and encapsulates waste rock dump formed by previous mining activities and the IPTSF. These design objectives have been developed to ensure that premises are decommissioned and rehabilitated in an ecologically sustainable manner in accordance with the DEMIRS principal closure objectives for rehabilitated mines and the Environmental Protection Authority's (EPA) objective for Rehabilitation and Decommissioning.

Table of Contents

Ex	ecutiv	e Sum	mary	iii
Tal	ble of	Conte	nts	v
Lis	t of Fi	gures		viii
Lis	t of Ta	ables		ix
Lis	t of A	ppendi	ices	xi
Tei	rmino	logv ar	nd Abbreviations	xii
1.			osal Summary	
••		•	•	
	1.1		duction	
	1.2	Purpo	ose and Scope	3
2.	Desi	ign Co	nsiderations	4
	2.1	Introd	duction	4
	2.2	Stora	ge Capacity	4
	2.3	Tenu	re and Site Conditions	6
		2.3.1	Location	6
		2.3.2	Climate	7
		2.3.3	Surface Topology	7
		2.3.4	Geology	7
		2.3.5	Hydrogeology and Hydrology	8
		2.3.6	Probable Maximum Precipitation	9
		2.3.7	Catchments	9
		2.3.8	Runoff	10
		2.3.9	Sub-surface Conditions and Foundations	11
	2.4	Retai	ning Structure Properties	25
		2.4.1	Low Permeability Material – Zone 1	25
		2.4.2	HDPE Liner	25
		2.4.3	HDPE Subgrade	25
		2.4.4	Transitional Material – Zone 3C	27
		2.4.5	Mine Waste – Zone 3A and Zone 3B	28
3.	Taili	ngs Pr	operties	29
		3.1.1	Laboratory Testing	29
		3.1.2	Primary Tailings Test Results	29
		3.1.3	Tailings Design Parameters	30
		3.1.4	Geochemical Characterisation of Tailings	31
		3.1.5	Implications for Tailings Management	31
4.	TSF	Desig	n	32
	4.1	Introd	duction	32
	4.2	Tailin	gs Storage Facility Design	32
	4.3	Tailin	gs Management	35
	4.4	DEM	IRS Classification	36

	4.4.1	Hazard Rating	36
	4.4.2	IWLTSF Stage 4 Category	36
4.5	ANC	OLD Consequence Category	37
	4.5.1	General	37
	4.5.2	Dam Failure Severity Level	37
	4.5.3	Dam Failure Population at Risk	37
	4.5.4	Dam Failure Consequence Category	38
	4.5.5	Environmental Spill Consequence Category	38
	4.5.6	ANCOLD Design Criteria	38
4.6	Freeb	poard	39
	4.6.1	DMP Freeboard	39
	4.6.2	ANCOLD Freeboard	39
	4.6.3	Recommended Freeboard	40
4.7	Mode	elling and Design Assessments	41
	4.7.1	Seepage Assessment	41
	4.7.2	Stability Assessment	43
	4.7.3	Preliminary Dam Break Assessment	48
	4.7.4	Erosion Control	52
	4.7.5	Seepage	52
	4.7.6	Surface Water Flow and Storage	56
	4.7.7	Water Balance	58
4.8	Desig	gn and Construction Details	59
	4.8.1	Bill of Quantities	59
	4.8.2	General	59
4.9	Tailin	gs Discharge and Water Management	60
	4.9.1	Tailings Deposition	60
	4.9.2	Decant Pond Management	60
	4.9.3	Water Recovery	62
	4.9.4	Seepage Management	63
4.10	Cove	r and Liners	63
4.11	Quali	ty Assurance	63
4.12	Spillw	vays	63
Oper	ationa	al Requirements	64
5.1	Gene	eral	64
5.2		agement of Water	
5.3		age Management	
5.4	-	on Control	
5.5	Emba	ankment Instrumentation	64
Clos	ure Re	equirements	66
6.1		eral	
6.2		ure Design Key Conceptual Elements	
J. <u> </u>	6.2.1	Embankment Downstream Construction	
	6.2.2	Backfilling of Rock Ring Structure	
	6.2.3	Store and Release Cover System	
	6.2.4	Bunded Evaporation Basins	

5.

6.

Date: 25 March 2025 Revision No: 0

_	Limit		_
7.		rences	
	6.4	Performance Monitoring against Closure Criteria	. 68
	6.3	Timing of Decommissioning and Rehabilitation Works	. 68

List of Figures

Figure 1: Overall Site Layout	3
Figure 2: IWLTSF Stage 4 North and Stage 4 South Layout	5
Figure 3: Bellevue Gold Project Locality	6
Figure 4: Average Monthly Rainfall and Evaporation	7
Figure 5: IWLTSF Stage 4 Total Catchment	10
Figure 6: Test Pit Locations (November – December 2020)	13
Figure 7: Diamond Core Borehole Locations (January 2021)	14
Figure 8: Rotary Core Borehole Locations (May 2021)	16
Figure 9: Test Pit Locations (May 2021)	17
Figure 10: Test Pit Locations	18
Figure 11: Borehole Locations (November 2024 – February 2025)	19
Figure 12: Particle Size Index Test Results - HDPE Subgrade	26
Figure 13: Material Particle Size Distribution Test Results - HDPE Subgrade	27
Figure 14: IWLTSF Stage 4 General Arrangement (Plan)	34
Figure 15: Typical Section IWLTSF Stage 4 North Embankment	34
Figure 16: Typical Section IWLTSF Stage 4 South Embankment	34
Figure 17: Typical Section IWLTSF Stage 4 Embankment Extension (Extending Across Natural Ground Beyond Stage and 3 Embankments)	
Figure 18: Freeboard Definition – Pond Located Away Perimeter Embankment (DEMIRS 2019)	39
Figure 19: IWLTSF Stage 4 Critical Cross Section (Plan)	42
Figure 20: IWLTSF Stage 4 Critical Cross Section (Plan)	46
Figure 21: IWLTSF Stage 4 Critical Cross Section – Section 1	47
Figure 22: IWLTSF Stage 4 Critical Cross Section – Section 2	47
Figure 23: Dam Break Runout – Section 1	50
Figure 24: Dam Break Runout – Section 2	51
Figure 25: IWLTSF Stage 2, 3 and 4 Underdrainage System Layout	53
Figure 26: Existing VWP Locations	55
Figure 27: Existing Monitoring Bore Locations	55
Figure 28: Freeboard Assessment - IWLTSF Stage 4 North Intermediate Storage Capacity	57
Figure 29: Freeboard Assessment - IWLTSF Stage 4 at Full Capacity	57
Figure 30: IWLTSF Stage 4 Tailings Storage Capacity Curve	60
Figure 31: Typical Rock Ring Water Clarity	61
Figure 32: Dry Density Water Recovery Relationship	62
Figure 33: Cut-off Trench Configuration	63
Figure 34: Embankment Instrumentation Existing	65
Figure 35: Rehabilitated IWLTSF Upper-Surface Closure Concept (Plan View)	68

List of Tables

Table 1: Updated Mill Throughput Schedule	4
Table 2: Storage Capacities Stage 2 and 3	5
Table 3: Design Storage Capacities Stage 4	6
Table 4: Average Monthly Rainfall and Evaporation	7
Table 5: Rare Design Rainfall Depths	9
Table 6: PMP Calculation Based on GSDM	9
Table 7: GSI Report Register	11
Table 8: Summary of Test Pits (November 2020 – December 2020)	12
Table 9: Summary of Diamond Core Boreholes (January 2021)	14
Table 10: Summary of Rotary Core Boreholes (May 2021)	15
Table 11: Summary of Test Pits (May 2021)	16
Table 12: Summary of Test Pit	17
Table 13: Summary of Borehole Material	18
Table 14: Summary of Laboratory Testing (November - December 2020)	21
Table 15: Summary of Laboratory Testing (November 2024 - February 2025)	24
Table 16: Proposed Zone 1 Material Properties	25
Table 17: Proposed HDPE Subgrade Material Shear Strength Parameters	27
Table 18: PSD Observed in Proposed Zone 3C Material	27
Table 19: Proposed Zone 3C Material Shear Strength Parameters	28
Table 20: Expected Mine Waste PSD	28
Table 21: Mine Waste Shear Strength Parameters	28
Table 22: Tailings Characterisation Test Results	29
Table 23: Tailings Settlement and Drying Results	30
Table 24: Assumed Tailings Parameters	31
Table 25: Design Beach Exposure Times	35
Table 26: DMP CoP Hazard Rating System	36
Table 27: DMP CoP Category Rating System	36
Table 28: ANCOLD Dam Severity Level Rating System	37
Table 29: ANCOLD Recommended Consequence Category (Table 2, ANCOLD 2019)	38
Table 30: ANCOLD Design Criteria	38
Table 31: DMIRS Freeboard Requirements	39
Table 32: Freeboard Requirements	40
Table 33: Freeboard Limits and Requirements	41
Table 34: Model Hydraulic Conductivity	42
Table 35: Results of Seepage Analysis	43
Table 36: IWLTSF Southeast Area Subsurface Profile Inferred	44
Table 37: IWLTSF Northeast Area Subsurface Profile Unit Inferred	44
Table 38: Geotechnical Effective and Total Stress Parameters	44
Table 39: Coefficient of Horizontal Acceleration	45
Table 40: Slope Stability Results for Critical Section 1	47
Table 41: Slope Stability Results for Critical Section 2	48
Table 42: Breach Characteristics	49

Date: 25 March 2025 Revision No: 0

Table 43: Potential Tailings Runout Distance Calculations	50
Table 44: IWLTSF Stage 4 Freeboard Assessment Summary	58
Table 45: Bill of Quantity	59

Revision No: 0

List of Appendices

Appendix i: Tailings Storage Data Sheet
Appendix ii: Certificate of Compliance

Appendix iii: Further Information

Appendix A: IWLTSF Stage 4 North and Stage 4 South Detailed Design Drawings

Appendix B: Geotechnical Field Investigation Test Pit Logs and Photographs

Appendix C: Geotechnical Field Investigation Borehole Drillings and Photographs

Appendix D: Geotechnical Laboratory Test Results and Certificates

Appendix E: Tailings Laboratory Test Results
Appendix F: Seepage Assessment Results
Appendix G: Slope Stability Analysis Results
Appendix H: Dam Break Assessment Results

Appendix I: Static Water Balance
Appendix J: Earthwork Specification
Appendix K: Operating Manual

Revision No: 0

Terminology and Abbreviations

The following terminology and abbreviations have been used in this document:

AEP Annual exceedance probability

ANCOLD Australian National Committee on Large Dams

BGL Bellevue Gold Limited

BGP Bellevue Gold Project

BOM Bureau of Meteorology

DEMIRS Department of Energy, Mines, Industry Regulation and Safety

DDR Detail Design Report

DWERS Department of Water and Environmental Regulation

GPS Global Positioning System

GSI Geotechnical Site Investigation

LOM Life of mine

IFD Intensity frequency duration

IPTSF In-Pit Tailings Storage Facility

IWLTSF Integrated Waste Landform Tailings Storage Facility

m/a Metres per annum

m³/d Cubic meters per day

Mm³ Million cubic meters

Mt Million tonnes

Mt/a Million tons per annum

NAF Non-acid forming

OM Operating Manual

PAF Potentially Acid Forming

RL Reduced level

t/a Tonnes per annum

t/d Tonnes per day

t/m³ Tonnes per cubic metre

SMDD Standard maximum dry density

TSF Tailings Storage Facility

Revision No: 0

1. TSF Proposal Summary

1.1 Introduction

REC was engaged by BGL to prepare the Detailed Design Report (DDR) for the integrated Waste Landform Tailings Storage Facility (IWLTSF) Stage 4 North and Stage 4 South at the Bellevue Gold Limited (BGL) Bellevue Gold Project (BGP). The BGP is located in the Sir Samuel region of Western Australia's, North-eastern Goldfields, approximately 430 km north of Kalgoorlie and 40 km north of the regional town of Leinster. The BGP is hosted in the Agnew-Wiluna Greenstone Belt, an area of significant metal endowment and a major gold and nickel sulphide producing belt. The project area covers a total of 3,650 km² with a combination of mining, exploration and prospecting leases.

The existing BGP Tailings Storage Facilities (TSFs), originally designed by REC as detailed in the WSD, IPTSF, TSF and IWLTSF Detailed Design Report (Ref: P19-11-PR-14 Rev 1, dated 10 November 2022), originally included an In-Pit Tailings Storage Facility (IPTSF) (Stage 1), a Water Storage Dam (WSD) planned for conversion into TSF (Stage 2) at RL 482.0 m, and IWLTSF (Stage 3) at RL 484.5 m. However, during construction, modifications were made due to construction challenges. As a result, the final TSF configuration consists of IPTSF (Stage 1) and Stages 2 and 3 of the IWLTSF as detailed in the IWLTSF Stage 2 and Stage 3 Critical Containment Infrastructure Report (CCIR) (Ref: P19-11-PR-25-R01 and P19-11-PR-28-R05 respectively).

IPTSF Stage 1 operated from late October 2023 to late October 2024. Following the IPTSF operation, IWLTSF Stage 2 was subsequently commissioned and is still currently in operation, with storage expected to reach an intermediate elevation of RL 482.5 m by April 2025.

IWLTSF Stage 3 construction was completed at the end of February 2025 and is currently awaiting operational approval from the relevant government authorities. Once approved, Stage 3 will commence operation, aligning with the completion of the Stage 2 intermediate storage. Once IWLTSF Stage 3 is operated to its full capacity (including the utilisation of the remaining Stage 2 storage up to RL 484.2 m), the tailings beach will extend into the IPTSF from the south and tailings will be directed into the IPTSF from the north and the western areas of the Stage 2 storage.

During Stage 3 operation, the decant pond will be managed within IPTSF and the adjacent low laying area, eliminating the immediate need for the decant infrastructure originally planned for Stage 3. The combined operation of Stage 2 and Stage 3 at full capacity is expected to provide tailings storage up to August 2026 (16 months), supporting a throughput of 1.35 Mtpa to 1.60 Mtpa at an assumed dry density of 1.40 t/m³.

The Stage 2 embankment crest has been constructed to its full width of 75.0 m. In Stage 3, while part of the eastern embankment crest has been built to its full width of 75.0 m, the southern and remaining eastern sections were constructed to a 10.0 m minimum width due to limitations in available waste rock material at the time of construction. To support ongoing mine waste placement, and the construction of the future Stage 4 embankment, recently an additional 20.0 m width has been constructed at RL 484.5 m across the southern embankment to the east of the Prospero waste dump using waste rock placed through paddock dumping techniques. Ongoing waste rock placement is currently progressing using tip head techniques to increase the waste rock embankment width downstream of the southeast embankment adjacent to and within the downstream borrow pit.

The IWLTSF Stage 4 North and Stage 4 South embankments will be constructed using mine waste (Zone 3A and Zone 3B) derived from underground mine development works, compacted in lifts through traffic compaction. The upstream batter (Zone 3C) will be constructed using transitional material sourced from the historic Vanguard waste dump and other suitable borrow pit stockpiles. The embankment upstream face will incorporate a High Density Polyethylene (HDPE) liner, underlain by a suitable subgrade and Bidim A24 geotextile (or equivalent) to provide enhanced puncture protection.

The construction of the rock ring and decant causeway, which was originally postponed from IWLTSF Stage 3 construction, is now planned to take place after Stage 3 commissioning, with the current focus remaining on commissioning activities.

The decant trenches originally proposed to facilitate early water recovery during Stage 3 operations were found to be difficult to construct due to the presence of shallow surficial rock. To address these constraints, the alignment of the rock ring has been revised and shifted westward to coincide with a new topographic low point identified within the area of the historic Vanguard waste

Revision No: 0

dump. This shift followed the partial removal of the dump material, exposing the natural ground surface. The remaining waste is scheduled for removal in future works.

The repositioned rock ring is now planned for construction under IWLTSF Stage 4 North, together with the associated decant causeway. Both structures will initially be constructed to RL 489.0 m and will be progressively raised in alignment with the staged development of the facility.

The revised area also contains low-permeability borrow material, which is intended to be excavated and stockpiled for future use during construction activities. This material is anticipated to enhance decant water drainage performance through the rock ring by increasing the available hydraulic head.

Currently, an internal training wall, with a maximum height of 2.5 m, has been constructed within Stage 2 storage area to prevent tailings from Stage 2 operation forming towards the planned rock ring location and decant water ponding in this area due to its topographic low point. Additionally, an open-end tailings discharge has recently been undertaken from the western side of the Stage 2 storage area to direct tailings towards the IPTSF and maintain the pond centrally within the IPTSF. This open-end discharge strategy will be intermittently used as needed in the future.

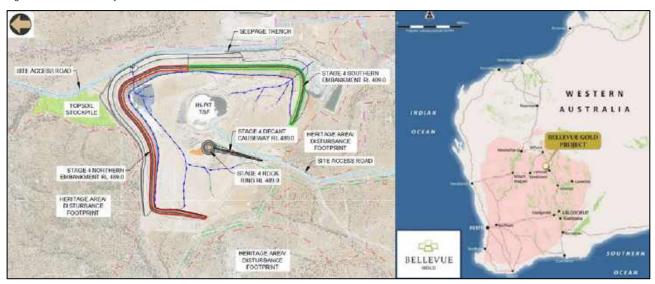
The current tailings management strategy is to continue operating IWLTSF Stage 2 until it reaches its intermediate storage capacity, after which operations will transition to IWLTSF Stage 3. Stage 3 will be operated to its maximum capacity with a strategic deposition plan aimed at keeping the decant pond in its current location at the southern part of the IPTSF and the adjacent lowlying area.

To support continuous operation and tailings storage beyond 2026, the current TSF will require further expansion through the construction of the proposed IWLTSF Stage 4 embankment raise. This is expected to provide additional tailings storage capacity until June 2028. The Stage 4 embankment is proposed to be constructed in two phases: Stage 4 North and Stage 4 South, following the same approach as Stages 2 and 3, to ensure uninterrupted operations during construction.

Stage 4 North will be constructed after the ongoing tailings operation in Stage 2 intermediate storage is completed and transitioned to Stage 3, with construction planned to be completed and CCIR approval obtained during the operational life of Stage 3.

Similarly, Stage 4 South construction will commence once tailings deposition in Stage 3 is completed and transitions to the remaining storage in Stage 2. To allow sufficient time for Stage 4 South construction and its CCIR approval, Stage 4 North will be operated temporarily for an intermediate storage capacity following its own CCIR approval.

This planned sequencing of Stage 2 and Stage 3 operations, along with the phased construction of Stage 4, is designed to ensure sufficient time for construction completion and CCIR approval while maintaining uninterrupted operations.


This DDR outlines the engineering design for the IWLTSF Stage 4 North and Stage 4 South embankment raise at the BGP to a crest elevation of RL 489.0 m. The scope of the design documented in this report is limited to civil engineering/earthworks components and excludes other design elements.

The location of the project site along with the existing IPTSF and IWLTSF (Stage 2 and Stage 3), in addition to the proposed IWLTSF Stage 4 North and Stage 4 South raise configuration are presented in Figure 1.

Revision No: 0

Figure 1: Overall Site Layout

1.2 Purpose and Scope

This DDR outlines the basis of design for the BGP IWLTSF Stage 4 North and Stage 4 South raise, upon which the design assessments and operational requirements are based.

The purpose of this document is to present the overall objectives of the IWLTSF Stage 4 North and Stage 4 South raise and summarise the relevant guidelines and legislation, design criteria, overall design philosophy, and other relevant information related to the facilities design. All matters related to the design, construction and operation of the IWLTSF Stage 4 North and Stage 4 South raise at the BGP have been prepared in accordance with the most recent and applicable design codes and regulation.

As the scope of this document is to provide comprehensive design documentation, the contents within this document are to be considered as the definitive design document of the IWLTSF Stage 4 North and Stage 4 South raise. Preceding design documentation submitted to BGL, and their associated assessments and designs pertaining to the IWLTSF Stage 4 North and Stage 4 South, are superseded by the contents of this document.

2. Design Considerations

2.1 Introduction

The design of the IWLTSF Stage 4 North and Stage 4 South embankment raise has been developed to optimise storage capacity, operational efficiency, and embankment stability. The Stage 4 embankment geometry has been designed to enable safe, economical, and practical construction, considering available mine waste materials, construction limitations, and site-specific constraints. Locally sourced materials have been prioritised for embankment construction, while seepage control measures have been integrated into the design. These measures include the extension of existing finger drains and toe drains to intercept seepage water. The embankment design incorporates a HDPE liner across the embankment upstream face, underlain by a suitable subgrade and geotextile layer to further mitigate seepage risks.

The following sections detail the inputs and design considerations for the IWLTSF Stage 4 North and Stage 4 South DDR.

2.2 Storage Capacity

The WSD, IPTSF, TSF and IWLTSF Detailed Design Report (Ref. P19-11-PR-14 Rev 1, dated 10 November 2022) outlined the initial design for tailings storage across the BGP, which comprised the IPTSF (Stage 1), TSF (Stage 2), and IWLTSF (Stages 3 to 8). This design was based on a 9-year operational life with a processing throughput of 1.0 Mtpa and an assumed tailings dry density of between 1.4 and 1.45 t/m³ for above ground tailings storage. Stage 1 was designed to provide storage capacity for 1.0 year, while the combined Stage 2 and Stage 3 were designed to accommodate 3.0 years of storage. The remaining five stages of the IWLTSF (Stages 4 to 8) were proposed at a conceptual level to provide storage for the remaining 5.0 years of tailings deposition, with one embankment raise per year to a maximum elevation of RL 492.0 m.

However, during construction, modifications were made to the design due to construction challenges. As a result, the final TSF configuration consists of IPTSF (Stage 1) and Stages 2 and 3 of the IWLTSF as detailed in the IWLTSF Stage 2 and Stage 3 Critical Containment Infrastructure Report (CCIR) (Ref. P19-11-PR-25-R01 and P19-11-PR-28-R05 respectively).

Additionally, the original design throughput of 1.0 Mtpa was maintained throughout IPTSF (Stage 1) and IWLTSF (Stage 2) operation until the end of 2024. A planned throughput increase took effect in January 2025 with a planned gradual increase to 1.35 Mtpa by July 2025, followed by a further planned increase to 1.60 Mtpa from July 2026 onwards. The updated production schedule will generate approximately 13.3 Mt of tailings, exceeding the original 9.0 Mt storage capacity upon which the initial LoM IWLTSF design was based. The project updated mill throughput schedules are presented in Table 1.

Table 1: Updated Mill Throughput Schedule

Operation Life (Year)	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8	Year 9	Total
Calendar Year	2024	2025	2026	2027	2028	2029	2030	2031	2032	rotal
Throughput (Mt)	1.00	1.25	1.48	1.60	1.60	1.60	1.60	1.60	1.60	13.33
Cumulative Dry Tailings (MI)	1.00	2.25	3.73	5.33	6.93	8.53	10.13	11.73	13.33	=1

The proposed conceptual LoM design is currently under review in response to the recent changes in throughput projections and evolving tailings storage requirements at the BGP, including considerations for extending the life of the existing storage facility.

Based on the updated production schedule the current IWLTSF Stage 2 and Stage 3 combined is expected to provide 1.81 Mm^a of storage capacity for 2.54 Mt of tailings during their operation based on an assumed average in-situ dry density of 1.40 Vm3 and are projected to provide storage capacity until September 2026 for a throughput ranging between 1.35 Mtpa and 1.6 Mtpa.

The current deposition sequence plan which was first implemented during the construction of Stage 3 to support its completion, has now been slightly adjusted to facilitate the phased construction of Stage 4. This adjustment in deposition sequence is made to ensure adequate time for Stage 4 construction completion and CCIR approval, while maintaining uninterrupted operations. The capacities for Stages 2 and 3, along with their stage sequencing order, is summarized in Table 2.

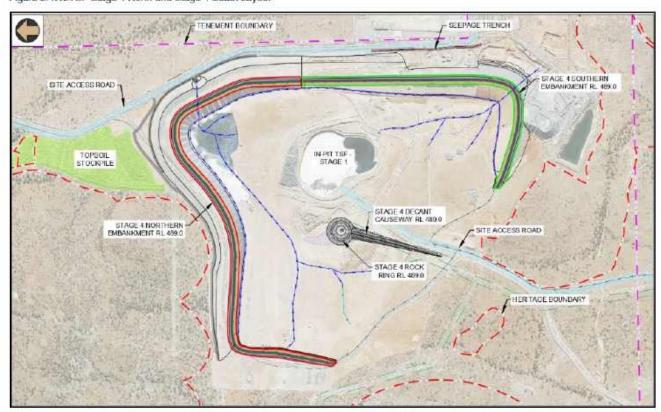


Table 2: Storage Capacities Stage 2 and 3

Parameter	Stage 2 Intermediate Storage (Ongoing)	Stage 3 (Future-Awaiting CCIR Approval)	Stage 2 Remaining Storage (Future)
Crest Elevation (m RL)	484.5	484.5	484,5
Crest Height (m)	10.7	22.5	10.7
Maximum Discharge Elevation (m RL)	483.2	484:2	484.2
Assumed Average Dry Density (t/m³)	1.40	1.40	1.40
Storage Capacity (Mt)	0.76	1.57	0.21
Cumulative Tailings (Mt)	0.76	2.33	2.54
Storage Capacity (Mm ³)	0.54	1.12	0.15
Cumulative Capacity (Mm³)	0.54	1.66	1.81
Stage Life (years)	0.6	1.2	0.1
TSF Cumulative Life (years)	0.6	1.8	1.9

The Stage 4 embankment is proposed to be constructed in two phases—Stage 4 North and Stage 4 South—adopting the same approach used for Stages 2 and 3 to ensure uninterrupted operations during construction. A deposition sequencing plan has been developed to facilitate the timely completion of Stage 4 construction while maintaining a centralized pond within the IWLTSF facility.

Figure 2: IWLTSF Stage 4 North and Stage 4 South Layout

Stage 4 North will be temporarily operated for an intermediate storage following its CCIR approval to support the completion and subsequent CCIR approval of Stage 4 South. Once CCIR approval for Stage 4 South is obtained, tailings deposition will continue in Stage 4 South for a period of time to allow the beach elevation to match that of Stage 4 North, ensuring the pond remains centralized within the facility. Thereafter, the remaining capacity of Stage 4 will be operated as a single storage facility, with tailings deposition cycled along the entire perimeter embankment.

IWLTSF Stage 4 has been designed with a 4.5 m downstream embankment raise to maximise stage storage life while ensuring mine waste material availability for timely construction. IWLTSF Stage 4, at an assumed average dry density of 1.40 t/m³, the facility is projected to provide 2.11 Mm³ of storage capacity for 2.95 Mt of tailings. The overall Stage 4 North and Stage 4 South storage capacities, along with their sequencing order, are summarised in Table 3.

Table 3: Design Storage Capacities Stage 4

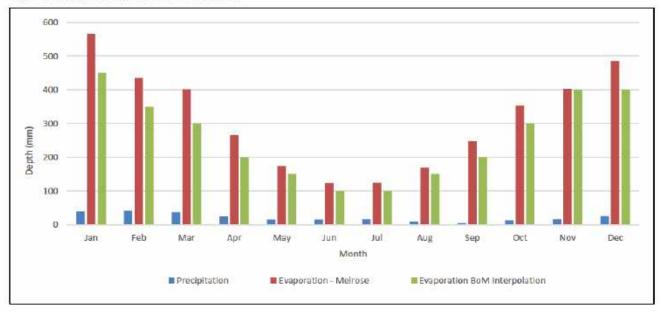
B. Carlotte	Stage 4					
Parameter	North Intermediate	South Intermediate	Remaining North & South			
Crest Elevation (m RL)	489.0	489.0	489.0			
Crest Height (m)	27.0	27.0	27.0			
Maximum Discharge Elevation (m RL)	486.2	486.2	488.7			
Assumed Average Dry Density (t/m²)	1.40	1.40	1.40			
Storage Capacity (Mt)	0.64	0.55	1.76			
Cumulative Tailings (Mt)	0.64	1.19	2.95			
Storage Capacity (Mm ³)	0.46	0.39	1.26			
Cumulative Capacity (Mm ³)	0.46	0.85	2.11			
Stage Life (years)	0.4	0.3	1.1			
TSF Cumulative Life (years)	0.4	0.7	1.8			
Stage Average Rate of Rise (m/y)	12.7	10.3	3.4			

2.3 Tenure and Site Conditions

2.3.1 Location

The BGP is situated approximately 40 km by road north of the town of Leinster and can be accessed from the Goldfields Highway. The project locality is presented in Figure 3. The proposed IWLTSF Stage 4 North (footprint in red outline) and Stage 4 South (footprint in green outline) configuration is presented in Figure 2.

Figure 3: Bellevue Gold Project Locality


2.3.2 Climate

Data from the Bureau of Meteorology (BoM) weather station nearest to the site has been used to evaluate the climate of the project area. Presented in Table 4 are the long-term temperature and rainfall data (1994-2020) for Leinster (BoM Site 012314), located approximately 40 km south of the site. Evaporation data for the site was sourced from Technical Note 65 for Western Australia for Melrose (~60 km from Leinster). This is presented alongside an interpolation of monthly BOM Climatology Data (1975 to 2005) in Figure 4.

Table 4: Average Monthly Rainfall and Evaporation

Parameter	Units	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Mean Max. Temp.*	°C	37.3	35.5	31.8	28.0	23.2	19.4	19.0	21.7	25.7	30.2	32.8	35.7	÷:
Mean Min. Temp*	°C	23.3	22.3	19.2	15.4	10.4	7.3	6.1	7.7	10.8	15.1	18.3	21.3	==
Mean Rainfall*	mm	38.5	40.5	36.0	24.6	14.3	14.6	16.0	8.9	3.6	11.8	15.7	25.4	259.3
Highest Rainfall*	mm	133.4	128.4	193.8	74.2	94.8	64.4	72.8	45.0	26.8	69.4	77.2	125.8	439.4
Evap, Melrose**	mm	566	435	401	265	174	123	124	169	247	353	403	486	3,746
Evap. BoM Interp***	mm	450	350	300	200	150	100	100	150	200	300	400	400	3,100

Figure 4: Average Monthly Rainfall and Evaporation

2.3.3 Surface Topology

The local area consists of basaltic hills ranging up to 30 m above the surrounding colluvial plains and salt lakes and characteristically extensively covered by blocky scree. Colluvial and alluvial cover is generally thin, and outcrops of basement rocks are common on most hills in the area.

2.3.4 Geology

2.3.4.1 Regional Geology

The regional geology has previously been described by BGL (Brooks et al 2019). The BGP sits within the Yakabindie domain of the Agnew-Wiluna Greenstone Belt of the Eastern Goldfields Super Terrane, on the Sir Samuel 1:250,000 map sheet.

The Yakabindie domain consists of the layered Kathleen Valley gabbro (dated at 2.736 Ga – Black et al 2003) overlain by the tholeiitic Mt Goode basalt sequence. A mixed sequence of metamorphosed ultra-mafics and felsic volcanics overly the Mt Goode

basalts and in turn sit underneath the unconformable boundary of a late basin conglomeratic sequence (the Jones Creek conglomerates). The domain is bounded to the east by the crustal scale Keith-Kilkenny Shear (Perseverance Fault) and bounded by the Ida Lineament to the West.

2.3.4.2 Local Geology

The surface geology of the Bellevue Project area is readily separated into two areas; subcrop to outcrop in the north and transported alluvium/colluvium in the south. The outcrop consists of Archean mafic lithologies in a range of low hills with thin veneer of residual soils overlying moderately weathering rock to depths of between 10 m to 30 m. Shallow Tertiary and Quaternary colluvium can be found on the slopes and alluvium can be found along the drainage lines of the project area which sits immediately to the west of the northern section of Lake Miranda, part of the local paleo-drainage system. Lake Miranda is a playa lake system dominated by gypisferous dunes, lunettes and sandy, clayey, evaporitic lake floor deposits.

Pleistocene red sand sheets and dunes form remnant deposits to a few metres thickness on the lower, western flanks of the hills. This sand/silt material has been reworked into the lake floor deposits with the evaporites.

2.3.5 Hydrogeology and Hydrology

2.3.5.1 Hydrogeology

The known paleochannel aquifer systems are to the south and east of the Project area. The main aquifer of relevance to mining and dewatering is the fractured-rock aquifer, which is comprised of greenstones, granitoids and minor intrusive rocks. The greenstone belt in the project area is aligned in a north to south orientation, with the associated faults and fracture sets also aligned in this direction. The fractured rock aquifer characterises the extents and degree of fracturing and the interconnectedness of such fractures along strike. Typically, such fractured rock aquifers are quite localised and low in groundwater storage. This preferred orientation for faulting also gives an asymmetry to the preferential flow paths for groundwater, with drawdown propagation expected to extend further along strike (north south), while being more limited across strike (east west).

The pre-mining groundwater levels at Bellevue range between 15 m to 30 m below ground level (mbgl), depending on topography, equivalent to about ~460 m above height datum (m AHD). The levels indicate a relatively flat groundwater gradient regionally towards the south, which is consistent with the regional groundwater flow direction following the major paleo-drainage lines. Groundwater is hypersaline with TDS in the range of 90,000 to 120,000 mg/L.

Groundwater within the Project area flows south from the mine area to the Lake. The lake acts as a groundwater sink where water is lost to the environment and salts concentrate. Water levels at the lake are typically far shallower than at the mine area and may be less than two meters below the surface. These waters support halophytic vegetation across the lake, some which has cultural significance.

2.3.5.2 Design Storm Events

Design rainfall depths (mm) for the project site obtained from the BoM 2016 Rainfall IFD (Intensity Frequency Duration) Data System are shown on Table 5. The design storm storage requirement under DMP (2015) and ANCOLD (2012) guidelines is for a 1:100 year 72-hour duration rainfall event (highlighted in grey) in Table 5.

Reference: P19-11-PR-29-R01 Page 8 of 69
Client: Bellevue Gold Limited Report Title: IWLTSF Stage 4 North and Stage 4 South Detailed Design Report

Table 5: Rare Design Rainfall Depths

Event Duration	Annual Exceedance Probability (1 in x)							
Event Duration	1 in 100	1 in 200	1 in 500	1 in 1,000	1 in 2,000			
24-hour	44	161	191	214	240			
48-hour	176	205	248	284	324			
72-hour	194	230	283	328	378			
96-hour	205	244	303	354	411			
120-hour	211	252	314	368	430			
144-hour	214	256	319	374	438			
168-hour	214	257	319	374	440			

2.3.6 Probable Maximum Precipitation

The Probable Maximum Precipitation (PMP) is the theoretically greatest rainfall that is physically possible, based on current knowledge, over a given area for a certain duration.

The Probable Maximum Precipitation (PMP) across the IWLTSF Stage 4 was estimated in accordance with guidelines published by the Australian Bureau of Meteorology (BOM) using the Generalised Short Duration Method (GSDM). The GSDM is noted as being suitable for estimating PMP for durations up to 6 hours for small catchments across all of Australia, including tailings dams and small reservoirs.

The GSDM provides the following equation for estimating PMP:

$$PMP = (S \times D_S + R \times D_R) \times MAF \times EAF$$

Where

S = Smooth terrain weighted factor

D_s = Smooth terrain rainfall depth read from Depth Duration Area (DDA) curves

R = Rough terrain weighted factor

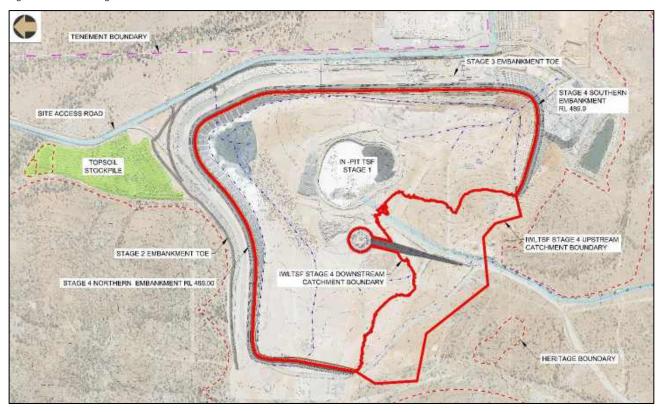
D_R = Rough terrain rainfall depth read from Depth Duration Area (DDA) curves

MAF = Moisture Adjustment Factor

EAF = Elevation Adjustment Factor

The PMP was estimated based on a maximum duration limit of 4.1 hours for the IWLTSF Stage 4 catchments utilising GSDM as detailed in Table 6.

Table 6: PMP Calculation Based on GSDM


Facility	S	R	D _S (mm)	D _R (mm)	MAF	EAF	PMP (mm)
IWLTSF Stage 4	0.0	1.0	3	1,108	0.82	1	910

2.3.7 Catchments

The total catchment area for the proposed IWLTSF Stage 4 is estimated to be approximately 69.9 ha. This includes contributions from the upstream catchment area of 15.1 ha, which partially drains into the facility, and direct runoff from the tailings beach catchment area of 54.8 ha. The combined rainfall runoff volume from these catchments is estimated to be approximately 0.64 Mm³, based on assumed runoff coefficients of 0.5 for the upstream catchment and 1.0 for the tailings beach catchment. The IWLTSF Stage 4 catchment area is illustrated in Figure 5.

Figure 5: IWLTSF Stage 4 Total Catchment

2.3.8 Runoff

The project site is sparsely vegetated, strewn with cobbles and gravel and sloping topography. An appropriate rational method runoff coefficient for sparsely vegetated areas with soils such as those observed for the upstream catchment of the IWLTSF would be approximately C = 0.5.

The Australian Rainfall and Runoff Data Hub (accessed December 2020) indicates that there are no storm loss data for the project location. Instead, the Australian Rainfall and Runoff: A guide to Flood Estimation (Book 5; Flood Hydrograph Estimation, 2019) was referred to for regional storm initial losses and continuing losses.

The project is located within Region 2, represented by a more uniform climate as opposed to regions that are represented by summer-dominant and winter-dominant climates (the far north or far south of the country). Based on the prediction equations for Region 2, the Initial Loss (IL) and Continuing Loss (CL) are estimated at 37.5 mm and 2.7 mm/hr respectively. It should be noted that the recommended values are derived based upon only 35 catchments (across Australia) and the standard error of the estimates range between 20% and 50%.

Because of the limited number of catchments available, the prediction equations are based upon one or two independent variables. However, it is anticipated that a wide range of characteristics combine to influence the loss values for a particular catchment and therefore judgement is recommended when selecting suitable values for use in design.

For example, for catchments with very dense vegetation, it would be expected that the loss values would be higher. Similarly, steep catchments with little vegetation would be expected to have lower loss values. For the Pilbara, Flavell and Belstead (1986) recommended IL values of approximately 40 mm to 50 mm and a CL of 5 mm/h.

It should be noted that the loss values were derived from reconciling rainfall-based estimates with flood frequency analysis and thus the IL reflects a burst initial loss, and a higher initial loss would be expected if complete storms are adopted, so the range of IL reported by Flavell and Belstead (1986) should be considered a lower limit of expected IL values.

On this basis, a runoff coefficient of C = 0.50 for the IWLTSF upstream catchment has been adopted for the design water balance and pumping requirements.

2.3.9 Sub-surface Conditions and Foundations

2.3.9.1 General

A series of initial Geotechnical Site Investigations (GSI) were carried out between November 2020 and June 2023 within the IWLTSF footprint to assess subsurface conditions and foundation characteristics as part of the IWLTSF Stage 2 and Stage 3 design. As a continuation of these works, additional GSI was recently undertaken for the IWLTSF Stage 4 between November 2024 and February 2025. A report register for the existing GSI works is presented in Table 7.

Table 7: GSI Report Register

Date	Test	Test ID's	Report Referenced
Nov 2020 - Dec 2020	Test Pit	TSF-TP01 to 20	
Jan 2021	Diamond Core Drilling	BH3A and BH6	
May 2021	RC Drilling	IWL-BH01 to BH16, IWL-BH19 to 20, IWL- BH22 to 23, IWL-BH25 to 27, IWL-BH29 to 32 and IWL-BH35	WSD, WPBE, TSF Stage 1 and IPTSF Stage 2 Detailed Design Report Rev 0 (July 2022), P19-11-PR-14, Page 26 – 31, Appendix A and B
May 2021	Test Pit	C-TP01 to C-TP08	
Apr 2023	Test Pit	TP01 to 20	Tailings Storage Facility Design Basis Report (December 2024), P19-11-PR-28 R03 DBR, Page 17 and 18
Nov 2024 - Feb 2025	Diamond Core Drilling	BH01 to 06	IWLTSF Stage 4 North and Stage 4 South Detailed Design Report (March 2025), P19-11PR-29-R01.

2.3.9.2 GSI - November 2020 to December 2020

An initial Geotechnical Site Investigation (GSI) was carried out between the 30th of November and 7th of December 2020 (Ref: P19-11-PR-14). This GSIs comprised:

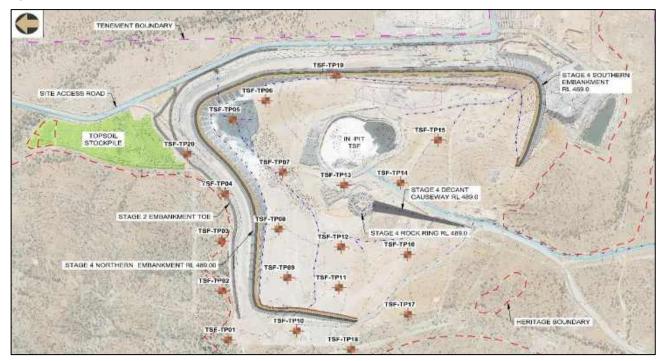
- Excavation of 20 test pits within the proposed IWLTSF footprint;
- Recovery of disturbed soil samples for laboratory testing;
- Laboratory testing of disturbed soil samples.

2.3.9.2.1 Test Pits (November - December 2020)

A total of twenty (20) test pits, conducted between the 30th of November and 7th of December 2020, were excavated across the proposed IWLTSF location using a 35 t excavator to depths of up to 5.2 m. All test pits were logged and photographed by the supervising engineer and samples were collected from selected pits for laboratory testing. All the tests' pits were backfilled with excavated soil on completion of sampling.

The typical sub-soil stratigraphy at the IWLTSF site was found to comprise a surficial cover of transported colluvial soils, comprising unconsolidated surficial deposits dominated by sandy, gravelly and silty soil. Across much of the IWLTSF site, this layer is underlain by a surficial layer of weathered calcrete, occasionally interbedded with basalt. In other areas the surficial cover of transported colluvial soils is directly underlain by a layer of blocky basalt cobbles and boulders. Where the surficial calcrete layers were broken through, underlying colluvial soils were uncovered comprising of a sandy, gravelly, clayey soil interbedded with some gypsum crystals and weathered basalt cobbles and boulders. Along the eastern most ridge of the IWLTSF site the surficial colluvial soils are underlain by a surficial layer of residual duricrust (hardpan) comprising of variably (iron) cemented soil.

The test pit locations relative to the IWLTSF embankments are presented in Figure 8. A summary of the test pitting is presented in Table 8.


Table 8: Summary of Test Pits (November 2020 - December 2020)

Test Pit Number	Eastings (m E)	Northings (m N)	Depth to Colluvium (m)	Depth to Rock (m)	Colluvium Thickness (r
TSF-TP01	258,831	6,942,891	0.0	0.1	D.1
TSF-TP02	259,006	6,942,910	13	4.0	2.7
TSF-TP03	259,184	6,942,911	1.0	4.2	3.2
TSF-TP04	259,353	6,942,900	0.0	0.1	0.1
TSF-TP05	259,618	6,942,876	1.7	5.2	3.5
TSF-TP06	259,686	6,942,773	0.0	0.1	0.1
TSF-TP07	259,430	6,942,719	0.0	0.2	0.2
TSF-TP08	259,227	6,942,732	0.0	0.1	0.1
TSF-TP09	259,053	6,942,704	0.9	4.1	3.2
TSF-TP10	258,863	6,942,675	0.0	0.15	0.15
TSF-TP11	259,018	6,942,542	1.2	3.5	2.3
TSF-TP12	259,163	6,942,535	0.0	0.15	0.15
TSF-TP13	259,384	6,942,526	0.0	0.1	0.1
TSF-TP14	259,392	6,942,348	0.0	0.1	0.1
TSF-TP15	259,545	6,942,230	2.5	4.0	1.5
TSF-TP16	259,136	6,942,326	0.0	0.15	0.15
TSF-TP17	258,922	6,942,325	1.9	4.0	2.1
TSF-TP18	258,797	6,942,504	0.0	0.2	0.2
TSF-TP19	259,776	6,942,550	0.0	0.15	0.15
TSF-TP20	259,495	6,943,019	1.8	4.2	2.4

Revision No: 0

Figure 6: Test Pit Locations (November - December 2020)

2.3.9.3 Diamond Core Drilling - January 2021

A total of two (2) diamond core boreholes were drilled across the proposed IWLTSF location between the 25th of January and 29th of January 2021 (Ref: P19-11-PR-14). These boreholes were drilled to depths of between 6.0 m and 9.0 m using a track mounted drilling rig supplied and operated by Edge Drilling Pty Ltd. All boreholes were drilled from ground surface using HQ3 size triple-tube coring techniques with mud flush.

All core was photographed and logged by the supervising geotechnical engineer. The core was placed into core trays and subsequently transported to the laboratory for sample selection and testing.

Standard Penetration Tests (SPT's) were undertaken during drilling with pocket penetrometer testing conducted at select depths. The sub-surface profile across both boreholes was relatively consistent and in-line with ground conditions identified during the test pit programme.

The sub-surface profile encountered at BH3A can be described as:

- Lateritic soils containing varying portions of gravel, sand, silt and clay, extending to a depth of 7.95 m, overlying;
- BASALT, slightly weathered fresh, high extremely high strength.

The sub-surface profile encountered at BH6 can be described as:

- CALCRETE, very low low strength, extending to a depth of 0.6 m, overlying;
- Lateritic soils containing varying portions of gravel, sand, silt and clay, extending to a depth of 3.5 m, overlying;
- Lateritic soils with BASALT cobbles and gravels, extremely highly weathered, very low strength, becoming interbedded with very low medium strength, highly moderately weathered CALCRETE.

The diamond core borehole locations relative to the IWLTSF embankments are presented in Figure 7. A summary of the drilling works is presented in Table 9.

Table 9: Summary of Diamond Core Boreholes (January 2021)

942,325 0.0	7.9	7.9
943,025 0.6	5.0	4.4
	Material Annual	The State of

Figure 7: Diamond Core Borehole Locations (January 2021)

2.3.9.4 Rotary Core Drilling - May 2021

Following the GSI works conducted in November 2020 and January 2021, additional GSI were carried out between the 3rd and 11th of May 2021 (Ref. P19-11-PR-14). These GSIs comprised a total of twenty-eight (28) rotary core boreholes across the proposed IWLTSF footprint. These boreholes were drilled to depths of between 2.0 m and 24.0 m below ground surface using a track mounted drilling rig supplied and operated by Topdrill Pty Ltd. All rotary core cuttings were photographed and logged by the supervising geotechnical engineer.

The diamond core borehole locations relative to the IWLTSF embankments are presented in Figure 8. A summary of the drilling works is presented in Table 10.

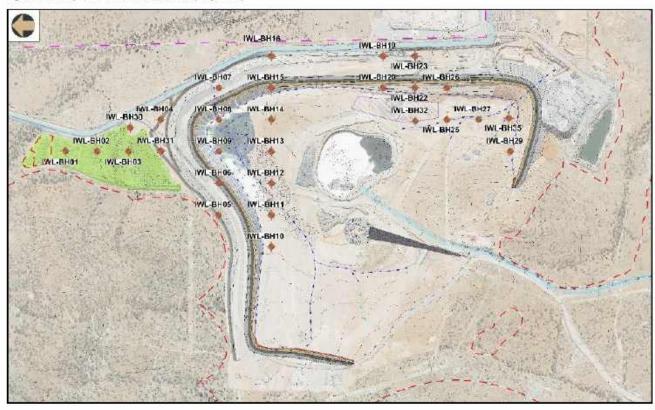


Table 10: Summary of Rotary Core Boreholes (May 2021)

Borehole Number	Eastings (m E)	Northings (m N)	Depth to Colluvium (m)	Depth to Rock (m)	Colluvium Thickness (
IWL-BH01	259,566	6,943,390	NE	1.0	NE
IWL-BH02	259,565	6,943,291	2.0	10.0	8.0
IWL-BH03	259,565	6,943,191	2.0	6.0	4.0
IWL-BH04	259,665	6,943,091	NE	1.0	NE
IWL-BH05	259,365	6,942,908	NE	0.0	NE
IWL-BH06	259,465	6,942,908	NE	0.0	NE
IWL-BH07	259,765	6,942,907	1.0	5.0	4.0
IWL-BH08	259,665	6,942,907	0.0	4.0	4.0
IWL-BH09	259,565	6,942,907	1.0	4.0	3.0
IWL-BH10	259,265	6,942,743	NE	0.0	NE
IWL-BH11	259,365	6,942,743	1.0	4.0	3.0
IWL-BH12	259,465	6,942,743	1.0	3.0	2.0
IWL-BH13	259,565	6,942,743	NE	0.0	NE
IWL-BH14	259,665	6,942,743	0.0	22.0	22.0
IWL-BH15	259,765	6,942,743	3.0	7.0	4.0
IWL-BH16	259,865	6,942,743	3.0	16.0	13.0
IWL-BH19	259,865	6,942,391	6.0	11.0	5.0
IWL-BH20	259,765	6,942,391	2.0	7.0	5.0
IWL-BH22	259,765	6,942,291	0.0	8.0	8.0
IWL-BH23	259,865	6,942,291	0.0	4.0	4.0
IWL-BH25	259,665	6,942,191	NE	0.0	NE
IWL-BH26	259,765	6,942,191	1.0	10.0	9.0
IWL-BH27	259,665	6,942,091	1.0	5.0	4.0
IWL-BH29	259,565	6,941,991	NE	0.0	NE
IWL-BH30	259,640	6,943,187	NE	3.0	NE
IWL-BH31	259,566	6,943,090	NE	0.0	NE
IWL-BH32	259,661	6,942,290	NE	2.0	NE
IWL-BH35	259,670	6,941,996	1.0	5.0	4.0

Figure 8: Rotary Core Borehole Locations (May 2021)

2.3.9.5 Test Pits - May 2021

A total of eight (8) calcrete sample test pits were excavated at the proposed IWLTSF location, on the 19th of May 2021, to the maximum depth of the calcrete (1.0 m) to inform geochemical test work related to acid neutralisation (Ref. P19-11-PR-14). A summary of the test pitting is presented in Table 11. The test pit locations relative to the IWLTSF embankments are presented in Figure 9. The site sub-soil stratigraphy on the proposed IWLTSF site comprises the following:

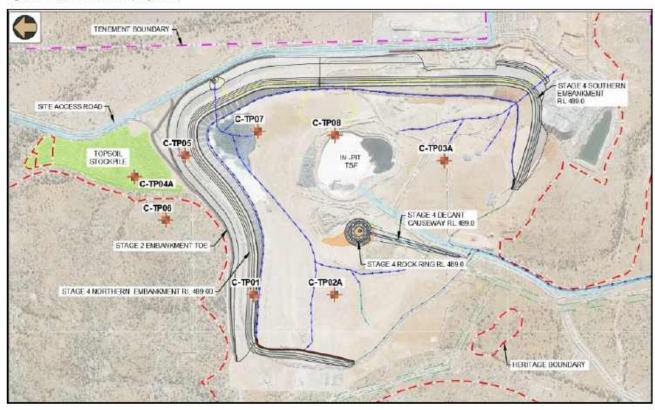

- Silty SAND / sandy SILT, extending to a depth of 0.2 m, overlying;
- CALCRETE, moderately to slightly weathered, low to medium strength, extending to a depth of 1.0 m.

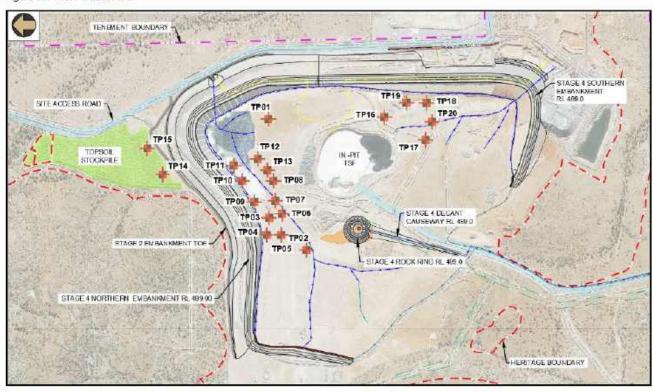
Table 11: Summary of Test Pits (May 2021)

Test Pit Number	Eastings (m E)	Northings (m N)	Depth to Silty Sand (m)	Depth to Rock (m)
C-TP01	259,093	6,942,819	0.3	0.5
C-TP02A	259,096	6,942,523	0.2	0.5
C-TP03A	259,498	6,942,204	0.3	0.6
C-TP04A	259,498	6,943,199	0.2	1.0
C-TP05	259,569	6,942,995	0.2	0.7
C-TP06	259,354	6,943,093	0.2	0.7
C-TP07	259,624	6,942,786	0.2	0.7
C-TP08	259,622	6,942,532	0.2	1.0

Figure 9: Test Pit Locations (May 2021)

2.3.9.6 GSI - April 2023

A total of twenty (20) test pits were conducted across the proposed IWLTSF footprint in April 2023 to the maximum depth of 3.5 m. A summary of the test pitting is presented in Table 12. The test pit locations are presented in Figure 10.


Table 12: Summary of Test Pit

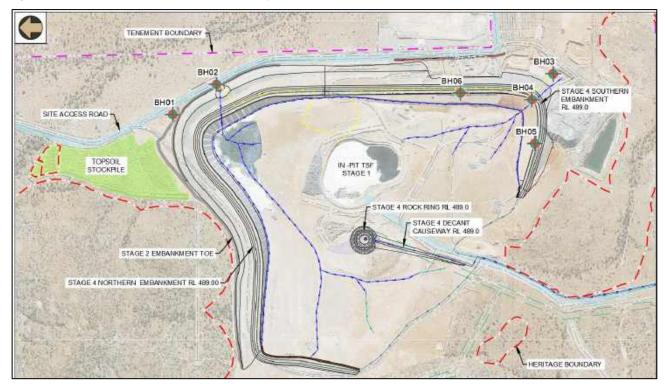
Test Pit Number	Eastings (m E)	Northings (m N)	Depth to Soil (m)	Depth to Rock (m)
TP01	259,666	6,942,747	2.3	3.5
TP02	259,259	6,942,620	1.0	2.5
TP03	259,363	6,942,744	0.5	2.5
TP04	259,316	6,942,751	0.5	1.7
TP05	259,315	6,942,711	0.5	2.3
TP06	259,369	6,942,712	0.5	2.0
TP07	259,408	6,942,719	0.4	0.7
TP08	259,415	6,942,748	0.6	1.6
TP09	259,410	6,942,799	1.0	3.0
TP10	259,470	6,942,828	0,6	1.2
TP11	259,517	6,942,862	0.5	0.7
TP12	259,525	6,942,778	0.4	1.2
TP13	259,467	6,942,733	0.6	0.0
TP14	259,507	6,943,106	0.1	0.3
TP15	259,577	6,943,126	1.4	2.4

Test Pit Number	Eastings (m E)	Northings (m N)	Depth to Soil (m)	Depth to Rock (m)
TP16	259,668	6,942,323	0.2	2.1
TP17	259,611	6,942,260	0.1	0.3
TP18	259,714	6,942,238	0.5	1.3
TP19	259,732	6,942,282	0.15	1.4
TP20	259,665	6,942,240	0.2	0.4

Figure 10: Test Pit Locations

2.3.9.7 GSI - November 2024-February 2025

A total of six (6) boreholes were conducted on the existing IWLTSF (Stage 2 and 3) embankment and downstream between 25th November 2024, and 03rd February 2025, to the maximum depth of 54.0 m. A summary of the borehole is presented in Table 13. The borehole locations are presented in Figure 11.


Table 13: Summary of Borehole Material

Test Pit Number	Eastings (m E)	Northings (m N)	Depth to Soil (m)	Depth to Weathered Zone (m)	Depth to Fresh Rock (m)
BH01	259,711.9	6,943,073.9	2.0	25.3	34.5
BH02	259,807.2	6,942,935.6	9.0	40.4	45.8
BH03	259,852.0	6,941.827.0	2.9	31.2	39.0
BH04	259,761.8	6,941,939.4	19.8*	29.2	47.5
BH05	259,618.6	6,941,931.7	15.5*	(*	27.0
BH06	260,235.6	6,940,355.8	13.9*	24.4	40.3

Revision No: 0

Figure 11: Borehole Locations (November 2024 - February 2025)

2.3.9.8 Interpreted Subsurface Conditions

Based on the previous GSIs the typical sub-soil stratigraphy across the IWLTSF site is understood to comprises a surficial cover of transported colluvial soils, comprising unconsolidated surficial deposits dominated by sandy, gravelly and silty soil. Across parts of the IWLTSF storage basin, this layer is underlain by a surficial layer of weathered calcrete, occasionally interbedded with basalt. In other areas, the surficial cover of transported colluvial soils is directly underlain by a layer of near surface competent basalt rock formations comprising a mixture of cobbles and boulders.

In localised areas where the surficial calcrete layers are broken through, underlying colluvial soils can be uncovered comprising sandy, gravelly and clayey soils which can be interbedded with some gypsum crystals. These soils are typically encountered for a couple of metres underlying the surficial calcrete layers with maximum depths of approximately 4.0 m. In areas the soils can also occur with an interbedded mixture of basalt cobbles and boulders with varying weathering. Along the eastern most ridge of the IWLTSF site (northeast of the Vanguard Pit) the surficial colluvial soils are underlain by a near surface layer of residual duricrust (hardpan) comprising of variably (iron) cemented soil.

The near surface competent ground comprising basalt rock formations or hardpan duricrust are typically present in areas upgradient of the IWLTSF storage basin, to the north, west and southwest, and typically underlay the majority of the IWLTSF embankment structure.

The colluvial soils which underly the weathered calcrete is typically located in lower lying areas across the eastern portion of the IWLTSF storage basin. These low-lying areas within the storage basin ultimately approach two drainage channels at the northeast and southeast corners of the IWLTSF embankments, which are understood to overly ancient paleochannel formations. The ground conditions across the paleochannel formations contrast the broader sub-surface conditions identified across the IWLTSF area identified during the original GSI programmes.

The most recent GSI programme conducted between November 2024 and February 2025, involved targeted diamond borehole drilling within these ancient paleochannel features, downstream and within the existing embankments. The interpretation of the borehole data indicates that the stratigraphy across these paleochannels typically comprise:

A surficial layer of colluvial soils; overlying

Revision No: 0

- Residual duricrust (hardpan) of variably iron-cemented soil (present only at the northeast paleochannel); overlying
- An extremely weathered saprolite zone of very stiff to very hard clay; overlying
- Saprock of highly to moderately weathered basalt rock; overlying
- · Competent basalt bedrock.

The overall extent of the weathering profile across the paleochannels is extensive, with fresh competent bedrock encountered at approximately 35 m to 40 m and 38 m bgl at the northeast and southeast paleochannels respectively. Based on GSI data, the weathering profile is more extensive to the southeast, however, both areas are in stark contrast to the sub-surface conditions which form the foundation for the majority of the IWLTSF embankment foundations.

2.3.9.9 Laboratory Testing

2.3.9.9.1 GSI November - December 2020

Laboratory testing was carried out, from the GSI work carried out between the 30th of November and 7th of December 2020, on selected disturbed samples recovered from test pits and boreholes across the site in order to characterise the materials for design and construction purposes. The testing was carried out by a NATA accredited laboratory in accordance with Australian Standards and comprised the following:

- Particle Size Distribution (PSD) with Hydrometer (AS 1289 3.6.3, 3.5.1 and 2.1.1);
- Atterberg Limits (AL) with Linear Shrinkage (AS 1289.2.1.1, 7.1.1, 3.1.1, 3.2.1 and 3.4.1);
- Standard Maximum Dry Density (SMDD) (AS 1289.5.1.1);
- 8 Stage Oedometer with Unloading (AS 1289 6.6.1);
- Falling Head Permeability (AS 1289 6.7.2);
- Emerson Class (AS 1289.3.8.1); and
- Pinhole Dispersion (AS 1289.3.8.3).

A summary of the laboratory test results is presented below in Table 14.

Table 14: Summary of Laboratory Testing (November - December 2020)

		PSD			ii.	w 5	Phy	sical Paramet	ers		y 8	
Sample Number	Fines (<75 um)	Sand (>75 um)	Gravel (>2 mm)	Liquid Limit	Plastic Limit	Plastic Index	Linear Shrinkage	Maximum Dry Density	Optimum Moisture Content	Pinhole Dispersion	Emerson Class	Permeability (Remoulded 95% SMDD)
	%	%	%	%	%	%	%	Vm³	96	No.	No.	m/s
TSF-TP02_1.30_4.00	21.4	44.2	34.4	45.45	31.78	13.67	5.78	1.70	20.0	31	- 1	
TSF-TP03_1.80_4.20	28.5	43.7	27.8	47.76	37.88	9.89	3.03	1.75	16.5		E	22
TSF-TP09_0.90_1.80	31.4	44.5	24.1	58.02	35.56	22.45	7.19	1.80	15.0	1 =		
TSF-TP09_1.80_4.10	54.6	27.7	17.7	61.92	41.11	20.81	13.45	1.49	31.0	24	12	524
TSF-TP11_1.20_2.10	27.9	43.6	28.5	52.21	37.23	14.98	6.58	1.75	16.5	Eg .		Eg.
TSF-TP17_1.90_4.00	43.0	30.7	26.3	50.56	41.28	9.28	8.52	1.65	17.5	=1	ia)	
TSF-TP20_1.80_4.20	36.5	39.9	23.6	50.41	34.95	15.47	9.56	1.51	24.5	=1	r=	=1
BH-3A_1.00_1.50	85.8	14.0	0.2	69.47	39.25	30.23	18.55	1.50	21.0	=:	5	5.7E-8
BH-3A_2.45_3.00	93.0	7.0	0.0	77.99	38.79	39.2	20,74	1.60	17.5	PD2		7.9E-8
BH-3A_4.00_4.50	84.7	13.9	1.4	82.63	46.09	36.55	22.28	1.55	17.0	=	5	4.0E-8
BH-3A_5.50_6.00	87.1	11.8	1.1	70.73	41.48	29.25	19.52	1.65	17.0	PD2	ķ.	9.2E-8
BH-6_0.45_0.80	75.7	22.3	2.0	60.72	46.11	14.61	12.21	1.40	27.0		5	2.5E-8
BH-6_2.00_2.50	95.5	4.1	0.4	76.44	44.87	31.57	17.48	1.55	19.0	ND1	E	5.2E-8

2.3.9.9.2 GSI November 2024 - February 2025

Laboratory testing is currently in progress for the GSI works carried out between 25th of November 2024 and 3rd of February 2025 on selected disturbed and undisturbed core samples and SPT samples recovered from boreholes on the existing IWLTSF (Stage 2 and 3) embankment and downstream in order to characterise the materials for design and construction purposes.

Samples from three (3) boreholes drilled downstream of the existing IWLTSF embankment have been completed, while testing of samples from the remaining three (3) boreholes on the existing embankment is ongoing, with results expected by early April. The testing is being conducted by a NATA-accredited laboratory in accordance with Australian Standards and includes the following:

- Particle Size Distribution (PSD) with Hydrometer (AS 1289 3.6.3, 3.5.1 and 2.1.1);
- Atterberg Limits (AL) with Linear Shrinkage (AS 1289.2.1.1, 7.1.1, 3.1.1, 3.2.1 and 3.4.1);
- Consolidated Undrained Triaxial (CUTX) (AS 1289.6.4.2);
- Unconsolidated Undrained Triaxial (UUTX) (ASTM D2850);
- Oedometer Consolidation (AS 1289.6.6.1);
- Triaxial Permeability (AS 1289.6.7.3).

A summary of the completed test results is presented below in Table 15.

Date: 25 March 2025

Revision No. 0

Table 15: Summary of Laboratory Testing (November 2024 - February 2025)

	p	SD		ä	Physical Parameters					CUTX		UUTX
Sample Number	Fines (<75 um)	Sand (>75 um)	Gravel (>2 mm)	Liquid Limit	Plastic Limit	Plastic index	Linear Shrinkage	Triaxial Permeability	Undrained Shear Angle (Stage 1 and Stage 3)	Undrained Cohesion (Stage 1	and Stage 3)	Undrained Shear Strength
	%	96	%	%	%	%	%	m/s	19.	kF	a	kPa
BH01_CB1_2.00_3.00	14.5	16	=	32	1341	E	=	2.03E-7	32.21	15.	15	81
BH01_SPT02_3.00_3.45	37.2	52.1	10.7	41.26	23.07	18.19	9.09	le l	*	5	=	
BH01_UDS02_4.95_5.30	52.7	53.4	0.7	43.20	19.92	23.28	11.68	7.58E ⁻⁸	31,80	34	13	127.5
BH01_CB3_8.60_8.80	19.6	45.4	35.0	36.36	24.09	12.26	6.21	1.81E-9	32.21	21	17	186.5
BH01_CB04_11.00_12.00	45.6	29.8	24.6	36.95	22.48	14.46	7.17	97	*	-		-
BH01_16.00	150	7625	75	S21	328	32	52	Œ	39,69	22.72	249.5	
BH01_CB5_14.00_24.00	43.8	50.5	6.7	54.32	22.97	31.35	15.61	5.36E ⁻⁷	3	1=1	E)	
BH02_UDS02_9.50_9.79	36.0	56.1	7.9	62.23	35.86	26.37	13.14	3.07E-8	53.59	30	96	107.5
BH02_UDS03_11.00_11.39	54.4	44.6	1.0	52 48	32.26	20.21	10.54	2.35E-8	27 02	30.49	301	
BH02_UDS04_12.50_12.95	51.0	48.0	1.0	58.88	33.76	25.12	12.56	1.97E-7	33.82	62.32	120	
BH02_UDS05_14.00_14.45	58.1	39.2	2.7	76.63	34.62	42.02	20.71	6.13E-8	36.13	50.83	255.5	
BH02_SPT10_16.50_16.95	38.1	34.2	3.9	54.49	23.38	31.11	15.16	Œ	N	월	20	
BH03_UDS02_5.00_5.45	46.1	53.4	0.5	60.88	42.21	18.67	9.17	6.67E-8	31,38	101	.28	144
BH03_UDS04_8.00_8.45	80.7	19,2	0.1	77.84	37.67	40.17	20.42	3.23E-8	27.92	27.	72	100.5
BH03_UDS06_11.00_11.25	47.7	52.2	D.1	56.05	23.04	33.01	16.45	0.96E-8	27.92	33.	03	149.5
BH03_UDS08_14.00_14.45	69.2	30.5	0.3	68.61	32.37	36.24	18.39	2.45E-8	29.68	162.93	300	

2.3.9.10 Seismic Condition

In the absence of any site-specific Probabilistic Seismic Hazard Assessment (PSHA) information, the publicly available Atlas of Seismic Hazard Maps of Australia (Geoscience Australia 2018) has been referenced as part of this report. For the IWLTSF, the 1:2,000-year (ANCOLD High C SEE) ARI bedrock PGA is estimated to be 0.045 g. The design bedrock PGA has been factored from the 500-year bedrock PGA of 0.020 g.

Ground shaking motion can be amplified or attenuated as it travels from the bedrock surface to the ground surface, and the degree of amplification or attenuation can be quantified through a site response analysis using software such as Oasys Siren or Geomotions SHAKE2000 in conjunction with multiple spectra-matched earthquake time histories and is typically undertaken as part of a PSHA.

In the absence of a PSHA with site response analysis findings, an approximate estimation of the ground surface motion considering soil amplification/attenuation effects can be done by referencing the characteristic natural period of the soil cover overlying bedrock against the design uniform hazard spectrum provided in the Atlas, and the corresponding spectral acceleration is taken to represent the ground surface PGA accounting for such effects. For this approximation given that the IWLTSF is constructed overlying up to approximately 36.0 m of laterite and saprolite extremely weathered materials, overlying rigid rock, the soil effect factor is taken as 1.9.

Besides soil cover influence on the bedrock ground motion, the reflection and diffraction of seismic waves as they reach the IWLTSF slope surfaces can also cause further amplification of ground motions within soils close to the slope surface and is referred to as topographical amplification. Eurocode 8 Designs of structures for earthquake resistance Part 5: Foundations, retaining structures and geotechnical aspects and the New Zealand Transport Agency report NZ TA 613 Seismic design and performance of high cut slopes provides recommendations for topographical amplification factors to be applied to the bedrock PGA on top of soil effects.

Accordingly, a topographical amplification factor of 1.2 is deemed appropriate for the slope geometry of the IWLTSF and has been considered as such in this report. Sections 4.7.2.3 and 4.7.2.4 detail the horizontal acceleration coefficient calculated based on these factors.

2.4 Retaining Structure Properties

The IWLTSF Stage 4 embankment is proposed to be constructed using mine waste, specifically Zone 3A and Zone 3B material sourced from underground mine waste, compacted in lifts through traffic compaction.

Zone 3B will form the bulk of the downstream embankment and will be constructed in maximum 1.0 m traffic-compacted lifts. Following this, Zone 3A will be placed in maximum 0.5 m traffic-compacted lifts. The upstream batter, designated as Zone 3C, will be constructed using transitional material, including historic Vanguard mine waste and borrow pit stockpiles.

The upstream embankment face is proposed to be HDPE-lined. As part of the HDPE liner installation the embankment face will first be lined with a mix of lateritic and saprolitic material, which will be roller-compacted (or constructed with another acceptable method) to create a suitable cohesive subgrade for the HDPE liner. A Bidim A24 geotextile (or equivalent) will then be installed over the subgrade to provide additional puncture protection.

Additionally, the Stage 4 embankment extension, extending across natural ground beyond the existing Stage 2 and Stage 3 embankments, will include a cutoff trench. The cutoff trench will be constructed with Zone 1 low permeability material.

2.4.1 Low Permeability Material – Zone 1

The cutoff trench is proposed to be constructed with low permeability material from obtained from suitable laterite sources available across the site. The cutoff trench is aimed to intercept lateral seepage through and beneath the embankments. The low permeability Zone 1 will be constructed in 300 mm lifts with a minimum required dry density of 95% SMDD and +/-2% OMC. Zone 1 low permeability material must meet the requirement listed in Table 16.

Table 16: Proposed Zone 1 Material Properties

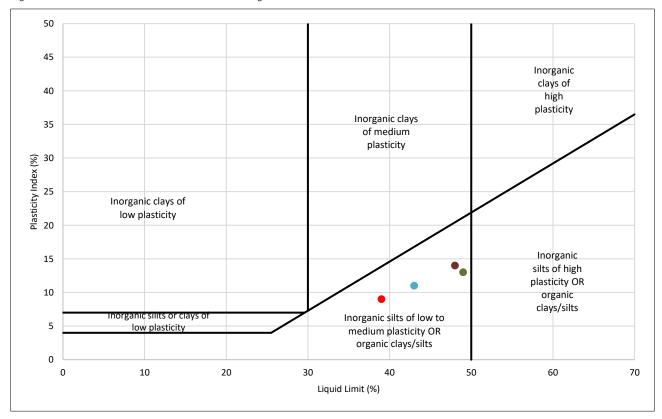
Property	Test Method	Requirement
Soil Classification	AS 1726	SM, SC, GM, GC
Particle Size Distribution	AS 1289	100 % passing 75 mm, > 15 % passing 75 μm
Compacted In-Situ Density	AS 1289	95% SMDD
Plasticity Index	AS 1289	< 20 %
Liquid Limit	AS 1289	< 50 %

2.4.2 HDPE Liner

The HDPE liner proposed for the embankment face is a 1.5 mm thick ATARFIL-HD TM-TMO M EVO AR grade, single-side texture – underside, UV and alkaline resistance or an equivalent alternative.

2.4.3 HDPE Subgrade

The HDPE subgrade is proposed to be constructed from material that has been stockpiled from borrow pit development within Stage 3 basin. This material comprises a mixture of lateritic soil, weakly cemented duricrust and extremely weathered saprolite. During compaction under machine load, oversize particles expected to break and form a cohesive subgrade that suitable for HDPE.


Date: 25 March 2025

Revision No: 0

liner installation. As an additional measure geotextile has been introduced to address any concerns related to oversize remain unbroken and poses a risk to puncture that mitigate by spreading pressure exerted by underlaying rock.

Based on initial sample collected from this borrow pit material and tested, the material characteristic identified are presented in Figure 12 and Figure 13.

Figure 12: Particle Size Index Test Results - HDPE Subgrade

Date: 25 March 2025

Revision No. 0

Particle Size (mm) 0.001 0.01 0.1 10 100 1000 100 90 80 70 Percent Passing (%) 60 50 40 30 **BB-TP06** 20 BB-TP10 **BB-TP16** 10 BR-TPO1 0 Sand Gravel Clay Silt Boulder Cobble Fine Medium Coarse Fine Medium Coarse

Figure 13: Material Particle Size Distribution Test Results - HDPE Subgrade

Given that the proposed HDPE subgrade minimum thickness is 200 mm, the subgrade does not contribute or affect the strength of the retaining structure. However, the parameters adopted for HDPE subgrade in the absence of laboratory testings and for the purpose of seepage and slope stability analysis are presented in Table 17.

Table 17: Proposed HDPE Subgrade Material Shear Strength Parameters

Material Allocation	Bulk Density	Effective Stre	ss Parameters	Total Stress Parameters		
манная Апосаноп	(kN/m³)	φ' (")	C' (kPa)	φ (°)	C or Su (kPa)	
Roller Compacted HDPE Subgrade	18	26	5	121	30	

2 4 4 Transitional Material – Zone 3C

Transitional material Zone 3C is proposed to be sourced from historic Vanguard mine waste and borrow pit stockpiles that were rejected for not being suitable for HDPE subgrade during borrow pit development within Stage 3 basin. These materials comprise extremely weathered material to highly weathered rock and duricrust. These materials observed to have distribution of particle size with sufficient fine that enhance binding and interlock when traffic compacted in 300 mm lifts and provide suitable zone that transition between fresh mine waste rock and HDPE subgrade.

Based on site observation of these two materials, the material characteristic adopted is presented in Table 18.

Table 18: PSD Observed in Proposed Zone 3C Material

Parameter	Value
% passing 200 mm	100
% passing 2.36 mm	50

Long term drained strength parameters are quantified by the effective friction angle. In the absence of laboratory testing, the effective friction angle is derived from anecdotal data. Cohesion is not considered in the long-term analyses as it should not be relied upon for geotechnical stability. The geotechnical shear strength parameter values for the traffic compacted transition Zone 3C forming the IWLTSF upstream batter of the embankment is summarised and presented in Table 19.

Revision No. 0

Table 19: Proposed Zone 3C Material Shear Strength Parameters

Material Allegation	Bulk Density	Effective Stre	ss Parameters	Total Stre	ss Parameters
Material Allocation	(kN/m³)	φ' (")	C' (kPa)	φ (*)	C or Su (kPa)
Traffic Compacted Zone 3C	20	34	0	:#/	4

Mine Waste - Zone 3A and Zone 3B

Waste rock material is produced at a rate of approximately 1.0 Mtpa. It is proposed that the waste rock material is hauled downstream of the proposed IWLTSF Stage 4 embankments for placement and compaction to progressively form the downstream zone of the IWLTSF embankments.

In the absence of laboratory test data, the expected mine waste particle size distribution is based on anecdotal data and prior experience using underground run of mine waste is presented in Table 20.

Table 20: Expected Mine Waste PSD

Parameter	Value
% passing 550 mm	95
% passing 270 mm	80
% passing 134 mm	60
% passing 47 mm	40
% passing 7 mm	20
% passing 1 mm	10

Long term drained strength parameters are quantified by the effective friction angle. In the absence of laboratory testing, the effective friction angle is derived from anecdotal data. Cohesion is not considered in the long-term analyses as it should not be relied upon for geotechnical stability. The geotechnical shear strength parameters of mine waste in the downstream zone of the IWLTSF Stage 4 embankment, evaluated based on the different compaction methods used for Zone 3A and Zone 3B are summarized in Table 21.

Table 21: Mine Waste Shear Strength Parameters

ASSOCIATION CO.	2 - 1200 M	ar souther the second of	Effective Stres	s Parameters	Total Stress	Parameters
Material Allocation	Compaction Method	Bulk Density (kN/m³)	φ' (")	C' (kPa)	ø (°)	C or Su (kPa)
Zone 3A Waste Rock	Traffic Compacted 0.5 m Lifts	22	36	0		163
Zone 3B Waste Rock	Traffic Compacted 1.0 m Lifts	21	35	0		

3. Tailings Properties

3.1.1 Laboratory Testing

Representative primary tailings samples were provided to E-Precision laboratory in Perth for geotechnical testing. The laboratory test schedule for the tailings samples included.

- Particle Size Distribution (PSD) with hydrometer (AS 1289 3.6.3, 3.5.1 and 2.1.1).
- Atterberg limits test (AS 1289 2.1.1, 3.1.1, 3.1.2, 3.2.1, 3.3.1, and 3.4.1).
- Air-drying tests (not an Australian Standard Test); and
- Settling tests (undrained and drained) (not an Australian Standard Test).

3.1.2 Primary Tailings Test Results

The results of the PSD, SPD and AL testing for the primary ore tailings are presented in Table 22. The results of the tests are attached as Appendix E.

Table 22: Tailings Characterisation Test Results

Parameter:	Value
% finer than 75 µm	84.7
% finer than 2 µm	17.2
Soil Particle Density (Vm3)	2.99
Liquid Limit (%)	31.27
Plastic Limit (%)	25.68
Plasticity Index (%)	5.59
Linear Shrinkage (%)	1.72

Settling tests (undrained and drained) and air-drying tests have been executed at 55% and 60% solids to assist with the assessment and evaluation of the use of a tailings thickener in the processing of the tailings.

The objective of the settling tests is to monitor the tailings settlement and the development of clear supernatant water in both undrained and drained conditions. For the drained settling tests, water was removed through the base of the test cylinder and measured on top of the tailings where supernatant water developed. By monitoring the underdrainage and supernatant, the percentage of water recovered with respect to the initial volume of water in the slurry can be determined.

These measurements provide an indication of how much water will be available for recovery and the speed at which this water is released. The results of the settling and air-drying tests are summarised in Table 23. The laboratory results in Appendix E show the available supernatant water with respect to the total water discharged to the tailings storage.

Table 23: Tailings Settlement and Drying Results

Parameter	Value – 55% Slurry Density	Value – 60% Slurry Density
Cv at 12.5 kPa (m²/yr)	46.4	53.8
Permeability at 12.5 kPa (m/s)	1.3 E-6	1.5 E-6
Cv at 50.0 kPa (m²/yr)	45.0	52.6
Permeability at 50.0 kPa (m/s)	3.1 E-7	2.9 E-7
Undrained Supernatant Water (%)	24.5	21
Undrained Density (t/m³)	1.4	1.52
Drained Supernatant Water (%)	20	13
Drained Density (t/m ⁵)	1.52	1.82
Underdrainage Water (%)	6	8
Air Drying Density (Vm³)	1.36	1.48
Air Drying Time (days)	4.8	4.8

The points to note from the laboratory results are:

- Oedometer test results indicate that the tailings consolidate relatively quickly (Cv of 45 m²/yr to 50 m²/yr), although the consolidated permeabilities remain high. At an assumed maximum overburden stress of 50 kPa the permeability of the tailings is estimated to be approximately 3.0 E-7 m/s. In practice this value will likely vary between 1.0 E-8 m/s and 1.0 E-9 m/s as consolidation is accelerated by water removal through the underdrainage and decant systems, and saturation of the fractured bedrock.
- Supernatant water available for recovery from the undrained settling test (i.e. no underdrainage installed) for slurry
 densities of 55% solids and 60% solids is approximately 24.5% and 21%, respectively within 24 hours.
- The dry densities at the completion of the undrained tests are 1.4 t/m³ for 55% solids and 1.52 t/m³ for 60% solids. In
 the semi-arid environment of the project location, it is likely that very little water would be recovered after 24 hours,
 except during the cooler months of the year when evaporation rates drop water recovery will be significantly higher.
- Supernatant water available for recovery from the drained settling test (i.e. underdrainage installed) for slurry densities
 of 55% solids and 60% solids peaks at 20% and 13%, respectively within 24 hours.
- The dry densities at the completion of the drained settling tests are 1.52 t/m³ for 55% solids and 1.82 t/m³ for 60% solids. In the semi-arid environment of the project location, it is likely that very little water would be recovered after 24-hours, except during the cooler months of the year when evaporation rates drop significantly, and supernatant water recovery rates will be high.
- Underdrainage water, from the drained settling test, available for recovery from both 55% solids and 60% solids, within 24-hours, peaks at 6% and 8%, respectively within 24 hours. It should be noted that for both tests, supernatant water can flow down the inside of the cylinder after approximately 24-hours. This does not mean that additional water would be recovered from the underdrainage beyond this time, as the cylinder provides a flow path which would not exist in operation; and
- The air-drying test on the tailings at 55% solids provides an estimated final dry density of 1.36 t/m³ after 4.8 days at 50°C.
 The air-drying test on the tailings at 60% solids provides an estimated final dry density of 1.48 t/m³ after 4.8 days at 50°C.

3.1.3 Tailings Design Parameters

The IPTSF (Stage 1), IWLTSF (Stage 2 and Stage 3) and future proposed IWLTSF raises will provide tailings storage capacity for the currently projected life of asset tailings production. Due to the downstream construction methodology of the IWLTSF embankments, the strength of the tailings is not relied upon for stability and no upstream raises are currently planned. Assumed tailings parameters are shown in Table 24.

Table 24: Assumed Tailings Parameters

Parameter	Units	Value
In-situ dry density (assumed average)	t/m³	1.40
Shear strength for slope stability assessment	kPa	10
Permeability	m/s	1x10 ⁻⁵ to 1x10 ⁻⁷
Slurry Density	% (w/w)	55

No rheological test work was carried out as part of this design. Furthermore, design of mechanical infrastructure is not within the scope of this study.

3.1.4 Geochemical Characterisation of Tailings

Earlier 'static' testing (i.e. 'whole-rock' assays and tests) on variability tailings samples indicated that Total Sulphur is not expected to exceed 3.1% (average of 2.41% across 6 samples). Detailed testing of a tailings sample derived from a life-of-mine ore composite has a Sulphide-S value of 2.8%, and a capacity to buffer near pH 7 of 10 kg H2SO4/tonne chiefly reflective of trace amounts of calcite. The sulphide mineral suite comprises mostly pyrrhotite with subordinate pyrite. The tailings classify as Potentially Acid Forming (PAF).

Preliminary results from 'kinetic' (weathering) testing conducted at 30°C, and at an intermediate moisture content of around 15% w/w, corresponding to conditions near-optimal for biogeochemical weathering. When kept constantly moist, acidification of tailings occurred after approximately 80 weeks (i.e. roughly 18 months) during which solubility of minor elements (metals and metalloids) was tightly constrained. However, when subjected to weekly desiccation, no acidification occurred during the full period of testing, and the tailings are predicted to remain circum-neutral (pH 6-8) for up to approximately 4 years had testing continued.

In terms of the timing of routine activities during the IPTSF Stage 1 and subsequent stage IWLTSF Stage 2 and Stage 3 operation (e.g. cycle times determining exposure periods for dormant beaches), the lag time is an important design element. Based on GCA's completed test work, the lag time for the operating IPTSF Stage 1, Stage 2, and Stage 3 is now set at 18 months. This is an update from the previously defined lag time of 3 months stated in the WSD, IPTSF, TSF and IWLTSF Detailed Design Report (Ref. P19-11-PR-14 Rev. 1, dated 10 November 2022).

3.1.5 Implications for Tailings Management

The initial tailings test results indicated that the tailings settle quickly and achieve a high in-situ dry density (between 1.5 t/m³ and 1.8 t/m³). It should be noted that laboratory test results represent ideal conditions and do not take into account segregation during deposition, seepage losses, as well as the impacts of water recovery through the decant system.

Although the dry density determinations from the settling and airdrying tests represent values obtained without consolidation of the tailings, a conservative minimum in-situ dry density of 1.40 t/m³ was assumed initially for the IWLTSF Stage 4 and future stages. On this basis the water return from the IWLTSF Stage 4 and future stages are expected to be in the range of 40% to 55% of the slurry water in order to achieve, or exceed, the target in-situ dry densities and mitigate seepage.

4. TSF Design

4.1 Introduction

The Detailed Design of IWLTSF Stage 4 North and Stage 4 South has been aimed at optimising tailings storage capacity and maximising tailings density, maximising water recovery, and reducing the environmental and societal impacts of the facility. The design of the IWLTSF Stage 4 utilise the details discussed in Sections 4 and 5 and the guiding principles in the following standards/guidelines:

- DMP (now DEMIRS), Guide to Departmental requirements for the management and closure of tailings storage facilities (TSFs), 2015
- ANCOLD, Guidelines on the Consequence Categories for Dams, 2012
- ANCOLD, Guidelines of Tailings Dams, Planning, Design, Construction, Operation and Closure, 2019.
- ANCOLD, Guidelines for Dams and Appurtenant Structures for Earthquakes, 2019
- DMP (now DEMIRS), Code of Practice Tailings Storage Facilities in Western Australia, 2013.
- DMP (now DEMIRS), Guide to the Preparation of a Design Report for Tailings Storage Facilities (TSFs), 2015.
- DMP (now DEMIRS), Guidelines for Preparing Mine Closure Plans, 2015

4.2 Tailings Storage Facility Design

The objectives of the design of the IWLTSF Stage 4 North and Stage 4 South is to optimise tailings storage capacity, maximise tailings density, achieve water recovery in the range of 55% of the slurry water, reduce seepage and minimise the environmental and societal impact of the facility. Tailings geochemistry test work has indicated that the tailings are PAF, therefore the design has also given consideration to the lag time, ensuring that previously deposited tailings are not exposed longer than 18 months before being covered with fresh tailings.

The embankment geometry and raise heights for Stage 4 has been determined based on constructability and the availability of on-site materials in the required volumes. One of the primary driving factors for the design height is the limitation on slope length for HDPE liner installation, ensuring the stability of the liner by minimising slippage risk and preventing long-term tension-induced damage to the liner.

The IWLTSF Stage 4 North and Stage 4 South embankment will be constructed using mine waste (Zone 3A and Zone 3B) sourced from underground mining waste, compacted in lifts through traffic compaction. Zone 3B will form the bulk of the downstream embankment and will be constructed in maximum 1.0 m traffic-compacted lifts, followed by Zone 3A in maximum 0.5 m traffic compacted lifts. The upstream batter, Zone 3C will be constructed using transitional mine waste material, including historic Vanguard mine waste and other suitable mine waste materials.

The underground development works are expected to produce mine waste at a rate of 1.0 Mtpa, providing sufficient material for embankment earthworks at minimum construction widths. However, suitable transitional mine waste material is limited across the project area. Consequently, the embankment crest width has been designed to the minimum required to meet material availability constraints.

The design has included a 2.0 m crest width for Zone 3C, with widths of 6.0 m for Zone 3A and 5.6 m for Zone 3B respectively, resulting in a total minimum crest width of 13.6 m. The total crest width of the Zone 3B layer has been based on a minimum construction width, with a downstream slope modification to 1V:1.25H above RL 484.5 m (Stage 2 and Stage 3) to facilitate progressive construction of the Stage 4 raise. The Zone 3B downstream slope below RL 484.5 m is shallower at 1.0V:2.0H to enhance global embankment stability.

The HDPE subgrade construction will follow the approach used in previous stages, with a minimum thickness of 200 mm. The upstream embankment face will be lined with mix of lateritic and saprolitic clay material, roller-compacted (or compacted and smooth by an acceptable method) to form a suitable cohesive subgrade for the HDPE liner. The HDPE subgrade will then be covered with Bidim A24 geotextile (or an equivalent material) to provide additional puncture protection before HDPE liner

installation. Seaming of the liner will be carried out to connect with the existing liners on the Stage 2 and Stage 3 crests, ensuring a continuous barrier between the tailings and the underlying embankment. An anchor trench will be constructed at the crest and the HDPE liner will be keyed in for stability.

The Stage 4 embankment extension, extending across natural ground beyond the existing Stage 2 and Stage 3 embankments, will include a cutoff trench and toe drain that integrate with the existing Stage 2 and Stage 3 cutoff trenches and underdrainage network. The HDPE liner in this section will be anchored at the bottom into the cutoff trench.

IWLTSF Stage 4 decant water recovery will be facilitated by the construction of a rock ring with access provided via a decant causeway extending from ridgeline to the south of the IWLTSF. The rock ring construction has been postponed from Stage 3 and repositioned from original design locations based on an updated understanding of the surrounding ground conditions and elevations identified through the removal of the nearby Vanguard pit waste dump.

Additionally, a buttress will be constructed at the downstream toe of the IWLTSF embankment located at the southeast corner of the facility, where the Stage 3 embankment has been built to a minimum 10.0 m crest width. This buttress is designed to reinforce the embankment, ensuring compliance with the recommended minimum Factor of Safety (FoS). It will be constructed across the identified paleochannel extents, through the existing downstream borrow area at an elevation of RL 468.0 m, with a maximum height of 5.0 m and a downstream slope of 1.0:2.0 (V:H).

The Stage 4 embankment is proposed to be constructed in two phases: Stage 4 North and Stage 4 South, following the same approach as Stages 2 and 3, to ensure the continuous operation of the IWLTSF during construction.

The Stage 4 North will be constructed after the completion of Stage 2's intermediate operation, once Stage 3 is commissioned and during its operational period. During this time, tailings will be pushed from the Stage 3 south and eastern embankments toward the IPTSF, keeping the pond positioned close to the IPTSF.

Upon the conclusion of Stage 3's operation, when the remaining storage in Stage 2 is resumed for operation, Stage 4 South will be constructed. During this period, tailings will be pushed from the Stage 4 North across the north and eastern embankments towards the IPTSF and rock ring, while the pond is ultimately navigated towards the rock ring.

Since the timeline for Stage 4 South construction and CCIR approval cannot be completed within the remaining storage life of Stage 2, Stage 4 North will need be operated at an intermediate level until Stage 4 South is ready for commissioning. The available period for the construction and CCIR approval of Stage 4 North is estimated to be 14 months, spanning from the conclusion of Stage 2's intermediate storage to the end of Stage 3. Similarly, the available period for the construction and CCIR approval of Stage 4 South is estimated to be 6.5 months, from the conclusion of Stage 3 to the completion of Stage 4's intermediate storage.

The intermediate storage is designed to accommodate a 1:100-year annual exceedance probability (AEP) 72-hour storm event while maintaining required freeboards within the IWLTSF and directing the decant pond toward the rock ring. Additionally, the final configuration of IWLTSF Stage 4 provides capacity for the 1:100-year annual exceedance probability (AEP) 72-hour storm event, incorporating DMP required freeboard and ANCOLD additional freeboard.

The IWLTSF Stage 4 North (footprint in red outline) and Stage 4 South (footprint in green outline) configuration are shown in plan view in Figure 14, while embankment geometries are presented in cross-sections from Figure 15 to Figure 17. The IWLTSF Stage 4 detailed design drawings are included in Appendix A.

Figure 14: IWLTSF Stage 4 General Arrangement (Plan)

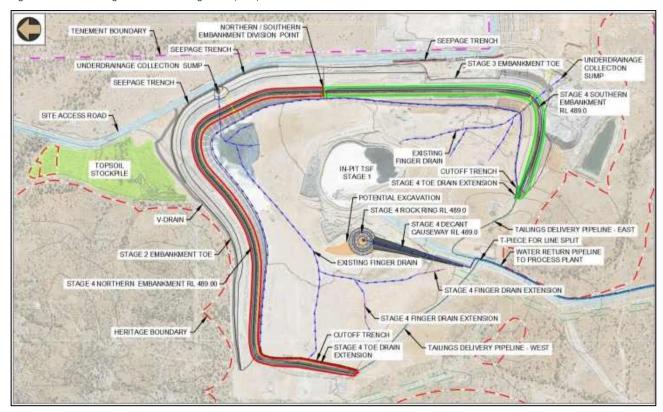


Figure 15: Typical Section IWLTSF Stage 4 North Embankment

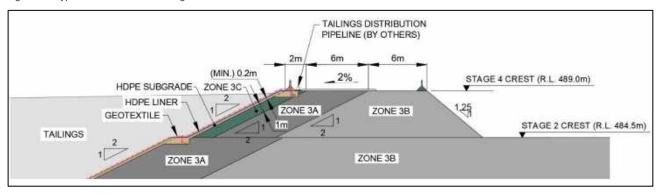


Figure 16: Typical Section IWLTSF Stage 4 South Embankment

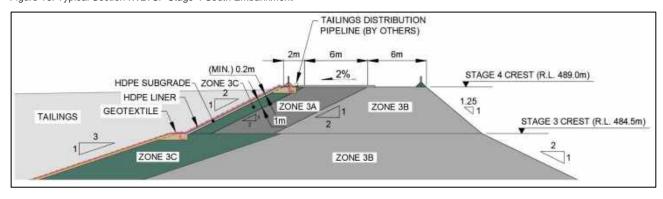
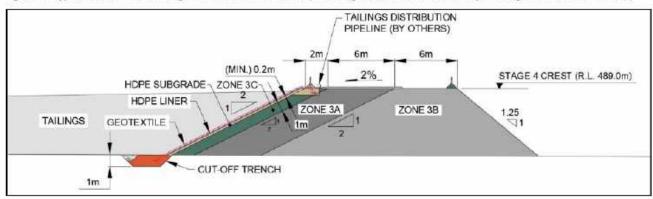



Figure 17: Typical Section IWLTSF Stage 4 Embankment Extension (Extending Across Natural Ground Beyond Stage 2 and 3 Embankments)

4.3 Tailings Management

IWLTSF Stages 4 has been designed with consideration to optimise tailings storage capacity and reduce the geotechnical risks associated with embankment stability and seepage. In addition to geotechnical design, due consideration has been given to the geochemical nature, especially reactivity of the mine tailings.

Based on the kinetic testing conducted on tailings by GCA, the PAF tailings should be characterised by a lag time of at least 18 months (see Section 3.1.4). As such, REC has undertaken tailings management planning through the different phases of the IWLTSF, including construction, commissioning, operation and closure, to ensure that tailings beach exposure times are limited to below the lag time for acidification.

The beach exposure times at the facilities closure correspond to the tailings drying time which will allow earthmoving equipment to traffic the tailings surface and place the required closure surficial cover. Based on REC's experience in the WA Goldfields, tailings derived from fresh rock ones (cf. clay rich oxide ones) typically develop the undrained shear strength required for heavy vehicle trafficking after a period of approximately 3 to 6 months.

A working platform of mine waste can be pushed from the embankment crest and worked around the facility following the spigot cycling route, while working towards the rock ring as the operational pond is removed and the tailings dry. As such, it is anticipated that beach exposure times of between 6 to 12 months may occur during the closure of the facility.

The calculated beach exposure times during the subsequent operational phase of the IWLTSF Stage 4 is presented in Table 25. A contingency of 25% has also been calculated, which accounts for unforeseen operational issues that may eventuate during operation of the facility.

Table 25: Design Beach Exposure Times

Stage 4 Operational Phase	Typical Operation Cycling time (months)	Contingency (+25%)	
WLTSF (Stage 4 North Intermediate Operation)	0.6	0.7	
IWLTSF (Stage 4 South Intermediate Operation)	0.4	0.5	
IWLTSF (Stage 4 Full Perimeter Operation)	1.0	1.3	

4.4 DEMIRS Classification

4.4.1 Hazard Rating

The facilities have been assessed in accordance with the DMP Code of Practice (DMP 2013, Table 1). The assessment concluded that a 'Medium' hazard rating should be assigned to the Stage 4 IWLTSF, as demonstrated in Table 26 (highlighted in grey). Additionally, the facilities were assessed according to the DMP Code of Practice (DMP 2013, Table 2), with maximum embankment heights of '> 15.0 m', the Stage 4 IWLTSF is classified as 'Category 1' facilities, as demonstrated in Table 27 (highlighted in grey).

Table 26: DMP CoP Hazard Rating System

	Hazard Rating				
Type of Impact or Damage	High	Medium	Low		
	E	xtent or Severity of Impact or Dama	ge		
Loss of human life or personal injury	Loss of life or injury is possible	Loss of life or injury is possible although not expected	No potential for loss of life or injury		
Adverse human health due to direct physical impact or contamination of the environment	Long-term human exposure is possible, and permanent or prolonged adverse health effects are expected	The potential for human exposure is limited, and temporary adverse health effects are possible	No potential for human exposure		
	Loss of numerous livestock is possible	Loss of some livestock is possible	Limited or no potential for loss of fivestock		
Loss of assets due to direct physical impact or contamination of the environment	Permanent loss of assets (e.g. commercial, industrial, agricultural and pastoral assets, public utilities and infrastructure, mine infrastructure) is possible and no economic repairs can be made	Temporary loss of assets is possible and economic repairs can be made	Limited or no potential for destruction or loss of assets		
	Loss of TSF storage capacity is possible and repair is not practicable	Loss of TSF storage capacity is possible and repair is practicable	Insignificant loss of TSF storage capacity is possible		
Damage to items of environmental, heritage or historical value due to direct physical impact or contamination of the environment	Permanent or prolonged damage to the natural environment (including soil, and surface and ground water resources) is possible	Temporary damage to the natural environment is possible	Limited or no potential for damage to the natural environment		
	Permanent or prolonged adverse effects on flora and fauna are possible	Temporary adverse effects on flora and fauna are possible	Limited or no potential for adverse effects on flora and fauna		
	Permanent damage or loss of items of heritage or historical value is possible	Temporary damage of items of heritage or historical value is possible	Limited or no potential for damage of items of heritage or historical		

Table 27: DMP CoP Category Rating System

Maximum Embankment or	Hazard Rating		
Structure Height (m)	High	Medium	Low
> 15.0	Category 1	Category 1	Category 1
5.0 - 15.0	Category 1	Category 2	Category 2
< 5.0	Category 1	Category 2	Category 3

4.4.2 IWLTSF Stage 4 Category

In accordance with the DMP Code of Practice (DMP 2013, table 2), the proposed IWLTSF Stage 4 classified as a "Category 1" facility as the TSF has a hazard rating of "Medium" and the embankment will be larger than 15 m in height.

4.5 ANCOLD Consequence Category

4.5.1 General

There are two Consequence Categories that need to be assessed as part of Tailings Dam design. These are the Dam Failure Consequence Category and the Environmental Spill Consequence Category. These are used to determine various design and operational requirements including design of spillways and for flood storage requirements.

4.5.2 Dam Failure Severity Level

In accordance with ANCOLD (2019) Guidelines, seven (7) damage type categories need to be assessed to determine the severity level/impact (Minor, Medium, Major and Catastrophic) of a potential facility failure or spill. In accordance with the Dam Severity Level impact assessment (ANCOLD 2019, Table 1), the proposed IWLTSF Stage 4 is anticipated to be of 'Medium' severity due to the impact of dam failure on business importance, as presented in Table 28. The assess rating is highlighted in grey.

Table 28: ANCOLD Dam Severity Level Rating System

Damage Type	Minor	Medium	Major	Catastrophic
Infrastructure (dam, houses, commerce, farms, community)	<\$10M	\$10M-\$100M	\$100M-\$1B	>\$1B
Business Importance	Some restrictions	Significant impacts	Severe to crippling	Business dissolution, bankruptcy
Public health	<100 people affected	100-1000 people affected	<1000 people affected for more than one month	>10,000 people affected for over one year
Social dislocation	<100 person or <20 business months	100-1000 person months or 20-2000 business months	>1000 person months or >200 business months	>10,000 person months or numerous business failures
Impact Area	<1 km²	< 5km²	< 20km²	> 20km²
Impact Duration	< 1 (wet) year	< 5 years	< 20 years	> 20 years
Impact on natural environment	Damage limited to items of low conservation value (e.g. degraded or cleared land, ephemeral streams, non-endangered flora and fauna). Remediation possible.	Significant effects on rural land and local flora & fauna. Limited effects on. A. Item(s) of local & state natural heritage. B. Native flora and fauna within forestry, aquatic and conservation reserves, or recognised habitat corridors, wetlands or fish breeding areas	Extensive rural effects. Significant effects on river system and areas A & B. Limited effects on: C. Item(s) of National or World natural heritage. D. Native flora and fauna within national parks, recognised wilderness areas, RAMSAR wetlands and nationally protected aquatic reserves. Remediation difficult.	Extensively affects areas A & B. Significantly affects areas C & D. Remediation involves significantly aftered ecosystems.

4.5.3 Dam Failure Population at Risk

The dam failure consequence category is adapted from the severity level assessment of damage and loss, combined with the Population at Risk (PAR). The PAR is defined as all people who would be directly exposed to floodwaters assuming they took no action to evacuate. No homes, businesses or recreational areas are located downstream of the IWLTSF. However mining personnel who may be present downstream, including those using the site access road, would be at risk in the event of a plausible failure. Based on this, the PAR for the IWLTSF is considered to be greater than 1 but less than 10 (ANCOLD PAR category of >1 to 10).

4.5.4 Dam Failure Consequence Category

Based on a dam failure severity level of "Medium" and a PAR of >1 to 10, the ANCOLD guidelines recommend the adoption of a 'Significant' Dam Failure Consequence Category rating, upgraded to a 'High C' (see Note 2) for purpose of design. Table 29 summarises the dam failure consequence category, the assess rating is highlighted in grey.

Table 29: ANCOLD Recommended Consequence Category (Table 2, ANCOLD 2019)

	Severity of Damage or Loss				
Population at Risk (PAR)	Minor	Medium	Major	Catastrophic	
<1	Very Low	Low	Significant	High C	
>1 to 10	Significant (Note 2)	Significant (Note 2)	High C	High B	
>10 to 100	High C	High C	High B	High A	
>100 to 1000	Note 1	High B	High A	Extreme	
>1000		Note 1	Extreme	Extreme	

Notes

4.5.5 Environmental Spill Consequence Category

The Environmental Spill Consequence Category is assessed by considering the effect of spilling dam water to the downstream environment (typically through the dam spillway during a flood event). The aerial extent of the spill impact will be significantly smaller than the area that would be affected in the event of a dam failure. The effect of spilling water into the environment from the IWLTSF is primarily driven by the geochemistry of the tailings solids and supernatant.

Water spilled from the IWLTSF under extreme weather events will be significantly diluted, and further diluted again given the downstream environment of the dam is also likely to be flooded. Therefore, the severity of impact on the natural environmental from environmental spills from the IWLTSF would be 'Minor'.

The PAR assigned to a dam spill from the IWLTSF is >1 to 10. The combined Dam Spill Consequence Category has been assessed as 'High C' (Note 2) for the IWLTSF at this stage of the design.

4.5.6 ANCOLD Design Criteria

The recommended design criteria for the IWLTSF Stage 4 have been adopted based on criteria detailed in ANCOLD (2019). The recommended design criteria for 'High C' consequence category facilities have been adopted for the IWLTSF Stage 4 Design criteria for IWLTSF Stage 4 is detailed in Table 30.

Table 30: ANCOLD Design Criteria

Parameter	IWLTSF Stage 4
Consequence Category	High C
Design Storm Event	1:100-year AEP, 72-hour event
Additional Freeboard	0.5 m
Wave Run-up Freeboard	Nil
Operating Basis Earthquake (OBE)	1:1,000-year AEP
Safety Evaluation Earthquake (SEE)	1:2,000-year AEP

^{1 –} With a PAR in excess of 100, it is unlikely Damage will be minor. Similarly, with a PAR in excess of 1,000 it is unlikely Damage will be classified as Medium.

^{2 –} Change to "High C" where there is the potential of one or more lives being lost. The potential for loss of life is determined by the characteristics of the flood area, particularly the depth and velocity of flow.

4.6 Freeboard

4.6.1 DMP Freeboard

The design of the IWLTSF (Stage 4) has followed the freeboard requirements stipulated by the DMP guidelines (2015) for TSFs. The freeboard requirements vary based on whether a water pond is normally located away from or against a perimeter embankment. Additionally, for a TSF with a water pond normally located against a perimeter wall, the freeboard requirements vary depending on whether the facility has an upstream catchment or not.

These requirements comprise three distinct elements, namely: operational freeboard, beach freeboard and total freeboard. These requirements are graphically illustrated in Figure 18, and are summarised in Table 31, where:

- Operational freeboard is the height difference between the tailings beach and the embankment crest;
- Beach freeboard is the level difference between the tailings beach and the decant water level plus allowance for the 1 in 100-year average recurrence interval (ARI), 72-hour rainfall event, and;
- Total freeboard is the sum of the operational freeboard and beach freeboard plus allowance for the 1 in 100-year average recurrence interval (ARI), 72-hour rainfall event.

Figure 18: Freeboard Definition - Pond Located Away Penmeter Embankment (DEMIRS 2019)

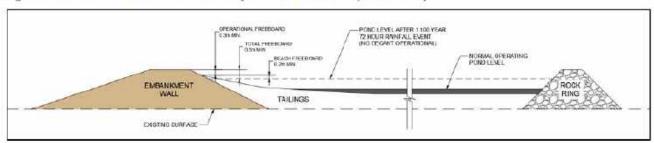


Table 31: DMIRS Freeboard Requirements

Parameter	Water Pond Away
Operational Freeboard	0.3 m
Beach Freeboard	0.2 m
Total Freeboard (minimum)	0.5 m

4.6.2 ANCOLD Freeboard

The design of the IWLTSF Stage 4 has followed the freeboard requirements stipulated by the ANCOLD (2019) guidelines. These requirements comprise the following distinct elements.

Spillway Freeboard:

- · Freeboard is the available freeboard above the spillway flood depth; and
- Flood spill depth is the depth of water flow over the spillway for the design flood event.

Contingency Storage Allowance:

- Operational freeboard is the height difference between the tailings beach and the embankment crest/spillway invert level;
- Beach freeboard is the level difference between the tailings beach and the decant water level plus allowance for an
 extreme storm event;
- Total freeboard is the sum of the operational freeboard and beach freeboard plus allowance for an extreme storm event;
- · Additional freeboard is the allowance for further freeboard above the Extreme storage allowance, and
- Wave freeboard is the allowance for wave runup above the Extreme storage allowance.

Extreme Storage Allowance:

· Allowance for the storage of an extreme storm event to prevent spill from the dam.

Wet Season Storage Allowance:

Allowance for the storage of water which may conservatively be required to be stored on the tailings dam through a
combination of excess wet season rainfall runoff from the facility catchment and processing water which cannot be
extracted from the dam.

4.6.3 Recommended Freeboard

4.6.3.1 Freeboard Requirements Summary

A summary of the individual freeboard requirements based on DEMIRS and ANCOLD guidelines is presented in Table 34. The most conservative freeboard elements adopted for IWLTSF Stage 4 design are highlighted grey.

Table 32: Freeboard Requirements

Parameter	DEMIRS	ANCOLD
Facility Classification	Category 1	High C
Contingency Storage Allowance (Spillway)		
Spillway Design Flood (1:X-year AEP Design Flood)	Ħ	1:100,000 AEP
Spillway Wave Freeboard Allowance (1:X-year AEP Wind)	\$P	1:10 AEP
Contingency Storage Allowance (Total Freeboard)		
Operational Freeboard	0.3 m	Ð
Beach Freeboard	0.2 m	- 1
Additional Freeboard	监	0.5
Extreme Storage Allowance		
Design Storm Event (1:X-year AEP, X-hour event)	1:100 AEP, 72-hr	1:100 AEP, 72-hr
Wet Season Storage Allowance		
Wet Season Design Storage Allowance (1:X-year AEP) Runoff	Ħ	1:100 AEP wet season runoff

Wave run-up has not been considered for the IWLTSF Stage 4 as tailings beaching will ensure water is stored away from the perimeter embankments. Likewise, spillway freeboard has not been considered as IWLTSF Stage 4 design does not include a spillway. Based on the "High C" consequence category for the IWLTSF, an additional ANCOLD freeboard requirement is required on top of the design storm event for the facility design.

4.6.3.2 Freeboard Limits

In accordance with the classifications of the guidelines, the maximum operating pond level, operational freeboard, and design storm event volume for the IWLTSF Stage 4 was assessed. REC notes that the stormwater storage capacity is dependent upon the development of the beach slope achieved throughout operation. The tailings beach is assumed to have a combined slope profile; 1.5% over the first 150 m, followed by 1.0% for the next 300 m, 0.75% for the subsequent 500 m, and 0.5% for the remaining distance.

A summary of the freeboard limits and requirements for Stage 4 North and Stage 4 South, along with their sequencing order, is presented in Table 33. The maximum operating pond level, normal operating pond level, design storm event volume and freeboard levels for the IWLTSF Stage 4 are presented in Section 4.7.6.

Date: 25 March 2025

Revision No. 0

Table 33: Freeboard Limits and Requirements

Parameter	Stage 4 North Intermediate	Stage 4 South Intermediate	Stage 4 North & South (Remaining)
Facility Classification		***	39
ANCOLD	High C	High C	High C
DEMIRS	Category 1	Category 1	Category 1
Embankment Elevations		90	400
Embankment Elevation (RL m)	489.0	489.0	489.0
Contingency Storage Allowance			100
Tailings Operational Freeboard (DEMIRS minimum)	0.3 m	0.3 m	0.3 m
Beach Freeboard (DEMIRS minimum)	0.2 m	0.2 m	0.2 m
Additional Freeboard (ANCOLD 2019)	0.5 m	0.5 m	0.5 m
Total Freeboard (Minimum to Max. Operating Pond)	1.0 m	1.0 m	1.0 m
Extreme Storage Allowance		ALC: V	722
Design Storm Event (1:100-year AEP, 72-hour event)	0.26	0.26	0.26
Normal Operating Pond		-	
Minimum Normal Operating Pond Freeboard (m)	1.26	1.26	1.26
Maximum Normal Operating Pond (RL m)	483.24*	487.74	487.74

Note: * Calculated based on Stage 3 embankment elevation (RL 484.5 m), with Stage 4 South under construction and containment not yet provided to the full Stage 4 embankment elevation (RL 489.0) on south

4.7 Modelling and Design Assessments

4.7.1 Seepage Assessment

A seepage assessment has been conducted for the proposed IWLTSF Stage 4 embankment.

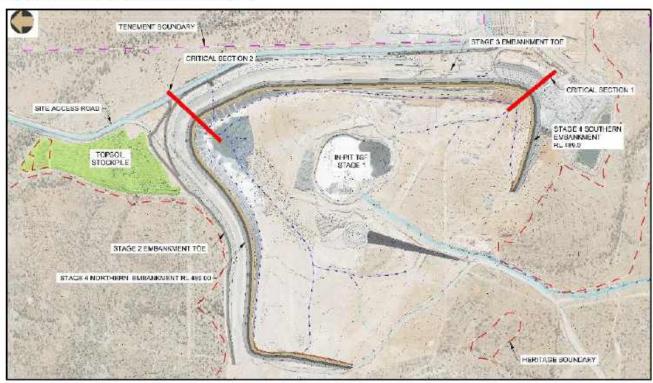
4.7.1.1 Assessment Methodology

The seepage assessment utilised Slide2 2023, a two-dimensional finite element groundwater seepage analysis software suite. The objective of the seepage assessment was to:

- Determine the expected position of the phreatic surface within the IWLTSF Stage 4 embankment; and
- · Estimate seepage outflows (flux) to inform the IWLTSF Stage 4 design.

4.7.1.2 Material Parameters

Adopted design hydraulic parameters for the embankment and foundation material are summarised below in Table 34.


Table 34: Model Hydraulic Conductivity

Material	Hydraulic Conductivity, k (m/s)	Anisotropy, k ₆ /k ₉
Laterite	1e-07	1
Durierust	1e-07	1
Saprolite V.Stiff -Hard Clay (South)	1e-09	1
Saprolite Hard Clay (South)	1e-09	8 1 I
Saprolite Hard Clay (North)	1e-09	(1)
Saprock XW - HW Zone (South)	1e-09	1
Saprock XW - HW Zone (North)	1e-09	7 1 11
Tailings	1e-07	(1)
HDPE Liner on 200mm Cohesive Subgrade	1e-12	1
Traffic Compacted (0.5m) Mine Waste - Zone 3A	1e-05	(1)
Traffic-Compacted (1m) Mine Waste - Zone 3B	1e-05	1
Traffic Compacted Transition Material - Zone 3C	1e-05	1.
Paddock Dump Mine Waste	1e-05	1
Tip Head Mine waste	1e-05	40
Bed Rock	1e-12	1

4.7.1.3 Assessed Cross Section

Two locations were assessed for seepage conditions on the Northeast and Southeast sides of the embankment, identified as critical sections where the embankment height is greatest. These sections are shown in Figure 19. The maximum embankment heights at the critical cross-sections 1 and 2 for IWLTSF Stage 4 are 27.0 m and 12.0 m, respectively. The selected cross-sections for seepage analysis are based on the geometries outlined in Section 4.7.2.5.

Figure 19: IWLTSF Stage 4 Critical Cross Section (Plan)

4.7.1.4 Analysis

The seepage assessment considered steady-state conditions, assuming that the decant pond was maintained at least 100 m away from the embankment crest, with the tailings facility at full capacity in Stage 4.

4.7.1.5 Boundary Conditions

The following boundary conditions were applied for the IWLTSF seepage analysis:

- Upstream Boundary, Total Head at the pond, 100 m from the embankment crest,
- Downstream Boundary: Total Head at RL 460.0 m; and
- Discharge: Seepage flux through the embankment face.

4.7.1.6 Results

The estimated seepage flux and resulting seepage volumes for the modelled case is detailed in Table 35.

A conservative seepage volume estimate through the embankment, based on the resulting flux estimates, is approximately 5.5 m³/day through Section 1 for an embankment length of 994 m, and approximately 1.5 m³/day through Section 2 for an embankment length of 1,516 m during normal operations.

Increased seepage rates are seen for cases where a water pond is stored at greater elevations and/or closer to the upstream crest however, these are considered worst case conditions which may temporarily occur after high intensity rainfall events or where the facilities are not operated in accordance with the Operating Manual (Appendix K).

Table 35: Results of Seepage Analysis

Section	Facility	Embankment Height (m)	Estimated Flux Facility (m³/day)/m	Total Embankment Length (m)	Seepage Estimate (m³/day)
1	IWLTSF	27	0.005556	1,516	5.5
2	IWLTSF	12	0.000990	994	1.5

These results are considered conservative upper bound estimates as the models have considered the most critical section, while the embankment height varies between 0.5 m and 27 m for Section 1 and 0.5 m and 12.0 m for Section 2. The Slide2 outputs and figures are presented in Appendix F.

Upon commissioning seepage is likely to emanate from the facilities in a three-dimensional context, and a localised groundwater mound can likely be anticipated beneath the facilities during their operating life.

4.7.2 Stability Assessment

A stability assessment was conducted at two critical sections. The maximum embankment height at Section 1 (Southeast) is 27.0 m, and at Section 2 (Northeast) is 12.0 m.

4.7.2.1 Foundation Material

Subsurface conditions along the critical embankment sections were inferred from the data collected during GSI work conducted from November 2024 to February 2025. This investigation included six boreholes, Standard Penetration Test (SPT) field tests, and undisturbed Shelby tube samples for laboratory testing. Of the six boreholes, laboratory test results from three (BH01, BH02, and BH03) have been received, with the remaining data expected by mid-March 2025. The laboratory test results include particle size distribution (PSD), plasticity index (PI), oedometer tests, triaxial permeability, and triaxial tests (CUTx and UUTx). These results were used to interpret the subsurface conditions and strength parameters for the foundation materials.

The subsurface materials identified have been grouped based on their strength parameters along depth profiles. The summary of materials for the southeastern side (Critical Section 1) and the northeastern side (Critical Section 2) is presented in Table 36 and Table 37, respectively.

Table 36: IWLTSF Southeast Area Subsurface Profile Inferred

Subsurface Profile Unit	Depth (m)
Laterite	0 - 1.5
Saprolite V.Stiff -Hard Clay (South)	1.5 - 9.5
Saprolite Hard Clay (South)	9.5 - 14
Saprock XW - HW Zone (South)	14 - 28
Bedrock	> 28

Table 37: IWETSF Northeast Area Subsurface Profile Unit Inferred

Subsurface Profile Unit	Depth (m)
Duricrust	0 - 2
Saprolite Hard Clay (North)	2 - 10
Saprock XW - HW Zone (North)	10 - 36
Bedrock	> 36

4.7.2.2 Material Parameters

The interpreted geotechnical strength parameters for the foundation materials, along with the assumed strength parameters for the embankment materials, are summarised in Table 38.

Table 38: Geotechnical Effective and Total Stress Parameters

Material		Drain Scenario-Mohr-Coulomb		Undrain Scenario		
	Unit Weight (kN/m3)	Friction Angle (*) Cohesion c' (kPa)		Undrained Shear Strength	Shear Strength Ratio (Su/o'vo)	
			/Cohesion c or Su (kPa)	Peak (kPa)	Liquified (kPa)	
aterite	18	28	5	50	3	ş
Duricrust	19	30	50	200	- 5	8
Saprolite V.Stiff -Hard Clay (South)	18	25	30	110	9	9
Saprolite Hard Clay (South)	19	30	50	150	3	ě
Saprolite Hard Clay (North)	19	25	30	100	5	8
Saprock XW - HW Zone (South)	20	32	100	200	· ·	3
Saprock XW - HW Zone (North)	20	30	50	200	8	8
Tailings	17	27	0		0.25	0
HDPE Subgrade	18	26	5	50	· ·	3
Traffic Compacted Mine Waste - Zone 3A	22	36	0	(-	8	8
Traffic Compacted Mine Waste - Zone 3B	21	35	0			3
Transition Material - Zone 3C	20	34	0		22	<u> </u>
Paddock Dump Mine Waste	21	35	0		ę	-
Tip Head Mine waste	20	34	0		73	- 5
Bed Rock	23	Infinite Strength				

4.7.2.3 Assessment Methodology

The limit equilibrium analysis approach based on the Morgenstern-Price method of slices has been adopted for the stability assessment and involves predicting the Factor of Safety (FoS) against geotechnical slope failure using the commercial software Slide2 2020. The following soil stress conditions have been considered for assessment.

- Long-term (drained);
- Short-term (undrained);
- Seismic condition considering a 1:2000-year AEP event; and
- Post seismic condition considering liquified tailings.

The 2,000-year AEP event is considered for a 'High C' consequence category for the IWLTSF in accordance with ANCOLD (2019) Guidelines for Dams and Appurtenant Structures for Earthquake. The 2,000-year ARI Bedrock PGA is taken as 0.045 g in accordance with recommendations in the Geoscience 2018 Atlas as described in Section 2.3.6.5.

The assessment is based on a pseudo-static approach, whereby a horizontal acceleration coefficient k_h is applied in the Slide2 model to represent the AEP event.

The value of kh is taken as:

Bedrock PGA × Probability Factor × Soil Effect Factor × Topographic Amplification Factor x 0.5

The value for kh has been calculated for the IWLTSF according to the requisite AEP is summarised in Table 39.

Table 39: Coefficient of Horizontal Acceleration

Variable	IWLTSF	
Operations Phase	SEE	
Design ARI (x-year)	2,000	
Bedrock PGA (500-year AEP)	0.020	
Probability Factor, kP (Perth)	1.52	
Design Bedrock PGA	0.045	
Soil Effect Factor (Dam Body)	1.9	
Topographic Amplification Factor	1.2	
Factored PGA	0.1026	
Coefficient of Horizontal Acceleration - kh	0.0513	

In the post seismic stability assessment, 80% of the assigned drained condition strength parameters have been considered while the tailings is assumed to undergone liquefied state and strengths were applied accordingly.

4.7.2.4 Seismic Condition

The SSE event has been considered, and is modelled based on a pseudo-static approach, whereby the earthquake is represented by a horizontal acceleration coefficient, $kh = 0.5 \times PGA$. After considering soil effects, this is estimated as $0.5 \times 0.1026 = 0.0513$ for the IWLTSF.

4.7.2.5 Assessed Cross Section

The IWLTSF Stage 4 critical cross-sections selected for the slope stability analysis are based on the following geometry.

- 1. Critical Cross Section 1
- 1V:2H batter slope for the upstream face of Stage 4 embankment;
- 1V:1.25H batter slope for the downstream face Stage 4 embankment;

Date: 25 March 2025

Revision No: 0

- 14.0 m crest width at Stage 4 embankment;
- 1V:3H batter slope for the upstream face of Stage 3 embankment;
- 1V:2H batter slope for the downstream face Stage 3 embankment;
- 30.0 m crest width at Stage 3 (RL 484.5 m) embankment;
- 10.0 m wide buttress at RL 486.0 m on the downstream embankment toe area.

2. Critical Cross Section 2

- 1V:2H batter slope for the upstream face of Stage 4 embankment;
- 1V:1.25H batter slope for the downstream face Stage 4 embankment;
- 14.0 m crest width at Stage 4 (RL 484.5 m) embankment;
- 1V:3H batter slope for the upstream face of Stage 2 embankment;
- 1V:3H batter slope for the downstream face Stage 2 embankment;
- 73.0 m crest width at Stage 2 embankment.

The critical sections analysed are shown in plan view in Figure 20 and cross sectional view are presented in Figure 21 and Figure 22.

Figure 20: IWLTSF Stage 4 Critical Cross Section (Plan)

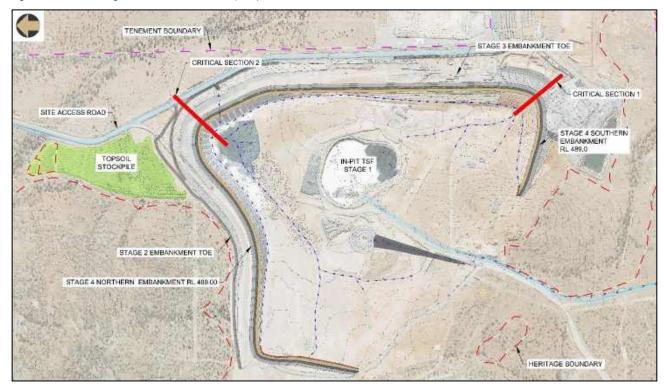


Figure 21: IWLTSF Stage 4 Critical Cross Section - Section 1

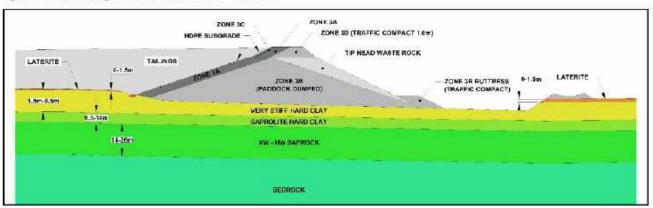
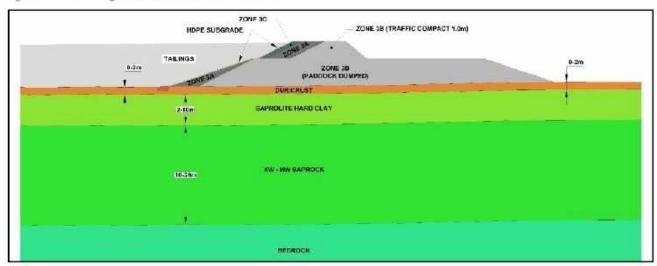



Figure 22: IWLTSF Stage 4 Critical Cross Section - Section 2

4.7.2.6 Results and Recommendations

The stability model output figures are provided in Appendix G, and the predicted slope stability FoS for each case analysed along with the recommended minimum FoS for Section 1 and 2 are summarised in Table 40 and Table 41 respectively.

Table 40: Slope Stability Results for Critical Section 1

Case	Recommended Minimum	Calculated Factor of Safety	
Drained	1.50	1.54	
Undrained	1.50	1.54	
Seismic	1.20	1.33	
Post Seismic (Tailings Liquified)	1.0* - 1.20	1.24	

Table 41: Slope Stability Results for Critical Section 2

Case	Recommended Minimum	Calculated Factor of Safety	
Drained	1.50	1.68	
Undrained	1.50	1.55	
Seismic	1.20	1.45	
Post Seismic (Tailings Liquified)	1.0* - 1.20	1.31	

As a result, it can be concluded that the assessed cross-sections exceed the minimum recommended FoS for the assessed soil stress condition.

4.7.3 Preliminary Dam Break Assessment

4.7.3.1 General

A preliminary dam break analysis was conducted under both 'Sunny Day' and 'Rainy Day' conditions to assess the potential impacts of an embankment breach of the IWLTSF Stage 4 at two critical sections. The 'Sunny Day' analyses assessed dam breaches where potential energy drives a tailings flow slide failure downstream of the facility, whereas the 'Rainy Day' analyses assessed dam breaches under worst conditions due to overtopping under extreme storm events over the facility and its catchment.

This preliminary analysis involved the assessment of breach characteristics, tailings release volumes and the extent of tailings runout under failure conditions. In undertaking this preliminary analysis, embankment critical sections with the greatest height were utilised to assess critical tailings runout distances.

The following cases were considered in the analysis:

- Case 1. IWLTSF Stage 4 South-east embankment breach 'Sunny Day'. Maximum embankment height of 27.0 m (RL 489.0 m).
- Case 2: IWLTSF Stage 2 South-east embankment breach 'Rainy Day'. Maximum embankment height of 27.0 m (RL 489.0 m).
- Case 3. IWLTSF Stage 4 North-east embankment breach 'Sunny Day'. Maximum embankment height of 12.0 m (RL 489.0 m).
- Case 4: IWLTSF Stage 2 North-east embankment breach 'Rainy Day'. Maximum embankment height of 12.0 m (RL 489.0 m).

4.7.3.2 Tailings Release Volumes

The Sunny Day analysis adopts a tailings release volume of 30% of the stored tailings volume, based on findings of typical past tailings dam failures undertaken by Dalpatram (2011).

For Rainy Day (worst case) failures a conservative approach is adopted with 50% of the stored tailings volume released in accordance with H Rourke & D Luppnow (2015). The PMP across the IWLTSF was estimated in accordance with guidelines published by BOM using the GSDM method. The Rainy Day case incorporates a stormwater volume equivalent to the PMP storm event over the catchment area.

4.7.3.3 Breach Characteristics

It should be noted that in the case of an embankment breach only the tailings local to the breach are released, owed to the viscous nature of tailings. As such, the total volume stored within IPTSF has been disregarded as part of all analyses, as this would not mobilise in the event of failure. Furthermore, tailings stored in the southern part of the IWLTSF basin, below the Vanguard Pit ridgeline, would not mobilise in the event of a failure in the northeastern embankment and have therefore been disregarded from the analysis. Likewise, tailings stored in the northern part of the IWLTSF basin, below the Vanguard Pit ridgeline, would not mobilise in the event of a failure in the southeastern embankment and have also been excluded from the analysis.

The method outlined by T MacDonald and J Langridge – Monopolis (1984) was utilised to determine embankment breach characteristics. The resulting embankment breach characteristics are presented in Table 42.

Table 42: Breach Characteristics

Characteristics	Case 1	Case 2	Case 3	Case 4
IWLTSF Dam Breach Section	Southeast Comer	Southeast Comer	Northeast Comer	Northeast Comer
Conditions	Sunny Day	Rainy Day	Sunny Day	Rainy Day
Embankment Breach Height (m)	27.0	27.0	12.0	12.0
Contributing Cumulative Storage Volume (Mm ³)	3.37	3.37	2.80	2.80
PMP Event Volume (Mm³)	NA	0.61	NA	0.61
Tailings Breach Release Volume (Mm³)	1.01	2.32	0.84	2.04
Nominal Breach Width at Crest (m)	13	23	14	31
Equivalent Upstream Tailings Failure Length (m)	190	161	230	540

4.7.3.4 Sunny Day Modelling

The bulk of the existing IWLTSF embankment is constructed using mine waste rock, with compaction effort ranging from traffic compacted to paddock dumping. Similarly, the Stage 4 downstream raise is also proposed to be constructed with mine waste rock. IWLTSF embankments of this kind typically have high factors of safety, well above the recommended minimum factors of safety. Additionally, the IWLTSF design incorporates a turret pump for water return and underdrainage system, as such it is not expected that free water will be allowed to pond on the surface of the facility.

On this basis, the Sunny Day scenario is considered using the energy-based Linear Method, as detailed in the 2010 Mine Waste Conference proceedings by Seddon (2010). The Linear Method is suitable for the Sunny Day assessment of tailings runout distances in above-ground storage facilities and provides a methodology for quantifying runout distances in the case of an embankment breach utilising energy-based principles.

The Linear Method idealises both pre-flow and post-flow tailings masses as rectangular blocks of uniform height and length. The pre-flow block mass is representative of the containment embankment height and accounts for the proportion of tailings accumulated behind the embankment, likely to be released in the event of failure. The post-flow block mass geometry is determined based on potential energy driving a tailings flow slide failure to the environment downstream of the facilities embankment.

It should be noted that the runout distances calculated by this method assume an uninterrupted flow path and do not take into consideration site specific topography or storage effects. As such, further professional judgement is required to select appropriate run-out distances based on an assessment of the site conditions.

The Linear Method runout calculations factor the tailings liquefied undrained shear strength to provide consideration to sliding resistance.

The following cases were considered in the analysis:

- Case 1: Liquefied Strength Ratio of 1.0% IWLTSF Southeast Corner Embankment.
- Case 2: Liquefied Strength Ratio of 2.0% IWLTSF Southeast Corner Embankment.
- Case 3: Liquefied Strength Ratio of 1.0% IWLTSF Northeast Corner Embankment.
- Case 4: Liquefied Strength Ratio of 2.0% IWLTSF Northeast Corner Embankment.

The runout distance calculations were based adopted liquified undrained shear strengths based on 1.0% and 2.0% of the effective overburden pressure at maximum height for each 'Sunny Day' case.

Potential tailings runout distances calculated based on this method are presented in Table 43. Based on the Linear Method, the IWLTSF Stage 4 (full) during Sunny Day conditions could potentially release tailings which runout between 760 m to 1,180 m and 510 m to 860 from the south-eastern and north-easter embankment respectively. The calculations of the runout distance for a Sunny Day case are presented in Appendix H.

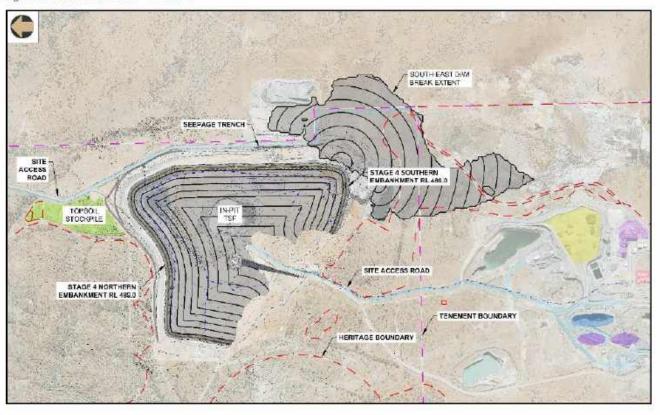
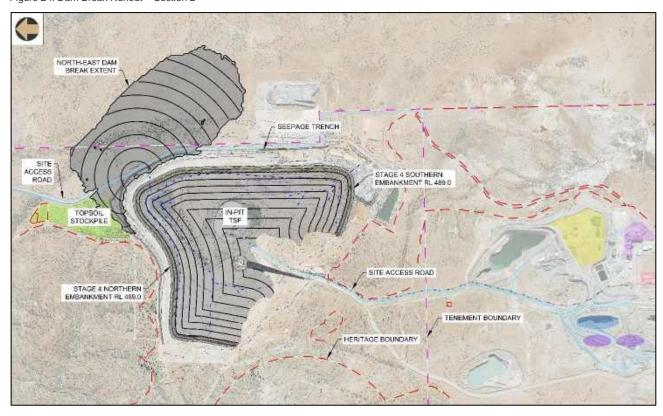


Table 43: Potential Tailings Runout Distance Calculations

Characteristics	Case 1	Case 2	Case 3	Case 4
IWLTSF Dam Breach Section	Southeast Comer	Southeast Corner	Northeast Corner	Northeast Corner
Conditions	Sunny Day	Sunny Day	Sunny Day	Sunny Day
Embankment Breach Height (m)	27.0	27.0	12.0	12.0
Liquefied Strength Ratio (%)	1.0	2.0	1.0	2.0
Liquified Shear Strength (kPa)	2.4	4.8	1.3	26
Tailings Runout Distance (m)	1,180	760	860	510
Average Runout Height (m)	3.7	5.4	3.2	4.6

It should be noted that the runout distances and heights presented in Table 43 are numerically calculated and assume an uninterrupted flow path which does not take into consideration site specific topography or storage effects. Dam break runout modelling taking into consideration the surrounding topography based on the dam break volumes and calculations is shown in Figure 23 and Figure 24, representing the breach through IWLTSF southeast corner and northeast embankment breach scenarios respectively. The IWLTSF southeast corner dam break runout represents a runout length of 1.0 km at a runout slope of 1.5%. The IWLTSF Stage 4 northeast dam break runout represents a runout length of 800 m at a runout slope of 1.5%

Figure 23: Dam Break Runout - Section 1



Date: 25 March 2025

Revision No: 0

Figure 24: Dam Break Runout - Section 2

4.7.3.5 Rainy Day Modelling

It should be noted that typical breaches occur over a period of approximately 0.5 - 4 hours (MacDonald and Langridge, 1984 Graph). A breach development time of 4 hours was adopted for the analysis to account for the downstream waste rock zones contribution to longer breach development times.

As part of this preliminary dam break assessment, the Rainy Day runout characteristics have been numerically calculated using the Linear Method based on a liquified shear strength ratio of 0.0%, accounting for the PMP event being stored on the facility. Although this approach should not be relied upon as part of a detailed dam break assessment, it is considered representative of a "worst-case" scenario. Additionally, while it is acknowledged that it is good practice to assess the potential impacts of an extreme "worst-case" scenario, it is important to note that this assessment should not form the basis of the classification of the TSF for design purposes. It is important that a risk-based assessment be founded on plausible failure modes and the PAR is defined in accordance with ANCOLD as all people who would be directly exposed to floodwaters assuming they took no action to evacuate. As such the PAR needs to be rationalised as part of the consequence category assessment, taking into consideration the characteristics of the TSF design, tailings, breach, runout flow and surrounding topography.

Breach modelling for the IWLTSF Stage 4 embankment crest geometry indicated that under PMP Rainy Day conditions a potential peak run-out flow of 161 m³/s could be expected from a failure on the southeast corner of the facility over a period of 4 hours. The Rainy Day breach could potentially result in tailings runout reaching the Plant Site approximately 1.25 km south of the facility.

The numerically calculated runout has not been modelled for the Rainy Day cases.

4.7.3.6 Consequences

The following consequences of a dam break at the IWLTSF are considered most likely:

• Loss of human life: Personnel at nearby laydown areas, IWLTSF operations personnel and mining personnel visiting the IWLTSF are at risk in the event of a plausible failure.

- Runout flows from the IWLTSF south east corner embankment could potentially result in tailings flow reaching the
 laydown area and processing ponds located on the eastern end of the Plant Site. The PAR for the IWLTSF south east
 corner embankment is expected to be greater than 1 but less than 10 (ANCOLD PAR category of >1 to 10);
- Runout flows from the IWLTSF north east embankment could potentially result in tailings flow inundating and
 overtopping the decommissioned site access road adjacent to the facility and downstream area. The PAR for the
 IWLTSF north east embankment is expected to be less than 1 (ANCOLD PAR category of <1);
- Economic losses: Production losses, plant shutdown, IWLTSF embankment repairs and road repairs;
- Environmental impacts: Potential for contamination of surface soils and surface water requiring environmental 'clean up'.

4.7.3.7 Controls

Embankment breaches, failures and sudden impoundment releases can be caused by numerous events; however, these are largely driven by the size and extent of the decant pond, magnitude of seismic events, tailings deformation and grading and the degree of tailings saturation adjacent to the perimeter embankment. Controls must be implemented to ensure the effective management of the decant pond, with the aim to continuously remove the supernatant water and contain any water pond away from the perimeter embankments. This will assist in reducing the water content in the tailings at the perimeter embankment interface and within the perimeter embankments, minimising the risk of an embankment breach and release of saturated tailings.

Provided that the IWLTSF are operated in accordance with the requirements set out in the Operating Manual (Appendix K), an embankment breach is not considered plausible. If the IWLTSF was found to be in imminent danger of failure or breach, the Emergency Action Plan (EAP) would need to be enacted, which could see the closure of the plant, local access roads and other infrastructure. In the case of failure, engagement with a specialist geotechnical engineer should be made.

Trigger events, which herald potential potentially adverse events can include:

- Non-compliance with minimum freeboard requirements;
- Piezometer readings, which are elevated and are approaching or greater than the prescribed trigger levels;
- · Significant embankment distress or damage (i.e. cracking and slumping); and
- Imminent overtopping of embankment crest.

4.7.4 Erosion Control

Mine waste rock will be progressively placed downstream of the IWLTSF to facilitate construction of the future current and future stages. This will likely comprise moderately weathered to fresh rock with 1V:2H downstream batter slopes to minimise erosion.

The existing V-drain located downstream of the IWLTSF northern embankment will minimise erosion of the embankment toe by safely directing stormwater runoff from the natural upstream catchment to the north. This surface runoff is further diverted via a culvert that passes beneath the site access road on the eastern side, directing the flow away from the IWLTSF and allowing it to join existing natural drainage streams downstream.

Internal erosion (piping) of the IWLTSF embankment will be controlled through a combination of the placement of transitional material zone, HDPE subgrade and the installation of a Bidim A24 Geotextile (or equivalent) and HDPE liner.

4.7.5 Seepage

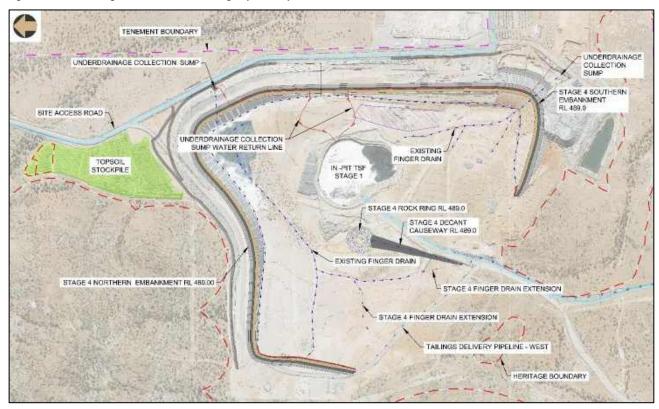
Design measures and operational controls aimed at minimising seepage are discussed in the following sections, and include;

- Design measures
 - Underdrainage;
 - Low rate of rise; and
 - Cut-off trench.
- Operational controls

- Sub-aerial deposition to promote air-drying (evaporation) whilst continually depositing in thin lifts to minimise dust generation;
- o Maintaining a small decant pond away from the embankment;
- High rate of water recovery with a target of ~55% of the water from the tailings slurry being recovered;
- o Monitoring of pore pressure development within and downstream of the embankments; and
- Monitoring of groundwater levels and groundwater quality downstream of the embankments;

4.7.5.1 Design Measures

4.7.5.1.1 Underdrainage System


An underdrainage system has been incorporated into the IWLTSF design. The foundation of the IWLTSF comprises of a combination of calcrete, laterite and basalt rock. The in-situ materials located within the footprint (natural ground and basin excavation) are conditioned and compacted through trafficking to aid with seepage control. The existing underdrainage system within the IWLTSF along with the extensions of it network into Stage 4 storage area will benefit of assisting consolidation of the deposited tailings thus promoting early water return, minimising seepage and increasing tailings density. Furthermore, the existing underdrainage system and planned extension of it network into Stage 4 storage area has the benefit of reducing tailings saturation adjacent to the perimeter embankments, in turn lowering the phreatic surface, limiting seepage through the perimeter embankments and improving embankment stability.

It is recommended that the extension of underdrainage network system in Stage 4 storage area is installed as detailed on the drawings attached to this design report. The IWLTSF Stage 2, 3 and 4 underdrainage system layout is shown in Figure 25.

The extension of underdrainage network system comprises:

- Extension of toe drains and integrated with exiting underdrainage network system;
- Extension of finger drains and integrated with exiting underdrainage network system.

Figure 25: IWLTSF Stage 2, 3 and 4 Underdrainage System Layout

4.7.5.1.2 Cut-off Trench

The Stage 4 embankment extension will incorporate a cut-off trench, which will integrate with the existing trench from Stage 2 and Stage 3. This trench acts to key the embankment into the natural ground and restrict lateral seepage beneath the embankment wall. The cut-off trench will be backfilled with compacted 'select' low permeability borrow Zone 1 material.

4.7.5.1.3 Low Permeability Floor

The in-situ material at the location of the IWLTSF is observed to be of low permeability based on field observations during the site visit and geotechnical investigations undertaken by REC.

4.7.5.2 Operational Controls

4.7.5.2.1 Rate of Rise

Tailings discharge will be regularly rotated around the embankment perimeter and the storage surface area will increase. The facility will benefit from a low RoR averaging approximately 3.4 m/yr during Stage 4, and further improving through subsequent downstream stages of operation.

Sub-aerial deposition in thin lifts will promote consolidation through air-drying resulting in a proper beach formation, better water return and thus reduce seepage potential (compared to other deposition strategies such as sub-aqueous deposition or deposition in thick lifts i.e. high RoR).

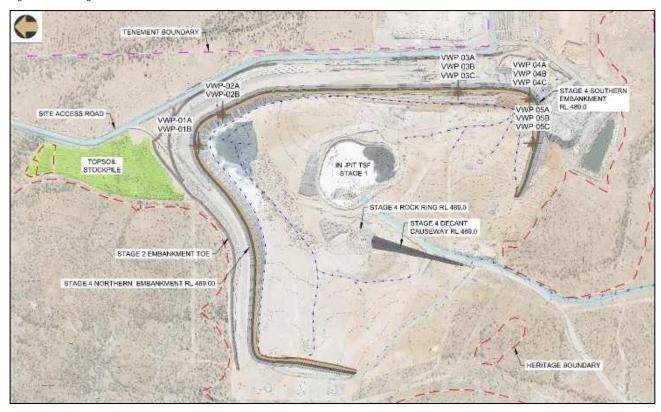
4.7.5.2.2 Sub-aerial Deposition

As discussed above, sub-aerial deposition in thin lifts will serve to promote the formation of supernatant water and decrease the permeability of the deposited tailings.

4.7.5.2.3 Decant Pond Management

A small decant pond is proposed to be maintained on IWLTSF throughout the operation. The Stage 4 decant pond will primarily be managed within the rock ring. IWLTSF Stage 4 and future embankment raises will benefit from water recovery facilitated by the rock ring filter. A new turret pump will be installed within the rock ring to manage the pond formed by tailings deposition from the western and northern embankments. However, the existing turret pump system in the IPTSF will continue to manage water recovery from tailings deposition in the southern and eastern embankment during the early commissioning phase. Later as the beach develops the decant pond will begin to naturally drain into rock ring.

Maintaining a small decant pond away from the embankment will reduce the potential for embankment seepage. Furthermore, a small decant pond both in depth and aerial extent will minimise hydraulic head driven seepage and unnecessary evaporative losses.


4.7.5.2.4 Pore Pressure Monitoring

Pore pressure development within the IWLTSF embankments will be continuously monitored using existing vibrating wire piezometers (VWPs). As detailed in Section 5.5, thirteen (13) VWPs are installed within the existing IWLTSF embankment. Logger set up and cables of these VWPs will be extended to the Stage 4 embankment to ensure ongoing monitoring of pore pressure is continuous throughout Stage 4 operation. The existing VWP locations are shown in Figure 26.

Reference: P19-11-PR-29-R01
Client: Bellevue Gold Limited
Page 54 of 69
Report Title: IWLTSF Stage 4 North and Stage 4 South Detailed Design Report
Revision No: 0

Figure 26: Existing VWP Locations

4.7.5.2.5 Groundwater Monitoring

The existing network of monitoring bores provides adequate coverage for the Stage 4 embankment, allowing for effective monitoring of groundwater levels and quality (against background groundwater quality) downstream of the facility. There are currently 9 monitoring borewells located downstream of the IWLTSF embankment, as detailed in Section 5.5. The existing monitoring bore locations are shown in Figure 30.

Figure 27: Existing Monitoring Bore Locations

4.7.5.2.6 Seepage Quality

Groundwater is hypersaline with TDS in the range of 90,000 to 120,000 mg/L. Water stored within both of the facilities is also assumed to be hypersaline and of similar quality, given that water pumped from underground operations will be stored in the facilities.

At this stage in the design development process the primary seepage management strategy for the TSF is to limit the amount of seepage by means of an underdrainage system.

4.7.6 Surface Water Flow and Storage

Assessment of freeboard has been conducted taking in consideration with the ANCOLD Guidelines on Tailings Dams – Planning, Design, Construction, Operation and Closure (ANCOLD, 2012) and the Code of Practice (CoP): Tailings Storage Facilities in Western Australia (DMP, 2013).

For the purpose of the assessment, IWLTSF Stage 4 was assumed to receive rainfall runoff from the upstream catchment. The freeboard was evaluated for both the Stage 4 North intermediate tailings storage scenario and the Stage 4 full capacity tailings storage scenario, as shown in Figure 28 and Figure 29 using a top-down approach.

For the Stage 4 North intermediate tailings storage scenario, the freeboards have been assessed based on the Stage 3 embankment crest elevation of RL 484.5. This approach demonstrates that Stage 4 North can operate independently at an intermediate storage capacity (RL 486.2) during the construction of the Stage 4 South embankment. Based on a maximum operating pond level of RL 487.74 m, the facility still contains a 1:100 AEP 72-hour storm event and meeting the freeboard requirements.

Additionally, the top-down storage curve in Figure 29 shows that at Stage 4 full capacity, with a maximum operating pond level of RL 487.74 m, there is sufficient freeboard to contain a 1:100 AEP 72-hour storm event, while still maintaining the required freeboard at the embankment crest. The required freeboard for IWLTSF Stage 4 is 1.0 m.

Reference: P19-11-PR-29-R01 Page 56 of 69 Date: 25 March 2025
Client: Bellevue Gold Limited Report Title: IWLTSF Stage 4 North and Stage 4 South Detailed Design Report Revision No: 0

Figure 28: Freeboard Assessment - IWLTSF Stage 4 North Intermediate Storage Capacity

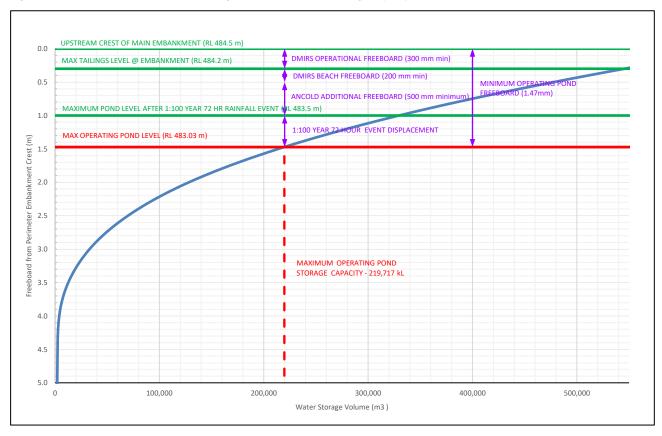
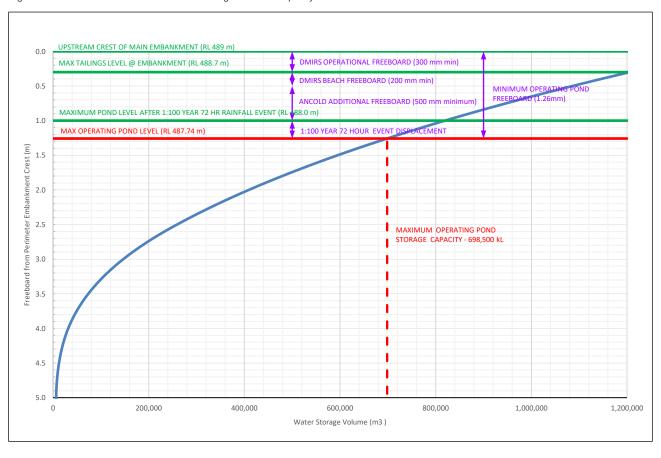



Figure 29: Freeboard Assessment - IWLTSF Stage 4 at Full Capacity

The storm water storage capacity is dependent upon the actual beach slope achieved during operation and the volume estimate for the IWLTSF Stage 4 is based on a beach slope of 150 m at 1.5%, followed by 1.0% for 300 m, followed by 0.75% for 500 m and the remaining at 0.5%

These freeboard requirements are only applicable at the end of the operation of the facility (i.e. dam full tailings). During the operational life of the TSF the risk of overtopping is significantly reduced as the incidental rainfall is contained on the tailings beach on a depression away from the perimeter embankments. Removal of stormwater is managed by designing the decant pumps to extract not only the volume of water required for the target dry density, but also the volume of water expected from the PMP/PMF.

It should be noted that the maximum pond level for IWLTSF could be a combination of small storm events prior to a 1:100 AEP 72-hour storm event; i.e. the maximum pond level at a dam full (tailings) scenario should not be viewed as a maximum operating level under normal circumstances. The freeboard assessment should be revisited prior to reaching dam full of tailings to assess if the above assumptions regarding beach slopes are correct.

A freeboard assessment summary of both scenarios is presented in Table 44.

Table 44: IWLTSF Stage 4 Freeboard Assessment Summary

Parameter:	Stage 4 North Intermediate Storage	Stage 4 Full Capacity Storage
Embankment Crest Level (m RL)	489.0	489.0
Max Tailings Level (m)	486.2	488.7
Max Pond Level (m RL)	483.5	488.0
Max Pond Capacity (m³)	329,550	819,460
Required Stormwater Capacity (m³)	109,833	120,960
Max Operating Pond Level (m RL)	483.03	487.74
Max Operating Pond Capacity (m ³)	219,713	698,500

4.7.7 Water Balance

A preliminary Water Balance was prepared using an excel spreadsheet for the IWLTSF Stage 4. The spreadsheet calculates an estimation of the inflows and outflows from the facilities and determines the balance after plant water requirements have been met. Water shortfall or water in excess of requirements is indicated on a monthly and annual basis.

Water inflows to the IWLTSF Stage 4 system consist of incidental rainfall and slurry water from the plant. Water outflows consist of evaporation from the supernatant pond and running beaches, evapo-transpiration from drying beaches, seepage, retention of water within tailings and water pumped to the Process Plant.

The following information was used for the water balance:

- Average monthly rainfall figures for Leinster (BOM Station 012314) adjacent to the site (recording period: 1994 to 2020);
 and
- Evaporation data from interpolation of Technical Note 65.

The following assumptions were made for the water balance:

- Runoff co-efficient of 1.0 for the surface of the tailings,
- Runoff co-efficient of 0.5 for the upstream catchment (refer section 2.3.8);
- Decant pond is to be maintained with a maximum radius not exceeding 8% of the tailings beach area;
- Spigotting and running beaches would have a maximum area of 24,000 m²
- The maximum tailings surface area of the facility (tailings full) was adopted; and
- Decant water recovery is maximised to achieve the minimum design in-situ dry density of 1.40 t/m³.

Under average rainfall and evaporation, the preliminary water balance indicates:

 an average daily water return of 1,715 m³/day or 71.4 m³/hr, equivalent to 48% of the total slurry water, for operation of the IWLTSF Stage 4 (based on the operating hours of 8,000 per annum).

It is recommended that the water recovery system (decant pumps and piping) has a minimum capacity of not less than 70 m³/hr for the IWLTSF Stage 4, to ensure adequate water removal, particularly during high rainfall periods. The Water Balance is presented in Appendix I.

4.8 Design and Construction Details

4.8.1 Bill of Quantities

A preliminary earthwork bill of quantities (BOQ) for the IWLTSF Stage 4 is provided in Table 45.

Table 45: Bill of Quantity

Items	Volume (m³)	Area (m ²)	Length (m)
Stage 4 North			it.
Zone 3B	78,200		
Zone 3A	37,300	NA.	NA
Zone 3C	12,400	NA	340
HDPE Subgrade (200mm)	2,500		
Geotextile/HDPE Liner	NA	13,800	
Cutoff Trench (extension)			330
Toe Drain (extension)	NA	NA	330
Finger Drain (extension)	,		250
Stage 4 South			
Zone 3B	58,100		
Zone 3A	26,800		
Zone 3C	8,800	NA	NA
Butress (Zone 3A)	6,000		
HDPE Subgrade (200mm)	1,800		
Geotextile/HDPE Liner	NA	9,800	
Cutoff Trench (extension)			35
Toe Drain (extension)	NA	NA	35
Stage 4 Decant Infrastructure			2
Decant Causeway (assumed Vanguard dump was removed)	16,600	N/A	150 100.00
Rock Ring	28,200*	NA	NA

4.8.2 General

Construction of the IWLTSF Stage 4 will be undertaken in accordance with issued for construction (IFC) drawings and earthworks specification developed as part of detailed design and included in Appendix J. Furthermore, construction and operation will be in

general accordance with the intent of this design report. This report and the drawings included in Appendix A present the detailed design of the IWLTSF Stage 4.

4.9 Tailings Discharge and Water Management

4.9.1 Tailings Deposition

Tailings are expected to be delivered from the Plant at a production rate of 1.6 Mt of solids per annum (tpa) for the remaining life of the project. At times throughout the mine plan, the rate of deposition may increase or decrease. The solids content (% solids) is expected to be approximately 55%.

Tailings will be deposited using sub-aerial deposition techniques from multi spigot locations on the perimeter deposition embankments for the operation of the IWLTSF.

Tailings spigotting or deposition within the IWLTSF is to be executed in thin layers of not more than 300 mm to ensure a uniform tailings beach with a fall of 1.5% for 150 m, followed by 1.0% for 300 m, followed by 0.75% for 500 m and a remaining 0.5% is developed. The decant pond shall be developed away from the perimeter embankment/point of discharge. The spigotting/discharge sequence is to be formulated such that the supernatant water pond is always maintained away from the perimeter embankments.

Tailings deposition will occur from the perimeter embankments with spigot intervals of not less than 20 m and not more than 50 m. Conductor pipes, placed on old conveyor belt material, are recommended to prevent damage to the HDPE liner on the embankment face. The diameter of the conductor pipe has to be designed to suit the size of the tailings distribution pipeline and the conveyor matting, to be placed down the embankment, also has to be adjusted to suit the size of the conductor pipe.

Development (filling) of the IWLTSF Stage 4 is shown graphically on Figure 30 in terms of storage volume and tailings storage elevation.

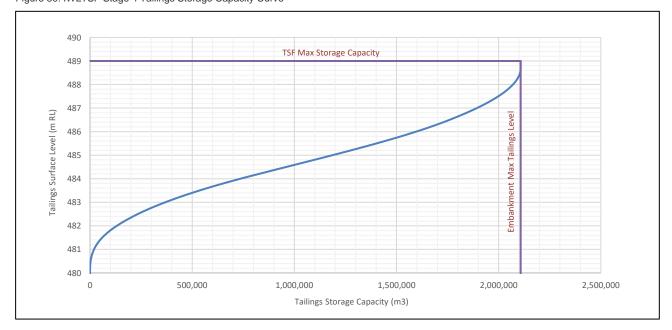


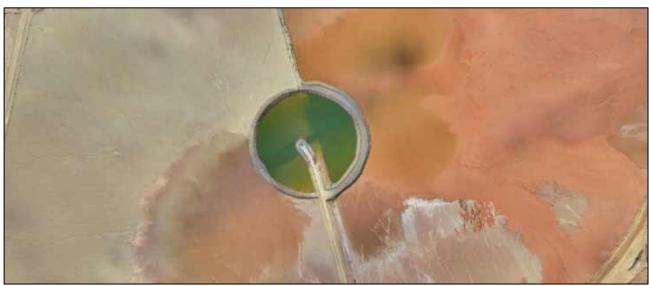
Figure 30: IWLTSF Stage 4 Tailings Storage Capacity Curve

4.9.2 Decant Pond Management

The supernatant pond level must be actively maintained, so as to be kept clear of the perimeter embankments. At no time should the supernatant pond be allowed to encroach within 100 m of the external engineered embankments of the IWLTSF.

The position and extent of the supernatant pond is controlled by the water recovery which is to be maximised. The decant pumping system must be capable of recovering additional water during the wet season.

The Stage 4 decant pond will primarily be managed within the rock ring. IWLTSF Stage 4 and future embankment raises will benefit from water recovery facilitated by the rock ring filter. A new turret pump will be installed within the rock ring to manage the pond formed by tailings deposition from the western and northern embankments.

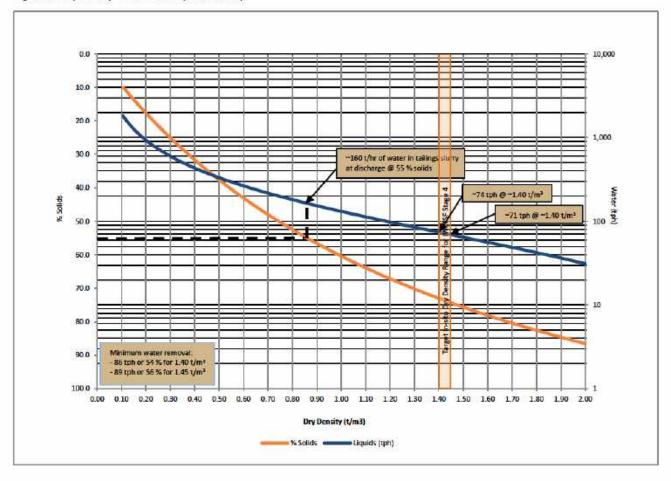

However, the existing turret pump system in the IPTSF will continue to manage water recovery from tailings deposition in the southern and eastern embankment during the early commissioning phase. Later as the beach develops the decant pond begin to naturally drains into rock ring.

The benefits of implementing a well-formed rock ring filter decant arrangement are as follows:

- Increased volume of water can be recovered, since the rock ring forms an efficient filter system to facilitate recovery of water with a low total suspended solids (TSS). The cross-sectional area of the filter (width) and diameter of the decant rock ring filter forms a substantial surface area, with circuitous flow paths, through which the decant water must pass. The 'flow velocities' are reduced by the circuitous flow paths through the filter wall, enabling the last remnant of the very fine fraction of solids within the supernatant water to be deposited within the filter, improving the clarity of the water inside the rock ring;
- The clarity of the water within the rock ring is a function of the thickness of the filter walls. Typically, the internal diameter of the rock ring is not less than 25 m and up to 75 m with the perimeter of the rock ring having a crest width of not less than 5 m excluding windrows. The actual constructed width is a function of the equipment used to place the rock forming the filter:
- As the tailings beach rises, a sump is formed within the rock ring, which remains in place as the surrounding tailings
 beach rises. The impact of the creation of this sump is that the spatial extent of the supernatant pond is reduced and
 hence evaporation is reduced;
- The improvement in the clarity of the water within the rock ring means that operators are less inclined to stop the
 operation of the decant pumps due to the turbidity within the supernatant pond, which is typical of what happens on the
 surface decant ponds which are exposed to windy conditions;
- The presence of the rock does not allow turbulence (wave action) to propagate through the filter wall and the surface area within the ring is sufficiently small to minimise the potential risk of wave action forming within the rock ring; and
- The small pond area, surrounded by a high rock wall which encloses the pond, is also a deterrent to birds that might otherwise land on a larger pond. Impacts on wildlife are reduced by the rock ring.

Because of the large surface area of the filter, the clarity of the water within the rock ring (inside the filter) is much better than could otherwise be achieved without such a structure. The photographs in Figure 31 show the difference in the clarity of the supernatant water inside and outside the rock filter wall.

Figure 31: Typical Rock Ring Water Clarity

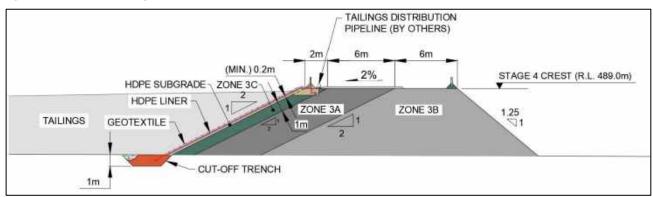

4.9.3 Water Recovery

A minimum in-situ dry density of 1.40 t/m³ has been adopted for the IWLTSF for Stage 4. To achieve this target, an average of 60% of the slurry water entering the IWLTSF has to be removed/recovered.

A beach slope of 1.5% for 150 m, followed by 1.0% for 300 m, followed by 0.75% for 500 m and 0.5% for the remaining length has been assumed as part of the IWLTSF Stage 4 design, assuming that the tailing slurry solids will be 55% at the point of discharge and will segregate with the coarse fraction settling near the perimeter containment deposition points and the finer fraction, silt and clay (materials finer than 75 microns), moving down the beach towards away from the perimeter embankments of the IWLTSF.

Figure 32 presents the dry density relationship for wet tailings produced (1,600 ktpa). Note the minimum recommended total water removal of 86 tph (seepage, evaporation, underdrainage and supernatant). This is the recommended basis for the design of the return water system (pumps and pipes) which excludes the PMP/PMF event. This system can reasonably be expected to be working at maximum capacity in the winter months when evaporation rates are low.

Figure 32: Dry Density Water Recovery Relationship



4.9.4 Seepage Management

The Stage 4 embankment extension, extending across natural ground beyond the existing Stage 2 and Stage 3 embankments, will include a cutoff trench. The trench aims to intercept lateral seepage through and beneath the embankments. The general configuration of the cut-off trench is presented in Figure 33.

Figure 33: Cut-off Trench Configuration

The conditioning of the ground foundation using local earthy borrow (regolith) materials will help control seepage through the IWLTSF floor. The existing underdrainage network system, including the toe and finger drains, will be extended into Stage 4. This will aid in the consolidation of the deposited tailings, promote early water return, and minimise seepage.

Additionally, the installation of the embankment HDPE liner and underlying subgrade overlayed with a geotextile will mitigate seepage through the embankment. To ensure water-tightness, the Stage 4 HDPE liner will be welded to the Stage 2 and 3 HDPE liners at horizontal benches, creating a continuous embankment surface cover.

Furthermore, the existing seepage trench on the northeastern side, along with a planned seepage trench on the eastern side, is expected to intercept any surficial seepage that may occur beneath the embankment.

4.10 Cover and Liners

In order to control seepage and internal erosion (piping) through the IWLTSF embankment, an HDPE liner will be installed on the upstream face of the embankment. Additionally, a 200 mm HDPE subgrade will be constructed to provide a smooth, even surface and minimising the risk of liner puncture by rocks within the embankment. A Bidim A24 geotextile (or equivalent) will be installed between the subgrade and the HDPE liner for enhanced surface suitability and additional puncture protection.

The proposed closure concept outlined in Section 6.0 includes the provision of a vegetation soil cover. Specification of the cover is envisaged to be undertaken during final closure planning and design.

4.11 Quality Assurance

An Earthworks Specification will be developed as part of detailed design. The specification will include a construction quality assurance (CQA) plan and requirements for on-site third-party quality assurance (QA) monitoring. A construction completion report will be prepared by a Competent Person (typically the design engineer) following substantial completion of the IWLTSF construction; in line with the requirements of the CoP: "Tailings Storage Facilities in Western Australia" (DMP, 2013) and "Guide to Departmental Requirements for The Management and Closure of Tailings Storage Facilities" (TSFs) (DMP, 2015).

4.12 Spillways

The CoP: "Tailings Storage Facilities in Western Australia" (DMP, 2013) states that in Western Australia, the use of spillways is not encouraged. As such, the final surface of the IWLTSF has been designed as non-spill facilities which are capable of retaining the closure design storm event.

Reference: P19-11-PR-29-R01
Client: Bellevue Gold Limited
Page 63 of 69
Date: 25 March 2025
Report Title: IWLTSF Stage 4 North and Stage 4 South Detailed Design Report
Revision No: 0

5. Operational Requirements

5.1 General

An Operating Manual (OM) has been developed as part of Detailed Design in accordance with the DMPs Guide to Departmental requirements for the managements and closure of tailings storage facilities and Code of Practice (CoP): *Tailings Storage Facilities in Western Australia*. IWLTSF Stage 4 Operating Manual is included in Appendix K.

5.2 Management of Water

Tailings are to be deposited from the main embankment of the IWLTSF in a sub-aerial manner in thin lifts and beaching away from the perimeter embankments. The decant pond shall be developed away from the perimeter embankment of the IWLTSF. The spigotting sequence is to be formulated such that the supernatant water pond is always maintained away from the perimeter embankments, initially near IPTSF, and later progressing towards the rock ring as the beach develops.

A new turret pump required to be installed within the rock ring to manage the pond formed by tailings deposition from the western and northern embankments. However, the existing turret pump system in the IPTSF will continue to manage water recovery from tailings deposition in the southern and eastern embankment during the early commissioning phase. Later as the beach develops the decant pond begin to naturally drains into rock ring.

Under normal operating conditions the normal operating pond is not expected to exceed 100,000 m³ for the IWLTSF Stage 4. The size of the normal operating pond should be as small as practical to minimise seepage potential whilst providing sufficient depth for operation of the decant pump.

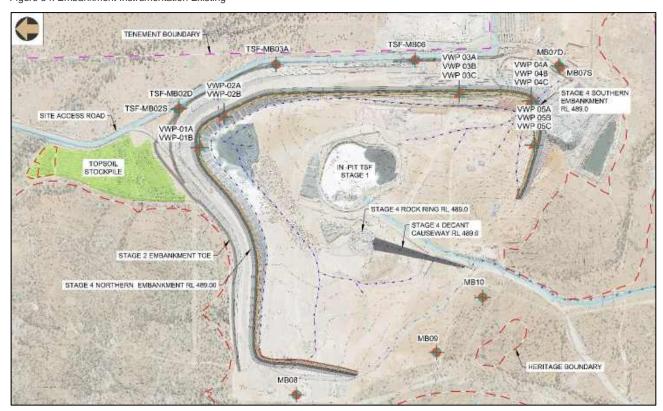
The maximum operating pond level for a dam full (tailings) scenario which still provides capacity for the 1:100 AEP 72-hour storm event, DMP required freeboard and ANCOLD additional freeboard is RL 488.0 m for the IWLTSF Stage 4. The maximum operating pond levels represents the storage of 698,500 kL for the IWLTSF Stage 4 full facility. However, it is not the intent of the IWLTSF design that such a large amount of water is stored within the facility.

5.3 Seepage Management

Seepage management within the TSF is achieved by sub-aerial deposition in thin lifts to promote air-drying and maintaining a small decant pond away from the main embankment as described in Section 4.9.2. Maximising water recovery is important in reducing the amount of water available for seepage. In addition, existing seepage trench on northeast side and planned seepage trench on eastern side is expected to intercept surficial seepage that may occur under the embankment.

5.4 Erosion Control

Erosion mitigation features are described in Section 4.7.4. The main embankment batter, upstream and downstream batters of the IWLTSF should be inspected on a regular basis and following heavy rainfall events for signs of excessive erosion and repairs made accordingly.


Sub-aerial tailings deposition on thin lifts across the entire tailings beach will ensure the tailings surface is kept sufficiently moist to prevent excessive wind erosion and dusting of the tailings surface.

5.5 Embankment Instrumentation

The existing monitoring instrumentation provides adequate coverage for Stage 4 of the embankment. The instrumentation includes 12 vibrating wire piezometers (VWPs) at various depths in five locations on the embankment, as well as nine monitoring boreholes downstream. No new instruments will be installed, but the existing VWP cables will need to be extended to the Stage 4 embankment level, and the logger setup will be repositioned on top of the new embankment. Care will be taken during construction to protect the existing VWPs, and the cables will be extended by splicing and encased in conduit along with the embankment construction lifts until reaching the final embankment surface. The existing monitoring instruments are presented in Figure 34.

Figure 34: Embankment Instrumentation Existing

6. Closure Requirements

General 6.1

It is understood that a detailed Project Closure Plan will be developed by others. REC has undertaken the proposed IWLTSF design with closure in mind, developing a preliminary closure concept, taking into consideration:

- The DMP's principal closure objectives for rehabilitated mines Guidelines for Preparing Mine Closure Plans (DMP, 2015b);
 - (physically) safe to humans and animals, 0
 - (geo-technically) stable, 0
 - (geo-chemically) non-polluting/non-contaminating, and
 - capable of sustaining an agreed post-mining land use.
- The Environmental Protection Authority's (EPA) objective for Rehabilitation and Decommissioning to ensure that premises are decommissioned and rehabilitated in an ecologically sustainable manner.

At this point in time, a preliminary closure concept has been developed for the IWLTSF which is to be refined during the Project in light of further technical investigations, as well as the possibility of processing oxide ores with ensuing deposition of oxidetailings (expected Non-Acid Forming, NAF) at the back end of the IWLTSF with both environmental and rehabilitation cost benefits to achieve required closure outcomes. The site's aridity and hypersaline (lacustrine) setting are important aspects to consider in terms of both restricted tailings weathering and final land use.

The closure concept for the IWLTSF proposed herein centres on infiltration control achieved through a combination of an engineered store and release cover system, and final landform upper-surface hydrology configured with a bunding network to redistribute ponded water from intense rainfall to maximise free water evaporation. The cover and bund system is to be vegetated with plant species endemic to the Project area to establish a sustainable (halophytic) arid-land ecosystem. This generic approach for the closure of TSFs has been in place at mine sites throughout the WA Goldfields for many years (Campbell 2007).

Ongoing exploration and metallurgical evaluations for the Project are aimed at defining sources of oxide ores from satellite pits for milling during the final stages of mining and are thus pertinent to the geochemical nature of the tailings deposited in the IWLTSF as the end of mine life is approached. A final layer of 0.5-1.0 m of oxide ore tailings across the entire tailings surface stands to simplify closure of the IWLTSF overall, especially where the oxide ores concerned are Non Acid Forming (NAF)1

Notwithstanding the potential milling of oxide ores at the back end of the Project, for the purposes of this document, it is assumed that no oxide ore tailings are placed as a final layer in the filling of the IWLTSF (i.e. closure of the IWLTSF needs to cater for fresh ore tailings classified as PAF, as above).

6.2 Closure Design Key Conceptual Elements

6.2.1 **Embankment Downstream Construction**

The IWLTSF embankments are proposed to be constructed in a downstream methodology utilising mine waste to form the bulk downstream zone. The mine waste forming the downstream zone is proposed to be placed and traffic compacted progressively as it is produced through the mine schedule, the final arrangement of the IWLTSF will be determined based on the design for the remaining stages. This will aid in facilitating a (geo-technically) stable structure throughout the life of the facility and post closure.

Reference: P19-11-PR-29-R01 Page 66 of 69 Date: 25 March 2025 Client: Bellevue Gold Limited Report Title: IWLTSF Stage 4 North and Stage 4 South Detailed Design Report Revision No: 0

¹ Should the oxide ores contain traces of sulphides (e.g. Sulphide-S values < 1%), so that the resulting oxide ore tailings classify as Low- Capacity-PAF, their placement as a final layer in the IWLTSF will still benefit closure of this facility.

Additionally, through progressively incorporating mine waste placement into the IWLTSF structure throughout the life-of-mine, rehabilitation costs are spread over the life of the facility, as opposed to being left to final mine closure.

It is expected that the mine waste from the underground development works, placed in the downstream zone of the embankments will form an erosion resistant structure. A thin layer of topsoil should be spread as best as practicable on the downstream batter surfaces as a growth medium to promote revegetation.

6.2.2 Backfilling of Rock Ring Structure

The rock ring void in the centre of the IWLTSF is to be backfilled with waste rock obtained from the rock ring walls and decant causeway embankments which are exposed above the adjoining tailings surface. The uppermost portion of the backfill profile will need to comprise weathered waste rock (oxide waste) that is enriched in 'fines' with appreciable clays and silts, and thus of low permeability.

Backfilling will ultimately provide a consistent, gradual grade toward the (now filled) rock ring area (global topographic low of the IWLTSF) in preparation for the store and release cover system to be placed over the entire tailings surface.

Provision will need to be made for a liner (e.g. HDPE) to be placed over the (filled) rock ring area to restrict infiltration when this topographic low becomes temporarily covered by ponded water from major storms.

6.2.3 Store and Release Cover System

Though the store and release cover system will require technical investigations for design, it will likely comprise a 1.0 m nominal layer of weathered waste rock placed across the entire tailings surface of the IWLTSF.

Preferably, the weathered waste rock will be oxide waste enriched in 'fines' that contain clays and silts, and thus of low to moderate permeability with at least a moderate water holding capacity. Volumetrically, the IWLTSF cover system of this form will require approximately 0.75 Mm³ of weathered waste rock. Further site investigations will be required in order to delineate borrow areas for sourcing the amounts of weathered waste rock needed for cover construction.

6.2.4 Bunded Evaporation Basins

To cater for water inputs from major storms, a network of bunded evaporation basins is to be established across the covered upper-surface of the IWLTSF. In this way, deep ponds of stormwater are constrained, and free water evaporation from shallow ponded water maximised (e.g. Bennett (2007) for the Thunderbox Gold Mine).

For the Bellevue IWLTSF, a network of eight (8) individual evaporation basins is proposed with areas ranging from 8.2 ha to 13.0 ha. Bunds with a maximum height of 2.5 m (located across beaches and broadly centrally), extending out to 0.0 m adjacent to the perimeter embankments have been designed to store a 1:100 year 72- hour rainfall event while maintaining 1.0 m of freeboard to the bund crest. For the same reason given above for the backfilled rock ring area (i.e. restricting infiltration by ponded water from major storms), provision should be made for a liner (e.g. HDPE) in the topographic low area immediately adjacent to the across-beach bund in each basin, as well as a portion of the upstream face of the bunds. Though further work would be needed for final design, such lining may need to correspond to approximately 10% of each evaporation basin to accommodate water inputs up to a 1:100 year 72-hour rainfall event.

Bunding for the evaporation basins will also need to be provided for physical stability and erosion resistance over the longer term. The preliminary closure design arrangement for the upper-surface of the IWLTSF closure design, based on the preliminary modelling for the final stage is shown in plan on Figure 35.

NTERNAL WATER CONTAINMENT BURGS
(APPROXIMATELY 25 B MINA HEIGHT)

FOUR BIND, STAGE B PERMETER EMBANMENT BL 492.0 m

INTERNAL WATER CONTAINMENT BURGS
(APPROXIMATELY 25 B MINA HEIGHT)

FOUR BIND, STAGE B EXTENTS
(DOVED IN AND CAPPED)

INTERNAL WATER CONTAINMENT BL 492.0 m

INTERNAL WATER CONT

Figure 35: Rehabilitated IWLTSF Upper-Surface Closure Concept (Plan View)

6.3 Timing of Decommissioning and Rehabilitation Works

Preparation for IWLTSF closure can be undertaken throughout the operation (e.g. weathered waste rock can begin to be stockpiled on top of the IWLTSF embankments, ready to be later accessed for construction of the store and release cover system).

Once the IWLTSF has reached capacity and no further deposition is to occur, the initial stages of decommissioning will commence starting with pumping as much supernatant water as possible out from the rock ring. As the tailings surface around the rock ring dewaters and becomes trafficable, the rock ring and decant causeway embankments standing proud of the final tailing surface need to be dozed down to backfill the rock ring sump; the lower sections of the rock ring sump will be filled with fine tailings which entered the sump during earlier IWLTSF operation. Dewatering of the tailings beaches upstream from the rock ring area will occur at a faster rate via evaporative drying and thus develop strength to support trafficking sooner.

Based on the laboratory weathering testing completed, the lag-time to acidification for the Bellevue tailings derived from fresh ores has been set at 18 months following exposure (e.g. surface of a dormant beach) in the IWLTSF (Section 3.1.4). In terms of commencing and completing the earthworks needed for the decommissioning and rehabilitation of the IWLTSF, the surface-zone tailings in the filled facility may be exposed for up to 6-12 months. Central to safely and effectively backfilling the rock ring sump and placing the store and release cover system is development of sufficient undrained shear strength within the surface tailings for trafficking by heavy earthmoving equipment. This temporary exposure during closure earthworks falls within the lag time to acidification and, as such, poses no adverse impact. Moreover, aside from occasional wetting by episodic rainfall, the surface tailings will remain at residual moisture levels, preventing any significant biogeochemical oxidation of pyrrhotite and pyrite. Therefore, the required exposure period for IWLTSF closure presents no environmental risk.

6.4 Performance Monitoring against Closure Criteria

Closure criteria and a post closure monitoring plan will be developed at a later stage in conjunction with a site wide closure plan.

7. References

- 1. ANCOLD 2012, Australian National Committee on Large Dams: Guidelines on the Consequence Categories for Dams
- ANCOLD 2019, Australian National Committee on Large Dams: Guidelines on Tailings Dams Planning, Design, Construction,
 Operation and Closure
- ANCOLD 2019, Australian National Committee on Large Dams: Guidelines for Dams and Appurtenant Structures for Earthquakes
- 4. BoM 2016/17, Bureau of Meteorology Website
- DMP 2013, Code of Practice (CoP): Tailings Storage Facilities in Western Australia
- 6. DMP 2015, Guide to Departmental requirements for the management and closure of tailings storage facilities (TSFs)
- 7. DMP 2015, Guidelines for Preparing Mine Closure Plans
- 8. DMP 2015, Guide to the preparation of a design report for tailings storage facilities (TSFs)
- 9. Geoscience Australia 2018, The 2018 Australian Earthquake Hazard Map
- Vucetic, M 1992, Soil properties and seismic response, Proc. Earthquake Engineering 10th World Congress, pp. 1199 –
 1204
- 11. Johns, C. A., 'Geotechnical Properties of Mine Tailings and Implication for Tailings Storage Facility Design' Proceedings of GEO2010, Calgary, Alberta.
- 12. Flavell, D.J. and Belstead, B.S., 1986. Losses for design flood estimation in Western Australia. In: Proceedings of the Hydrology and Water Resources Symposium. Brisbane: Institution of Engineers (Australia), pp.203-208.
- 13. MacDonald, T.C. and Langridge-Monopolis, J., 1984. Breaching Characteristics of Dam Failures. Journal of Hydraulic Engineering, 110(5), pp.567-586.
- 14. Seddon, K.D. (2010). Approaches to estimation of run-out distances for liquefied tailings. In R. Jewell & A.B. Fourie (Eds.), Mine Waste 2010: Proceedings of the First International Seminar on the Reduction of Risk in the Management of Tailings and Mine Waste (pp. 63-70). Australian Centre for Geomechanics, Perth.
- 15. Rourke, H., & Luppnow, D. (2015). The risks of excess water on tailings facilities and its application to dam-break studies. In Proceedings of the Tailings and Mine Waste Management for the 21st Century (pp. 225–230). The Australasian Institute of Mining and Metallurgy: Melbourne.
- 16. Bennett, J., 2007. Evaporation from mine water storages: A case study from the Thunderbox Gold Mine. In: Proceedings of the 2007 Australian Mine Ventilation Conference. Newcastle: Australasian Institute of Mining and Metallurgy, pp. 123-130.

8. Limitation

Resource Engineering Consultants Pty Ltd (REC) has prepared this geotechnical report for the detailed level design for Stage 4 North and Stage 4 South of the Integrated Waste Landform Tailings Storage Facility (IWLTSF) at the Bellevue Gold Ltd (BGL) Bellevue Gold Project (BGP). This report is provided for the exclusive use of BGL and their consultants for this project only and for the purposes as described in the report. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of REC, does so entirely at its own risk and without recourse to REC for any loss or damage. In preparing this report REC has necessarily relied upon information provided by the client and/or their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and/or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after REC's field testing has been completed.

REC's advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by REC in this report may be affected by undetected variations in ground conditions across the site between and beyond the sampling and/or testing locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. REC cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by REC. This is because this report has been written as advice and opinion rather than instructions for construction.

The contents of this report do not constitute formal design components such as are required, by the Health and Safety Legislation and Regulations, to be included in a Safety Report specifying the hazards likely to be encountered during construction and the controls required to mitigate risk. This design process requires risk assessment to be undertaken, with such assessment being dependent upon factors relating to likelihood of occurrence and consequences of damage to property and to life. This, in turn, requires project data and analysis presently beyond the knowledge and project role respectively of REC.

REC may be able, however, to assist the client in carrying out a risk assessment of potential hazards contained in this report, as an extension to the current scope of works, if so requested, and provided that suitable additional information is made available to REC.

Any such risk assessment would, however, be necessarily restricted to the geotechnical components set out in this report and to their application by the project designers to project design, construction, maintenance and demolition.

Appendix i to iii

Client: Bellevue Gold Limited

Appendix 1 – Tailings Storage Data Sheet

Project Data	
Project Operator: Bellevue Gold Ltd	
Project Name: Bellevue Gold Project	Date: 25/03/2025
TSF Name: IWLTSF Stage 4	Commodity: Gold
Name of data provider: Resource Engineering Consultants Pty Ltd	Phone:
TSF centre co-ordinates (GDA 94):	
6,942,500 m North	259,340 m East
Mining Tenement and Holder(s) Details: Bellevue Gold Ltd	
TSF Data	
TSF Status: □ Proposed ✓ Active	□ Non-Active □ Decommissioned
☐ Rehabilitated ☐ Closed	
Type of TSF:1 Paddock (Ring-Dyke)	Number of cells. ² 1
Hazard rating:3 Medium	TSF category.⁴ Category 1
Catchment area 5 69.9 ha	Nearest water course: Lake Miranda
Date deposition started (mm/yy): 10/2023 (IPTSF Stage 1)	Date deposition completed (mm/yy): Ongoing
Tailings discharge method. ⁶ Multiple-Spigots	Water recovery method ⁷ Pumped Central Decant / Turret Pump
Bottom of facility sealed or lined? No	Type of seal or liner. ^e NA
Depth to original groundwater level: m	Original groundwater TDS/pH mg/L
Ore Process:9 CIL/CIP	Tailings Deposition Rate: 10 1.35 to 1.6 Mtpa
Impoundment volume (Present): 776,500 (mid Jan 25) m ³	Expected maximum: 4,587,100 m ³
Mass of solids stored (Present): 1,233,300 (mid Jan 25) tonnes	Expected maximum: 6,475,100 tonnes
Above Ground Facilities	
Foundation Soils:	Foundation Rocks:
Lateritic Clayey Silt with Sand / Silty Sand	Calcrete/Basalt
Starter Bund Construction Materials: ¹¹ Mine Waste, Subgrade, HDPE Liner	Wall Lifting By:
200 W 20 St SC 2010 Q200 W 194	☐ Upstream
Wall Construction Method/Materials: Mine Waste, Subgrade, HDPE Liner	Wall Lifting Material:12
•	✓ Mechanically ☐ Hydraulically
Present maximum wall height agl: 13 23.0 m	Expected maximum: 27.0 m
Crest length (present): 2,100 m	Expected maximum: 2,500 m
Impoundment Area (present): 38.7 ha	Expected maximum: 55.0 ha
Below Ground Facilities	
Initial pit depth (Maximum) . m	Area of pit base: ha
Thickness of tailings (present): m	Expected maximum: m
Current surface area of tailings: ha	Final surface area of tailings.
Properties of Tailings and Return Water	
TDS: mg/L pH:	Solids Content: 55 % Density: 1.4 t/m ³
Potentially hazardous substances:14	WAD CN: mg/l Total CN: mg/l
	Any other NPI listed substances in the TSF? ¹⁶ No

Explanatory notes for completing tailings storage data sheet

The following notes are provided to assist the proponent to complete the tailings storage data sheet.

- 1. Paddock (ring-dyke), cross-valley, side-hill, in-pit, depression, waste fill, central thickened discharge, stacked tailings.
- 2. Number of cells operated using the same decant arrangement.
- 3. See Table 1 Hazard rating system in the Code of Practice.
- 4. See Table 2 Matrix of hazard ratings in the Code of Practice.
- 5. Internal for paddock (ring-dyke) type, internal plus external catchment for other facilities.
- 6. End of pipe, (fixed), end of pipe (movable) single spigot, multi-spigots, cyclone, central thickened discharge (CTD).
- 7. Gravity feed decant, pumped central decant, floating pump, wall/side mounted pump.
- 8. Clay, synthetic.
- 9. See list below for ore process method.
- 10. Tonnes of solids per year.
- 11. Record only the main material(s) used for construction, e.g. clay, sand, silt, gravel, laterite, fresh rock, weathered rock, tailings, clayey sand, clayey gravel, sandy clay, silty clay, gravelly clay or any combination of these materials.
- 12. Any one or combination of the materials listed under item 11 above.
- 13. Maximum wall height above the ground level (not AHD or RL).
- 14. Arsenic, Asbestos, Caustic soda, Copper sulphide, Cyanide, Iron sulphide, Lead, Mercury, Nickel sulphide, Sulphuric acid, Xanthates, radioactive elements.
- 15. NPI National pollution inventory (contact Department of Environmental Protection for information on NPI listed substances).

Ore Process Methods

The ore process methods may be recorded as follows:

Acid Leaching (Atmospheric) Flotation

Acid Leaching (Pressure) Gravity Separation
Alkali Leaching (Atmospheric) Heap Leaching

Alkali Leaching (Pressure) Magnetic Separation

Bayer Process Ore Sorters

Becher Process Pyromet

Crushing and Screening SX/EW (Solvent Extraction/Electro Wining)

CIL/CIP VAT Leaching

Washing and Screening

Appendix 2 – Certificate of Compliance

CERTIFICATION OF COMPLIANCE

Tailings Storage Facility Design Report

For and on behalf of Resource Engineering Consultant Pty Ltd.

I, being a duly authorised officer of the above company and a qualified geotechnical engineer holding professional registration by a professional body, do hereby certify and confirm that the **Bellevue Gold Ltd** tailings storage facility at the **Bellevue Gold** mine site has been designed in accordance with the current edition of the Tailings storage facilities in Western Australia – code of practice issued by the Department of Mines and Petroleum, Western Australia and the design is referenced as **P19-11-PR-29-R01** dated **25 March 2025**.

Date: 25 March 2025

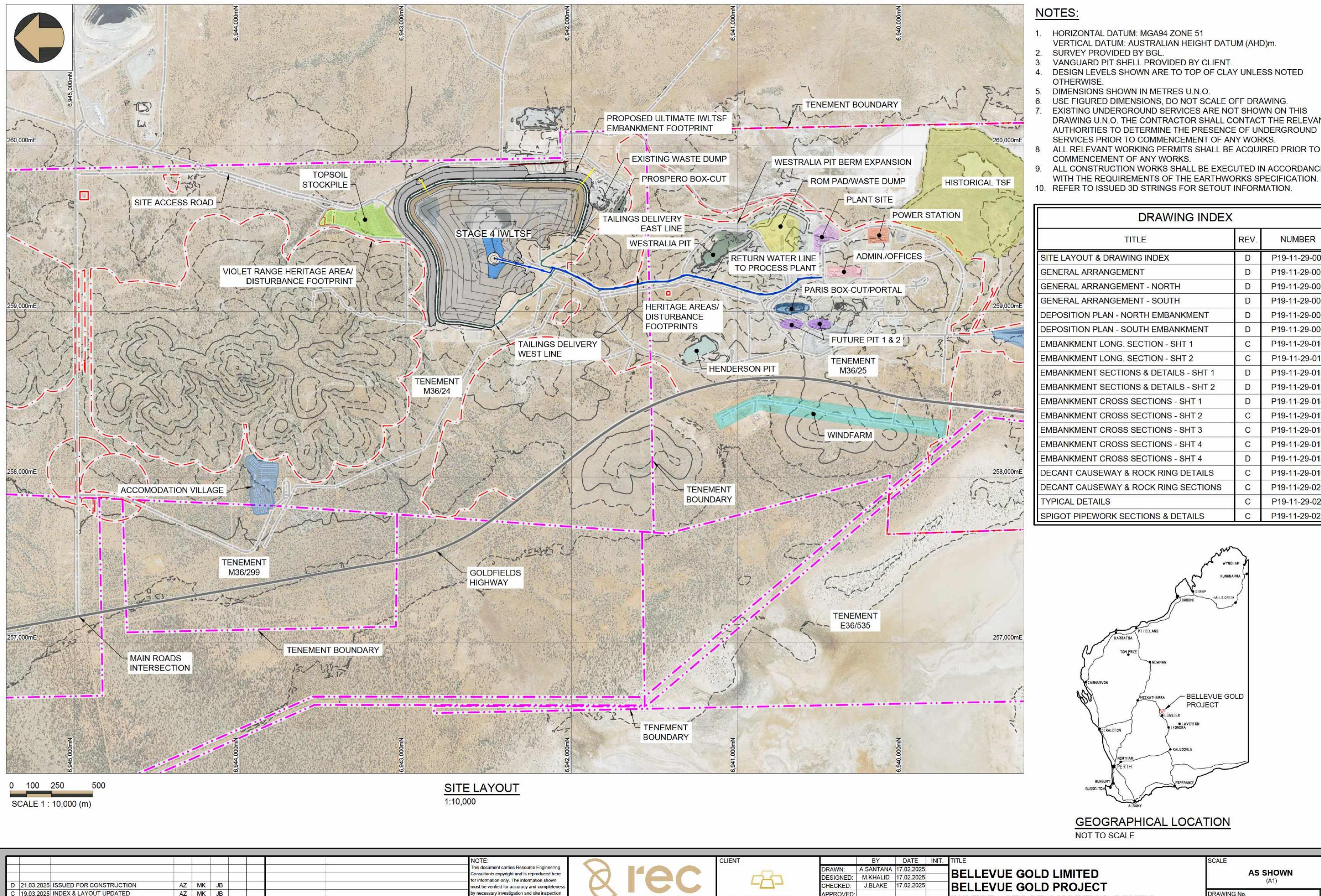
Appendix 3 – Further Information

This list is provided for general reference but is not exhaustive.

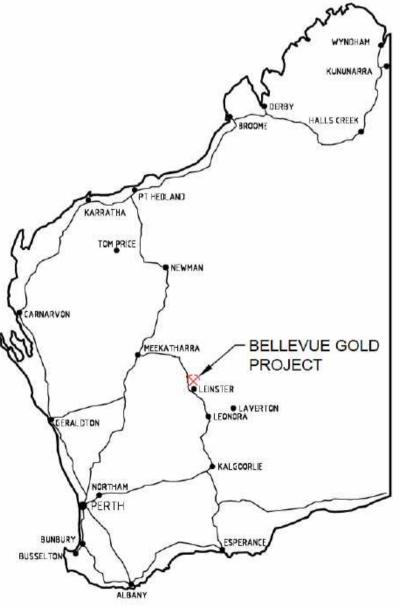
- Department of Mines and Petroleum, www.dmp.wa.gov.au
 - o Tailings storage facilities in Western Australia code of practice.
 - o Safe design of buildings and structures code of practice
 - Development of an operating manual for tailings storage guideline
 - o Tailings dams HIF audit guideline and template
 - o Mines survey code of practice

Information is available online to assist with the submission of mining proposals, plans and reports involving TSFs as required by legislation and the tenement conditions applied under the Mining Act 1978.

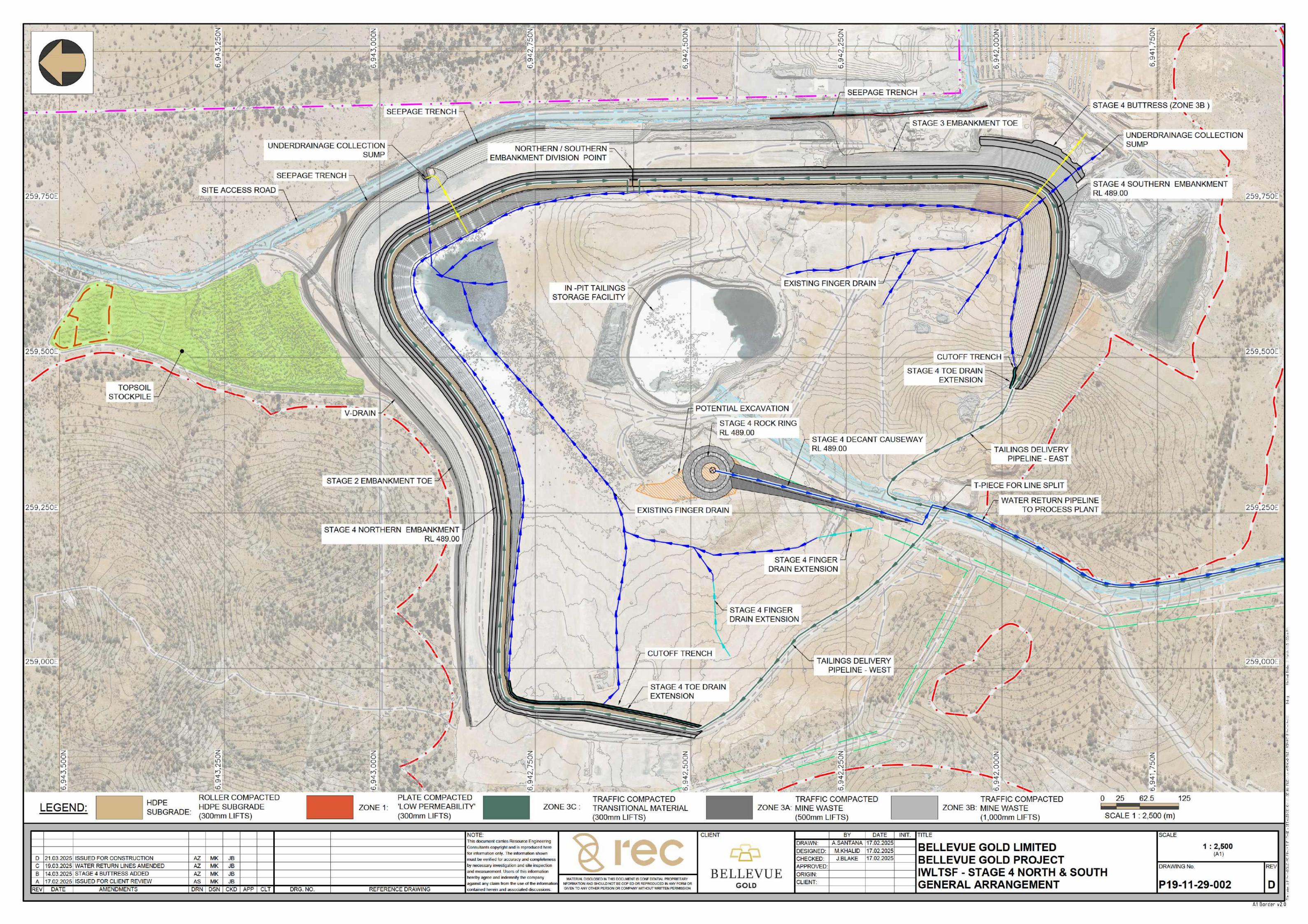
Guidance includes:

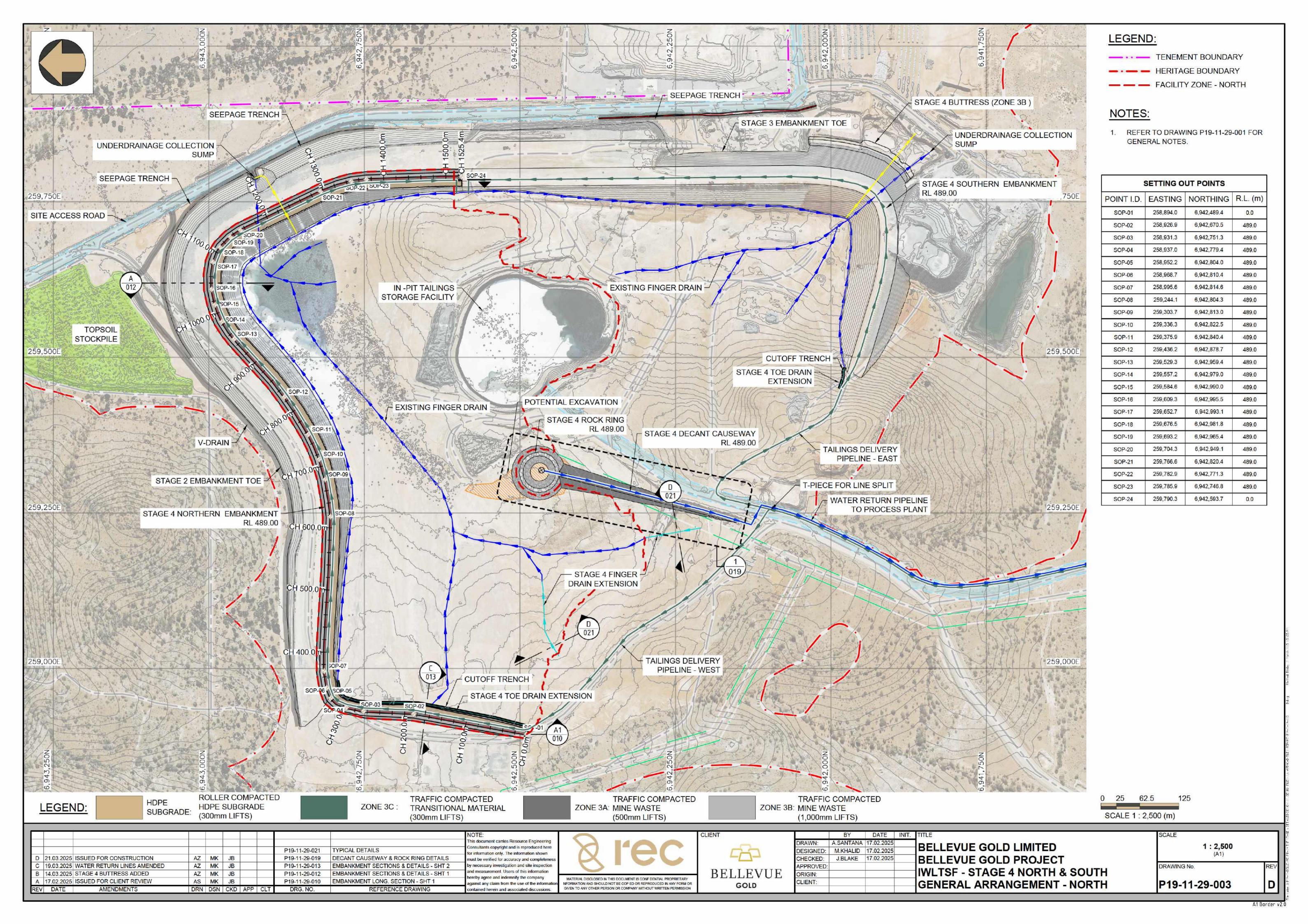

- o Guidelines for Geotechnical considerations in open pit mines
- o Guidelines for mining proposals in Western Australia
- Guidelines for preparing mine closure plans
- The Australian National Committee on Large Dams Inc. (ANCOLD), www.ancold.org.au
 - o Guidelines on tailing dams: Planning, design, construction, operations and closure (2012)
 - Guidelines for Design of Dams for Earthquakes (1998)
- Department of Industry Tourism and Resources, <u>www.ret.gov.au</u>
 - Leading practice sustainable development program for the mining industry Tailings management guidelines (2007)
- Federal Emergency Management Agency, USA, <u>www.fema.gov</u>
 - o Federal Guidelines for dam safety: Earthquake analyses and design of dams

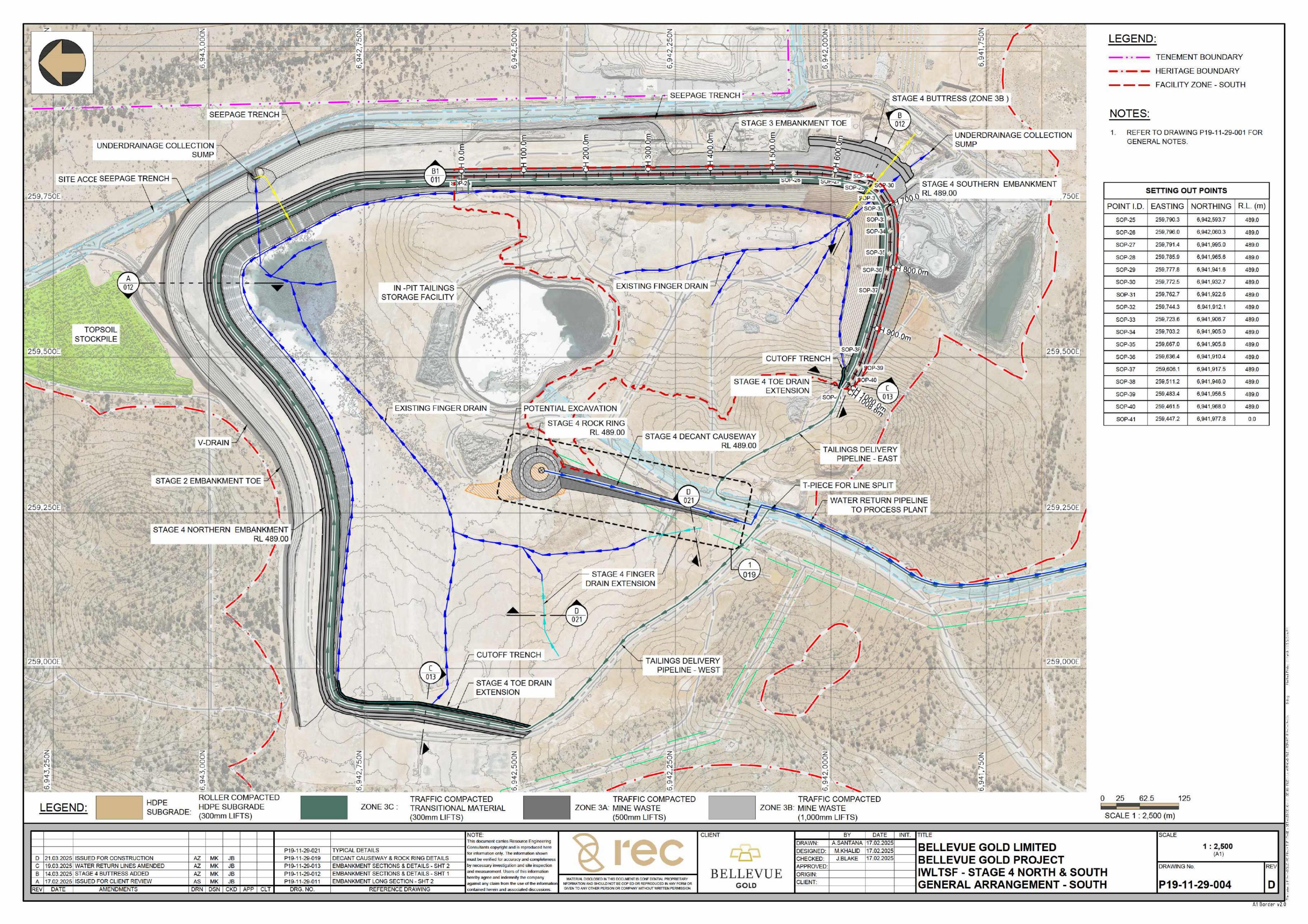
Appendix A

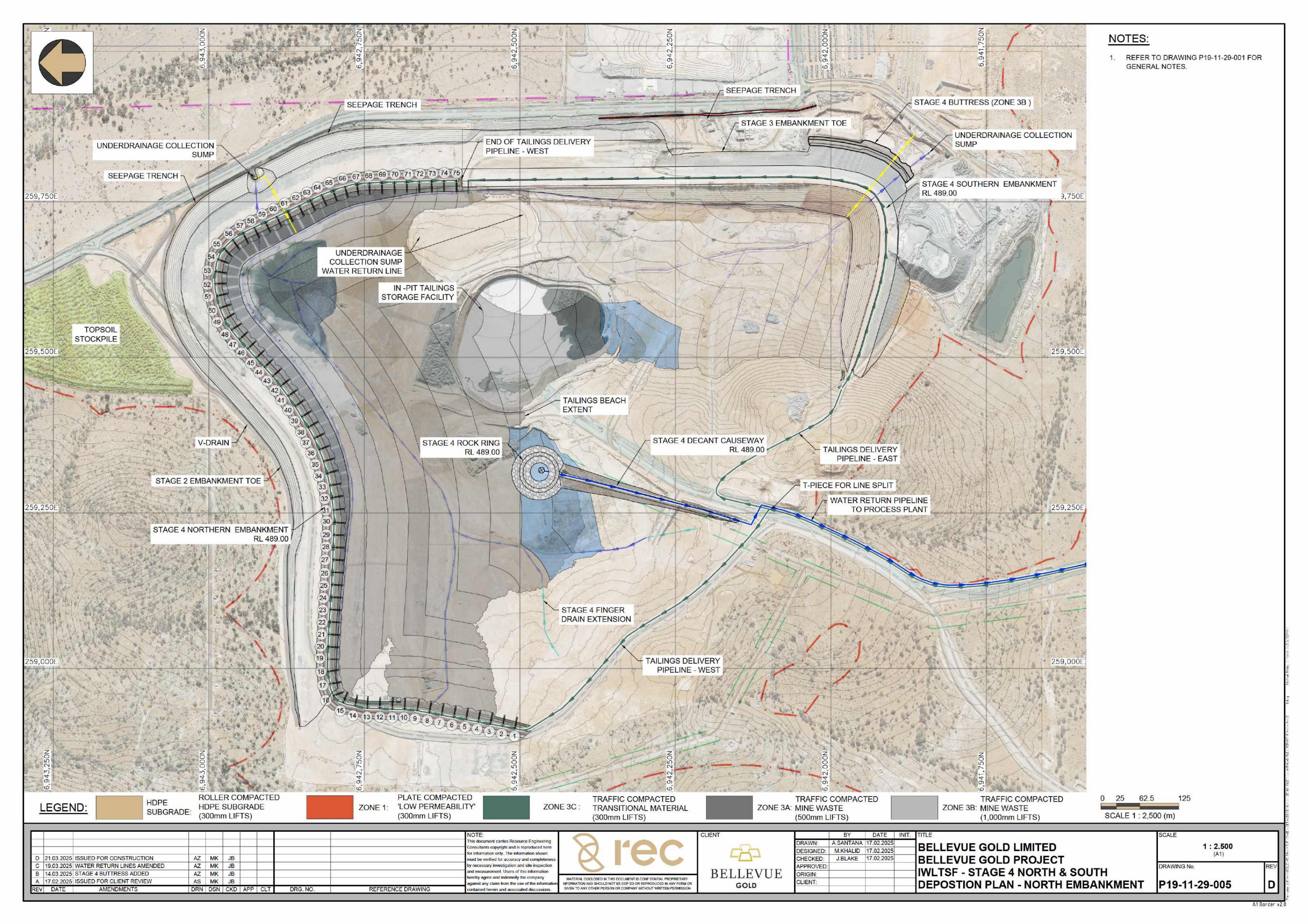

IWLTSF Stage 4 North and Stage 4 South Detailed Design Drawings

Reference: P19-11-PR-29-R01 Client: Bellevue Gold Limited

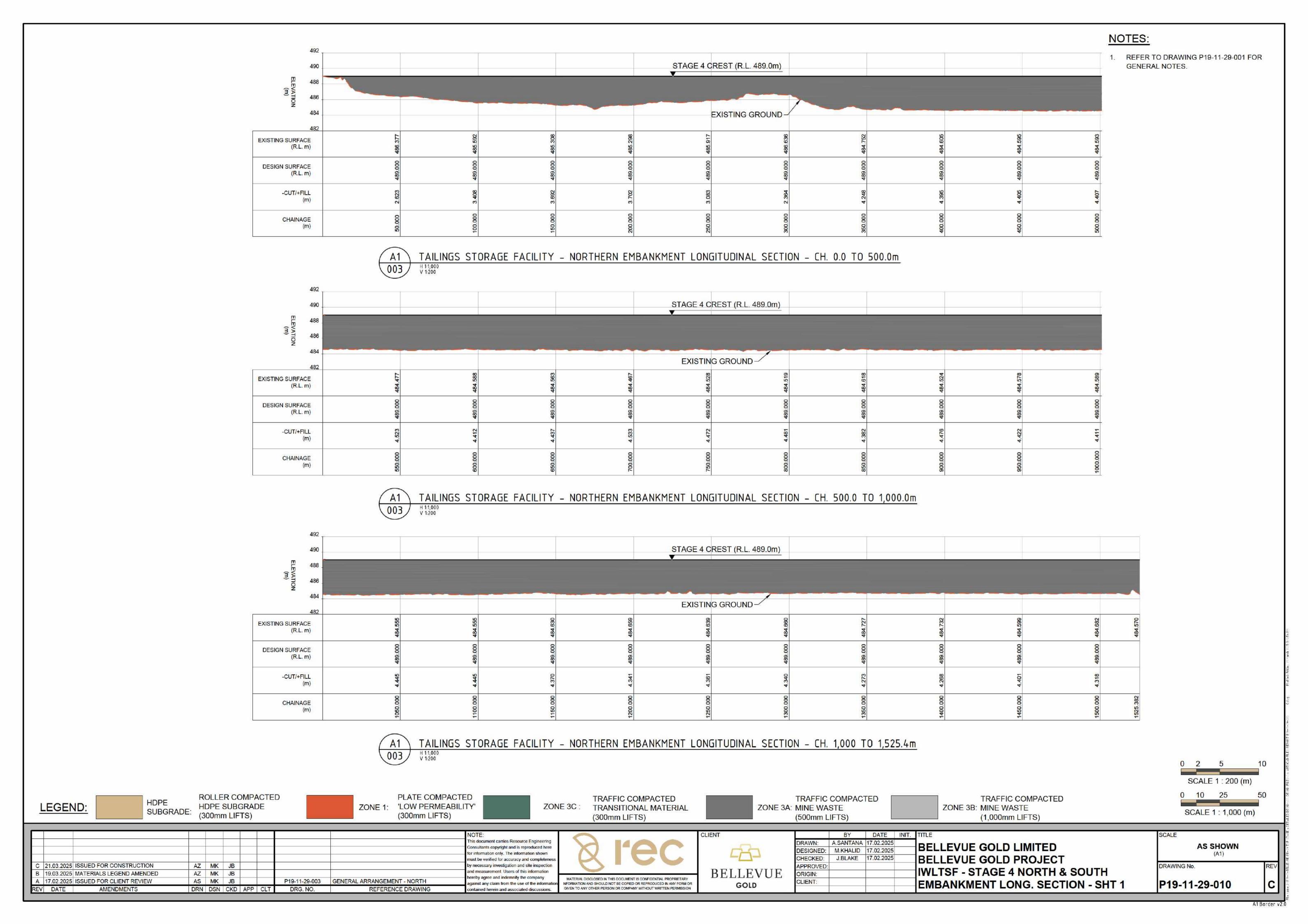


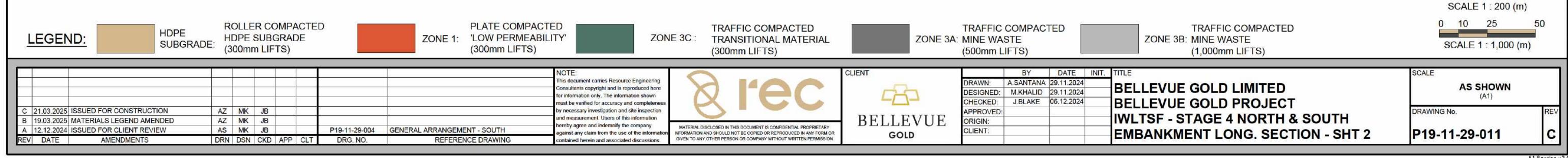

- 4. DESIGN LEVELS SHOWN ARE TO TOP OF CLAY UNLESS NOTED
- EXISTING UNDERGROUND SERVICES ARE NOT SHOWN ON THIS DRAWING U.N.O. THE CONTRACTOR SHALL CONTACT THE RELEVANT AUTHORITIES TO DETERMINE THE PRESENCE OF UNDERGROUND
- 8. ALL RELEVANT WORKING PERMITS SHALL BE ACQUIRED PRIOR TO
- 9. ALL CONSTRUCTION WORKS SHALL BE EXECUTED IN ACCORDANCE

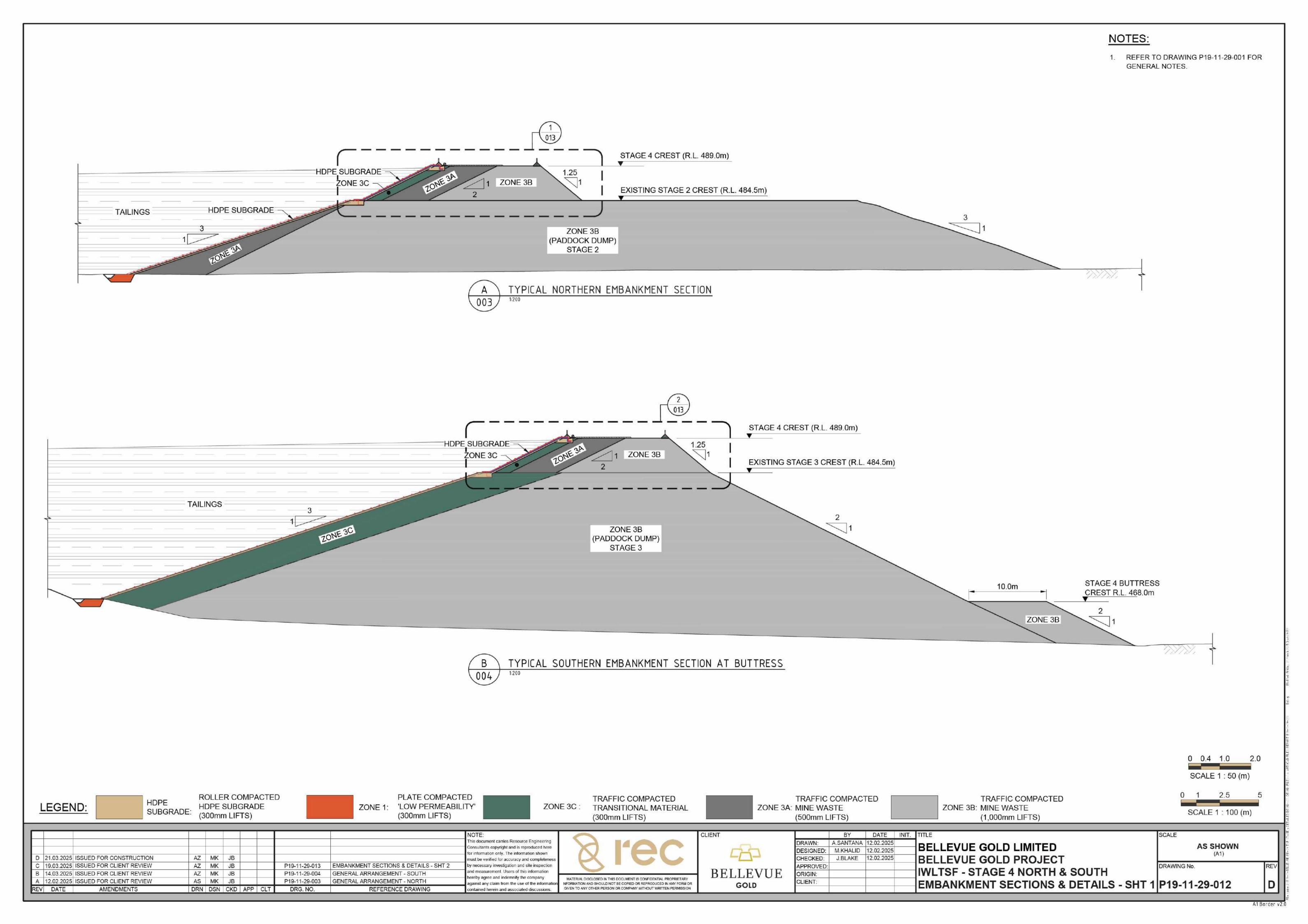

DRAWING INDEX					
TITLE	REV.	NUMBER			
SITE LAYOUT & DRAWING INDEX	D	P19-11-29-001			
GENERAL ARRANGEMENT	D	P19-11-29-002			
GENERAL ARRANGEMENT - NORTH	D	P19-11-29-003			
GENERAL ARRANGEMENT - SOUTH	D	P19-11-29-004			
DEPOSITION PLAN - NORTH EMBANKMENT	D	P19-11-29-005			
DEPOSITION PLAN - SOUTH EMBANKMENT	D	P19-11-29-006			
EMBANKMENT LONG. SECTION - SHT 1	С	P19-11-29-010			
EMBANKMENT LONG. SECTION - SHT 2	С	P19-11-29-011			
EMBANKMENT SECTIONS & DETAILS - SHT 1	D	P19-11-29-012			
EMBANKMENT SECTIONS & DETAILS - SHT 2	D	P19-11-29-013			
EMBANKMENT CROSS SECTIONS - SHT 1	D	P19-11-29-014			
EMBANKMENT CROSS SECTIONS - SHT 2	С	P19-11-29-015			
EMBANKMENT CROSS SECTIONS - SHT 3	С	P19-11-29-016			
EMBANKMENT CROSS SECTIONS - SHT 4	С	P19-11-29-017			
EMBANKMENT CROSS SECTIONS - SHT 4	D	P19-11-29-018			
DECANT CAUSEWAY & ROCK RING DETAILS	С	P19-11-29-019			
DECANT CAUSEWAY & ROCK RING SECTIONS	С	P19-11-29-020			
TYPICAL DETAILS	С	P19-11-29-021			
SPIGOT PIPEWORK SECTIONS & DETAILS	С	P19-11-29-025			



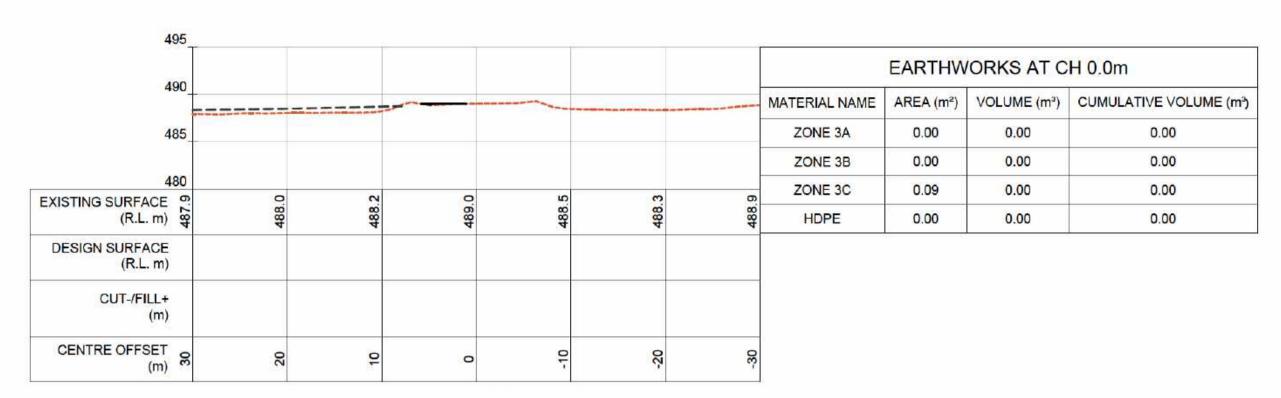
						4		•	7			
						NOTE:		CLIENT		BY DATE	INIT. TITLE	SCALE
						This document carries Resource Engineering			DRAWN:	A.SANTANA 17.02.2025	DELLEVUE COLD LIMITED	AS SHOWN
						Consultants copyright and is reproduced here			DESIGNED:	M.KHALID 17.02.2025	BELLEVUE GOLD LIMITED	AS SHOWN
D 21.03.2025 ISSUED FOR CONSTRUCTION	AZ N	MK .	JB			for information only. The information shown must be verified for accuracy and completeness			CHECKED:	J.BLAKE 17.02.2025	BELLEVUE GOLD PROJECT	(A1)
C 19.03.2025 INDEX & LAYOUT UPDATED	AZ I	1.1	2.500			by necessary investigation and site inspection		,	APPROVED:		CONTRACTOR CONTRACTOR CONTRACTOR AND THE PROPERTY CONTRACTOR CONTR	DRAWING No. REV
B 14.03.2025 INDEX UPDATED	AZ I			1		and measurement. Users of this information		BELLEVUE	ORIGIN:		IWLTSF - STAGE 4 NORTH & SOUTH	J
A 17.02.2025 ISSUED FOR CLIENT REVIEW	AS N			P19-11-29-001	GENERAL ARRANGEMENT - STAGE 4	hereby agree and indemnify the company	MATERIAL DISCLOSED IN THIS DOCUMENT IS CONFIDENTIAL PROPRIETARY	AREA CONTRACTOR AND AREA C	CLIENT:			D40 44 00 004
REV DATE AMENDMENTS			KD APP CLT		REFERENCE DRAWING	against any claim from the use of the information contained herein and associated discussions.	NFORMATION AND SHOULD NOT BE COPIED OR REPRODUCED IN ANY FORM OR GIVEN TO ANY OTHER PERSON OR COMPANY WITHOUT WRITTEN PERMISSION	GOLD	OLILIVI.		SITE LAYOUT & DRAWING INDEX	P19-11-29-001 B
THE PART AMENDMENTS	DIVIN D		TO THE OLI	51,0.110.	THE ENLINE BILAVIIVO	contained never and associated discussions.		ani-		1		

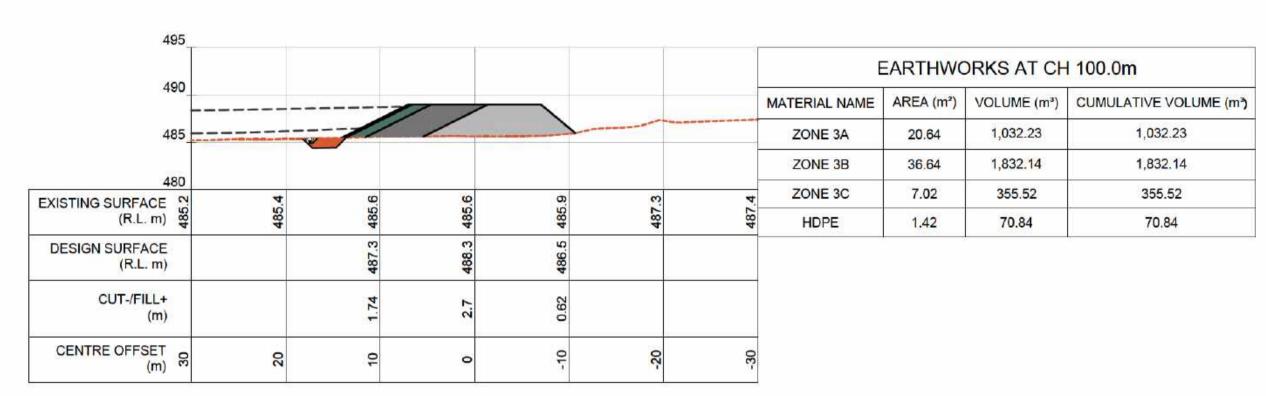



1. REFER TO DRAWING P19-11-29-001 FOR GENERAL NOTES.



TAILINGS STORAGE FACILITY - SOUTHERN EMBANKMENT LONGITUDINAL SECTION - CH. 0.0 TO 500.0m


TAILINGS STORAGE FACILITY - SOUTHERN EMBANKMENT LONGITUDINAL SECTION - CH. 500.0 TO 1,011.1m H 1:1,000 V 1:200 004



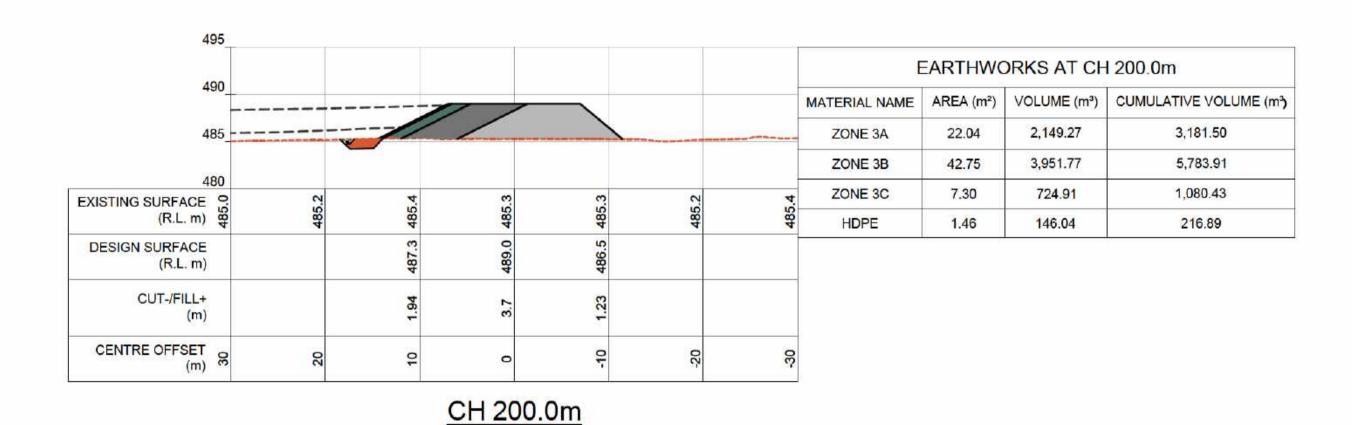
1. REFER TO DRAWING P19-11-29-001 FOR GENERAL NOTES.

CH 0.0m

CH 100.0m

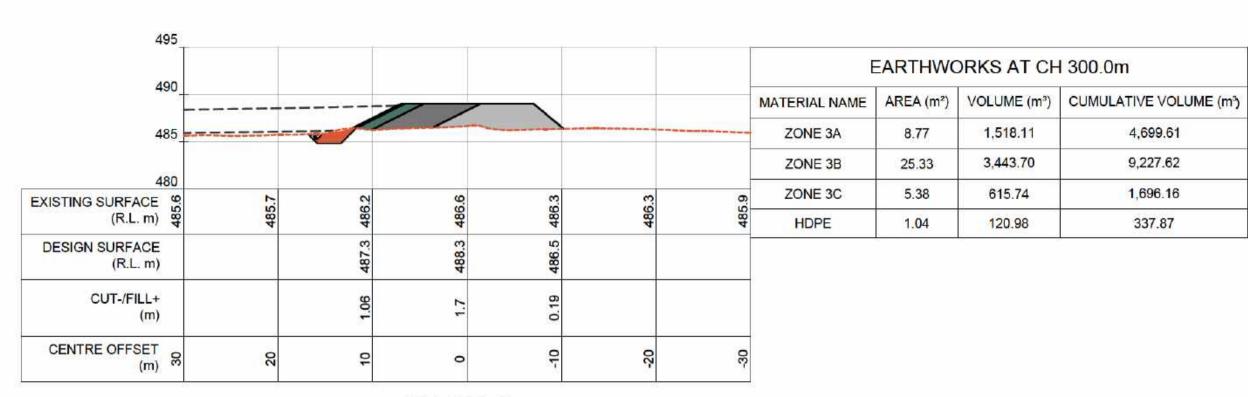
AZ MK JB

AS MK JB

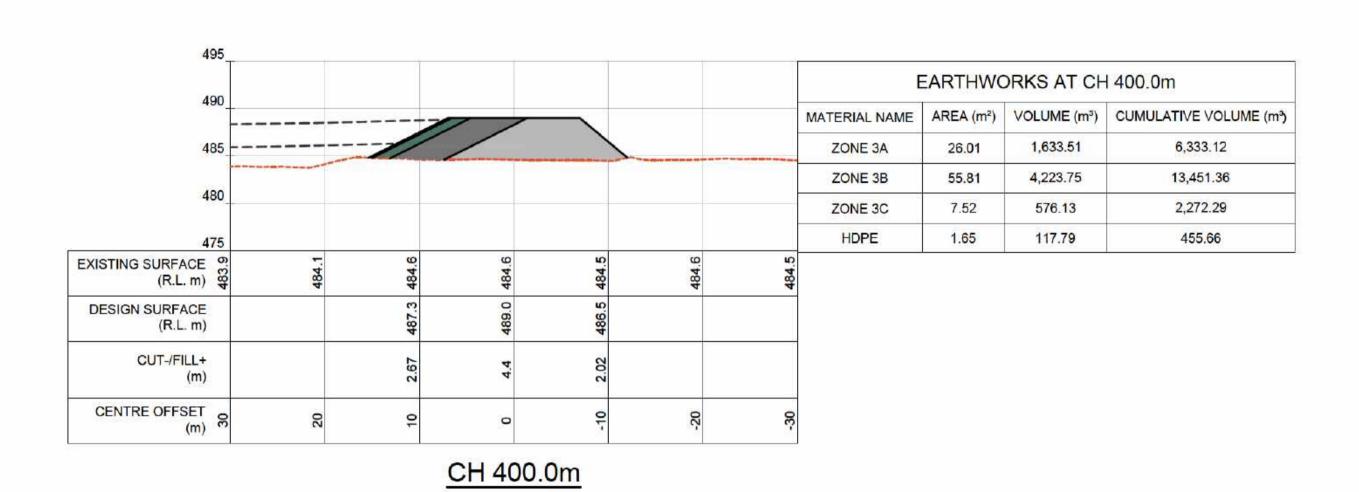

DRN DSN CKD APP CLT

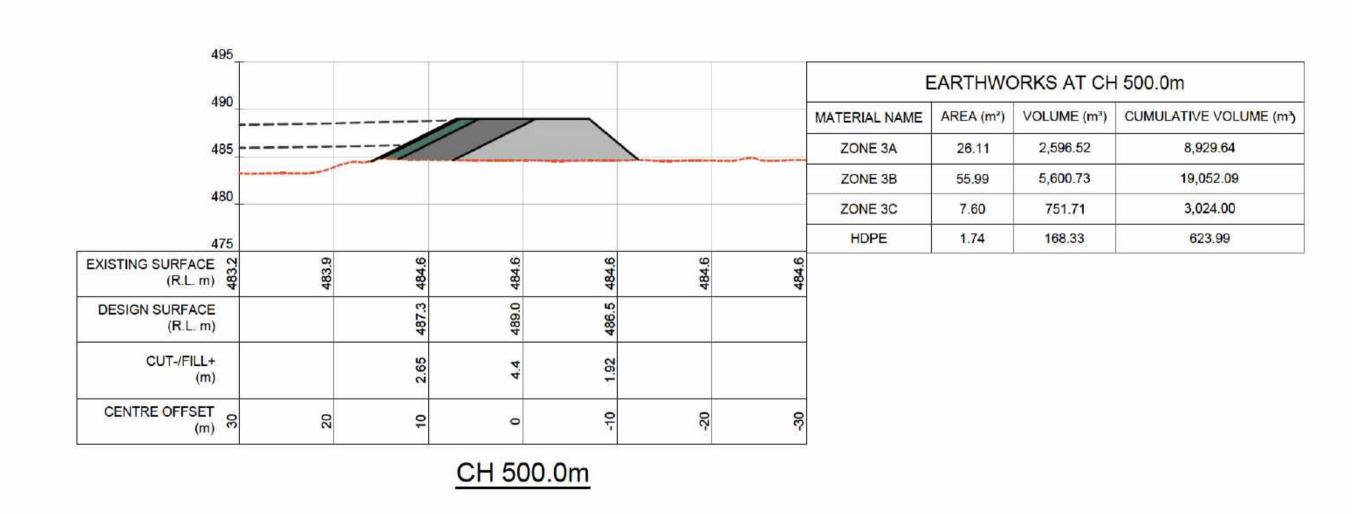
B 14.03.2025 ISSUED FOR CLIENT REVIEW

A 17.02.2025 ISSUED FOR CLIENT REVIEW


AMENDMENTS

REV DATE




DRG. NO.

REFERENCE DRAWING

CH 300.0m

EMBANKMENT CROSS SECTIONS - SHT 1

TAILINGS STORAGE FACILITY - NORTHERN EMBANKMENT CROSS SECTIONS - CH. 0.0 TO 500.0m

MATERIAL DISCLOSED IN THIS DOCUMENT IS CONFIDENTIAL PROPRIETARY.

NFORMATION AND SHOULD NOT BE COPIED OR REPRODUCED IN ANY FORM OR

GIVEN TO ANY OTHER PERSON OR COMPANY WITHOUT WRITTEN PERMISSION

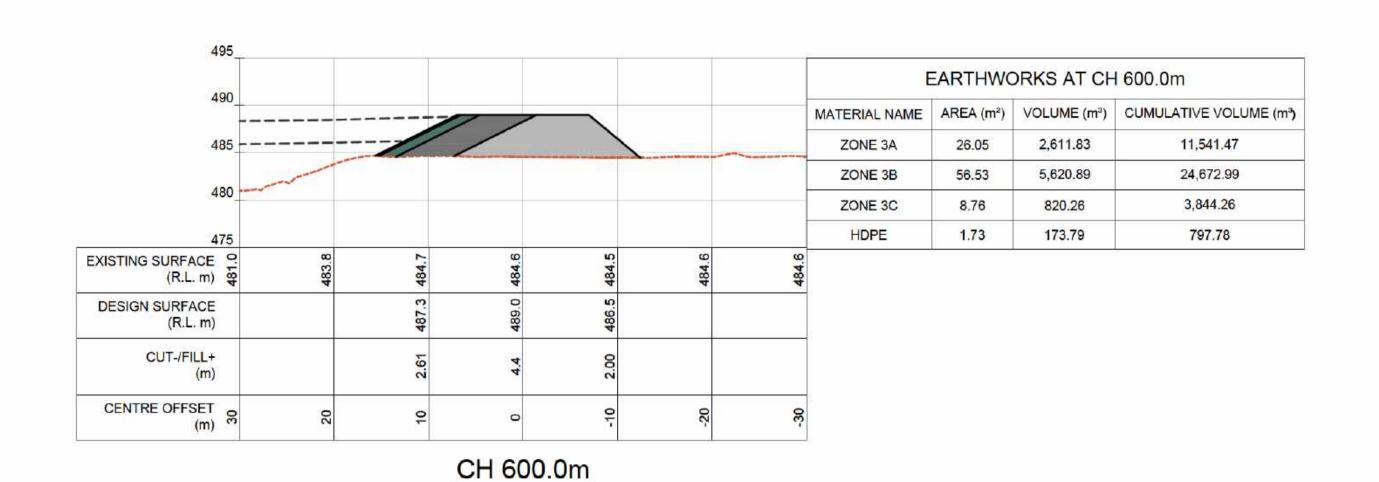
and measurement. Users of this information

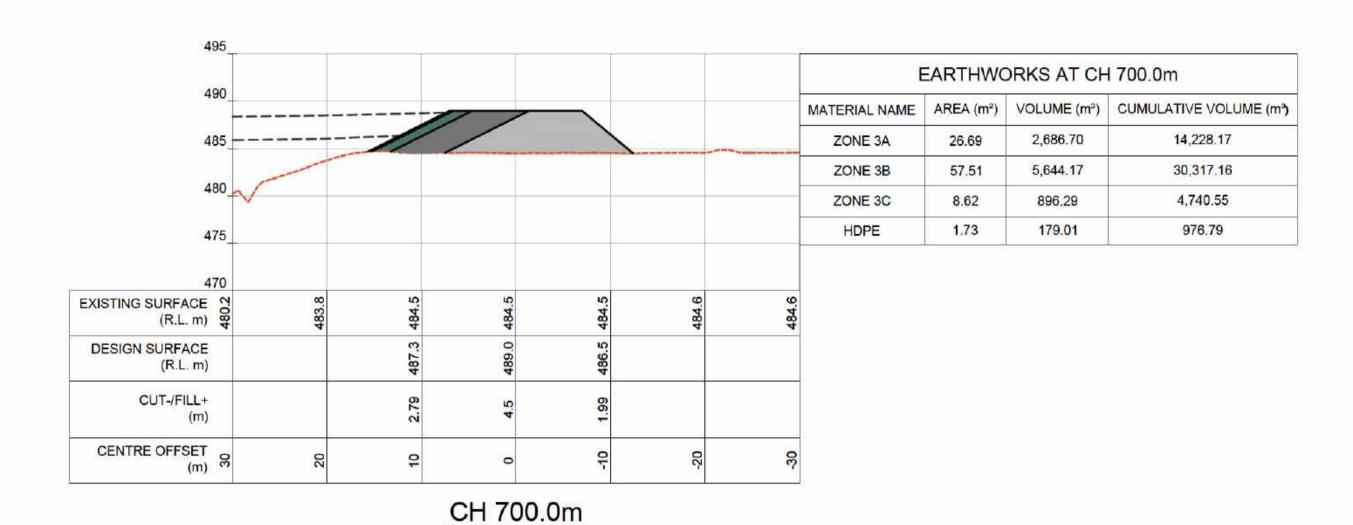
hereby agree and indemnify the company

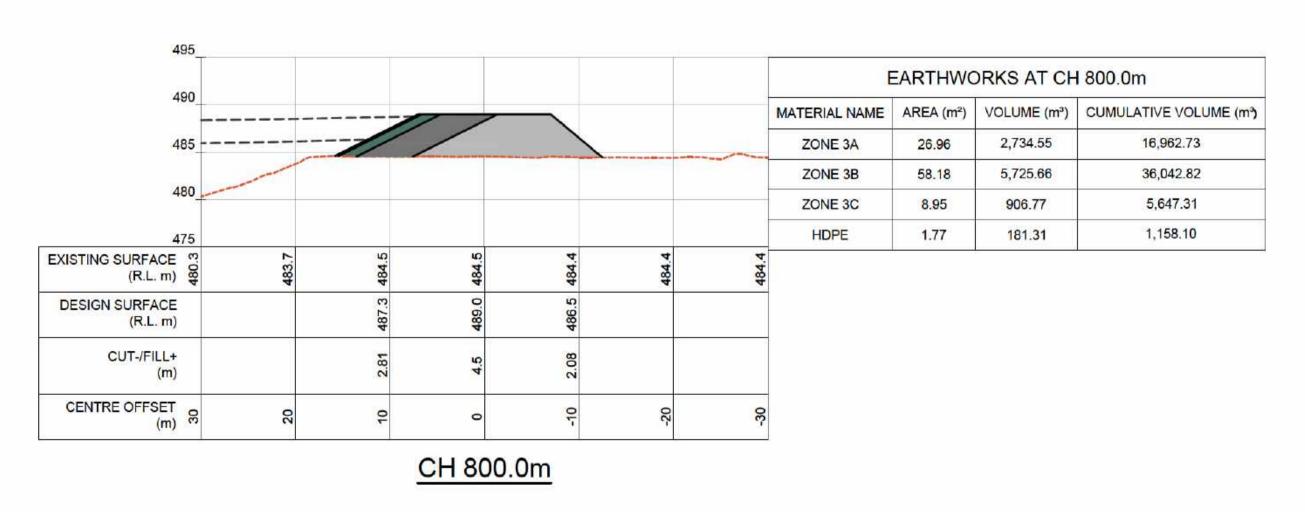
gainst any claim from the use of the inform

contained herein and associated discussions.

BELLEVUE

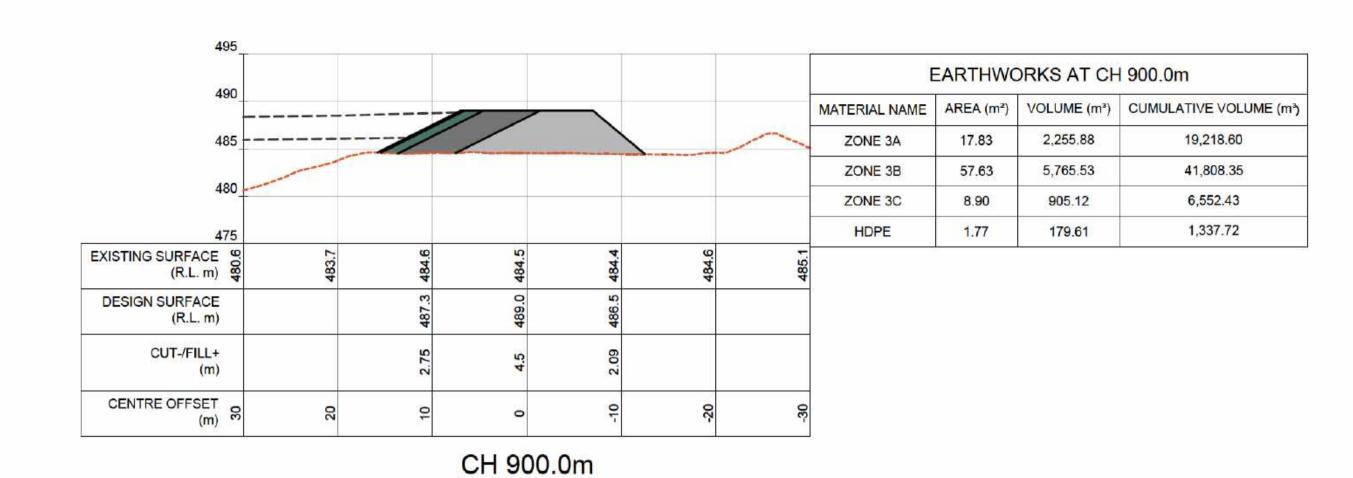

GOLD

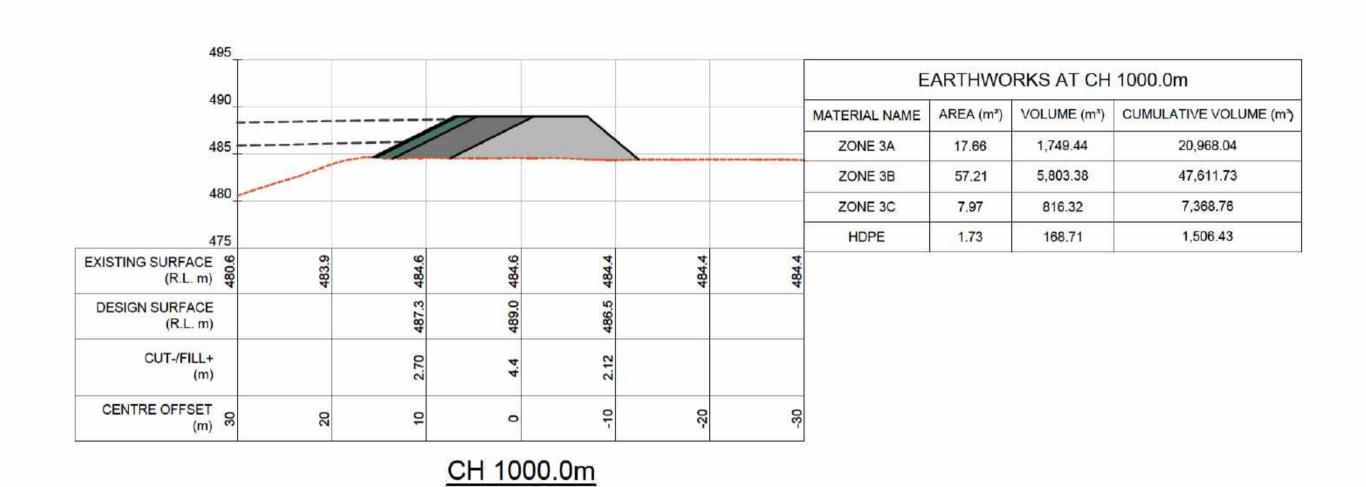

RIGIN:

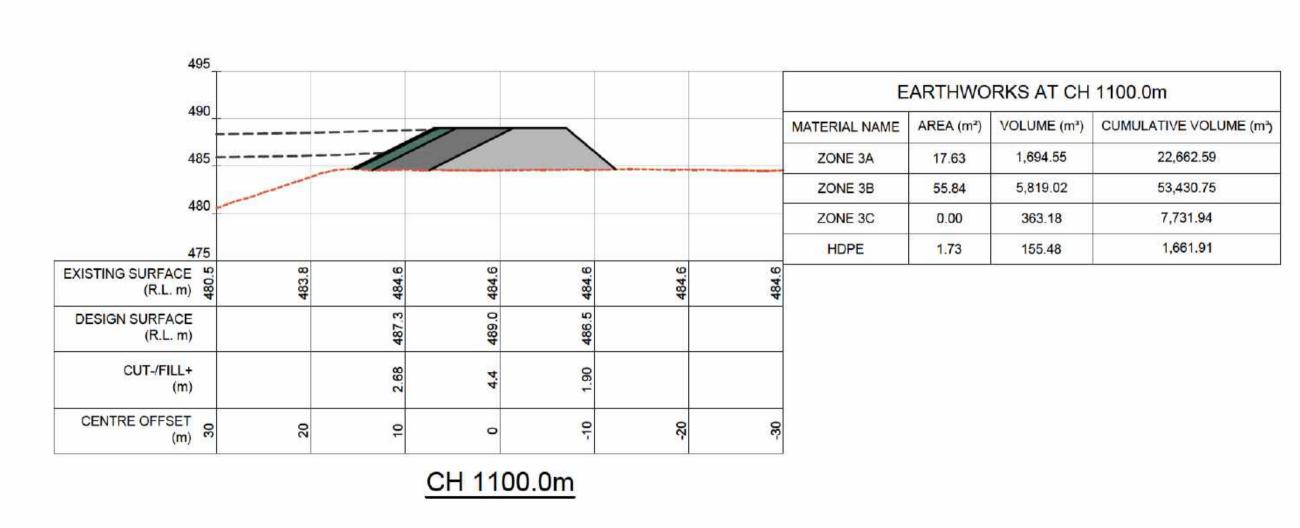

CLIENT:

P19-11-29-014

1. REFER TO DRAWING P19-11-29-001 FOR GENERAL NOTES.




REFERENCE DRAWING

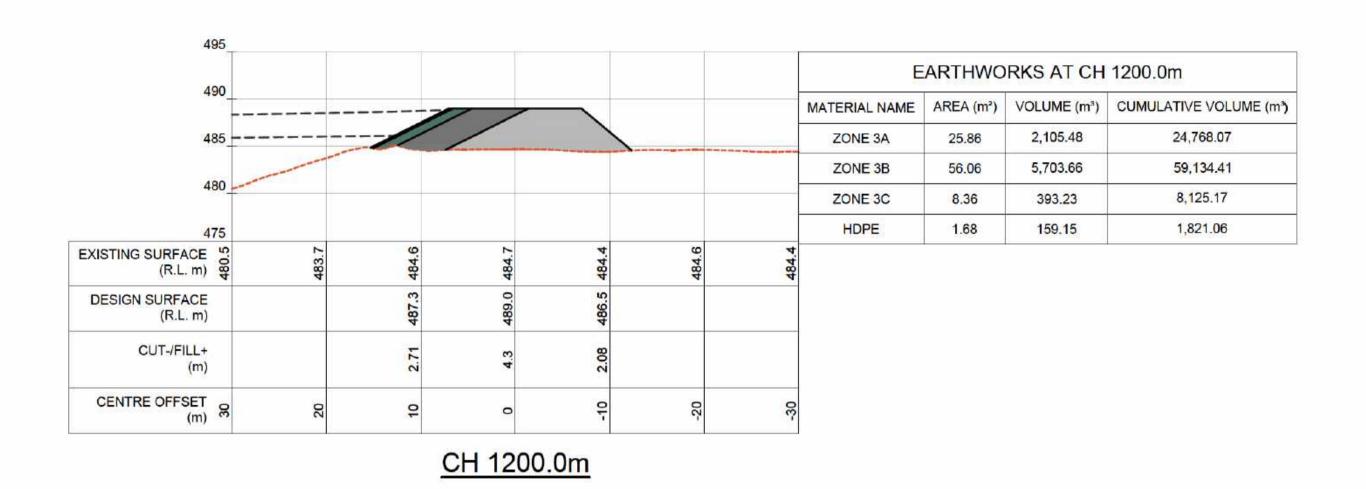

REV DATE

AMENDMENTS

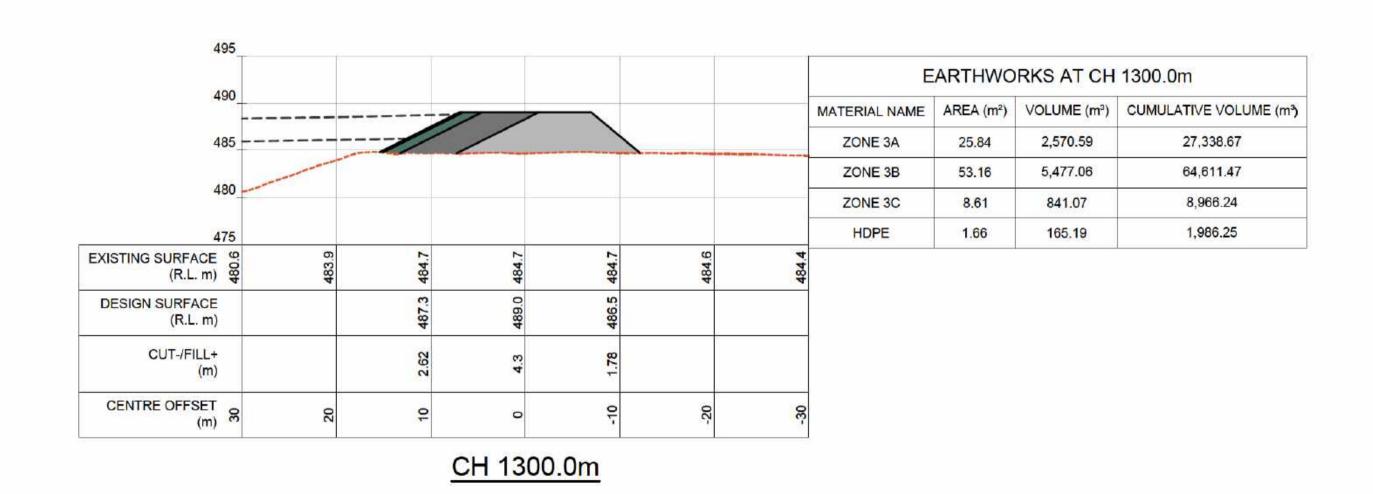
DRN DSN CKD APP CLT DRG. NO.

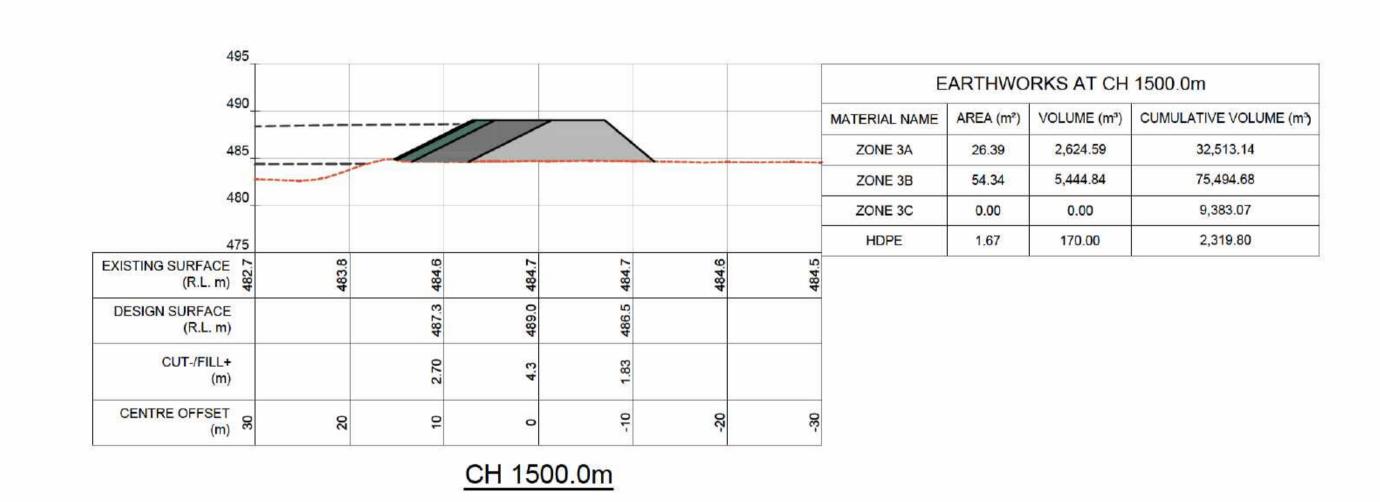
TAILINGS STORAGE FACILITY - NORTHERN EMBANKMENT CROSS SECTIONS - CH. 600.0 TO 1,100.0m

GOLD

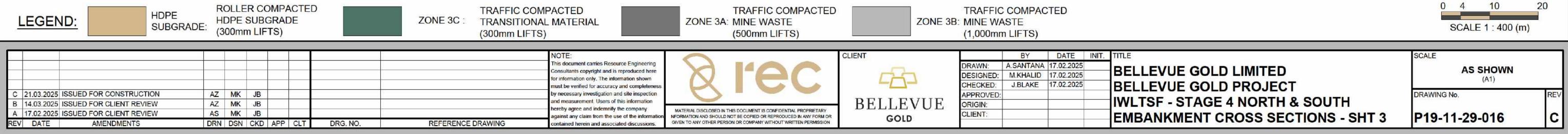

NFORMATION AND SHOULD NOT BE COPIED OR REPRODUCED IN ANY FORM OR

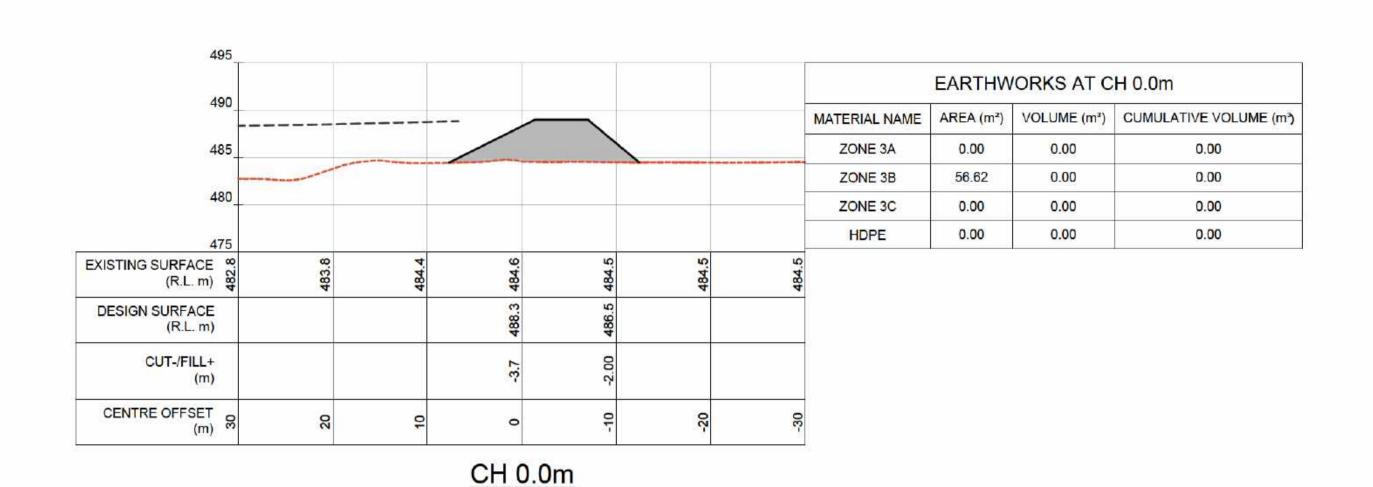
GIVEN TO ANY OTHER PERSON OR COMPANY WITHOUT WRITTEN PERMISSION

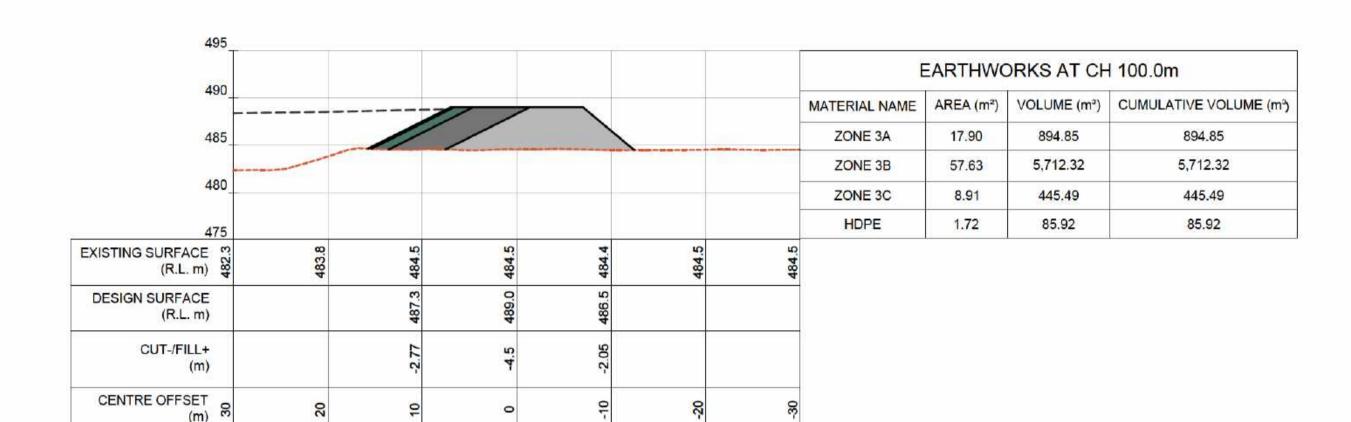

gainst any claim from the use of the informa


contained herein and associated discussions.

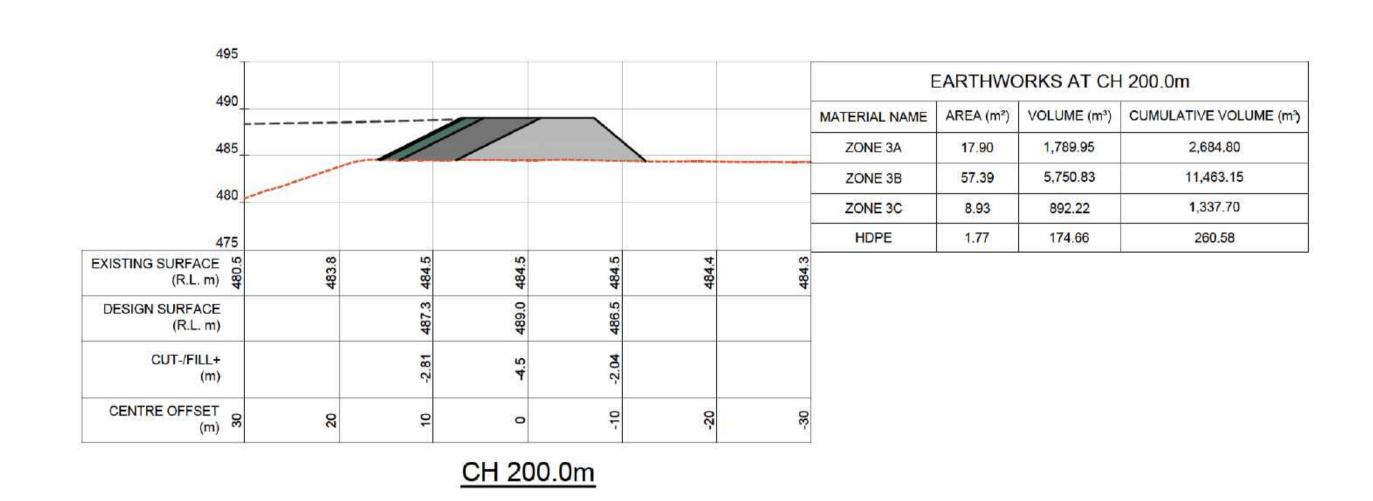
 REFER TO DRAWING P19-11-29-001 FOR GENERAL NOTES.

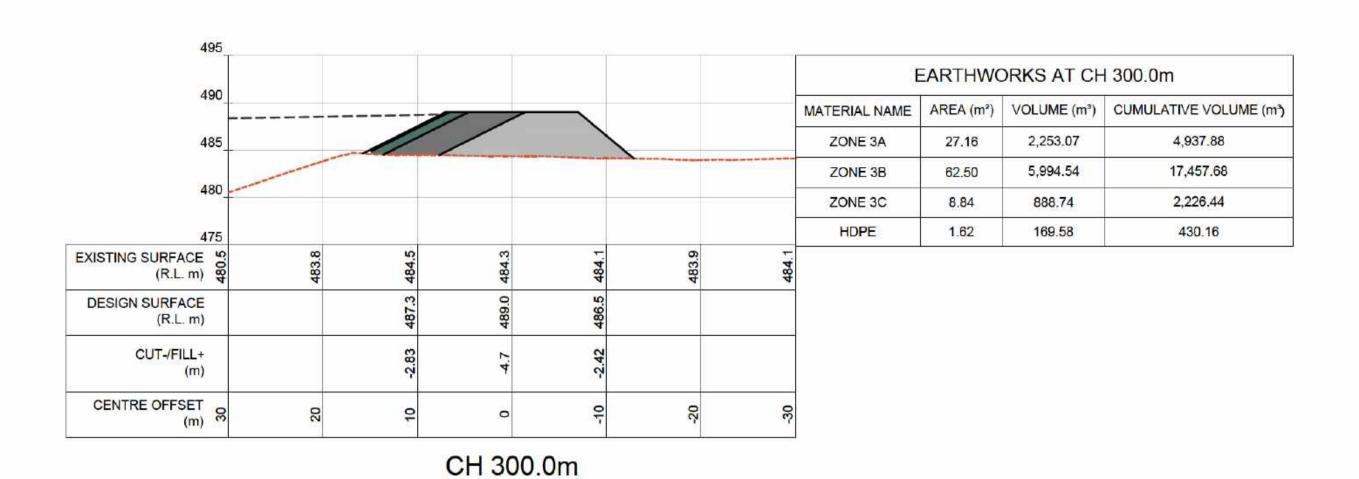


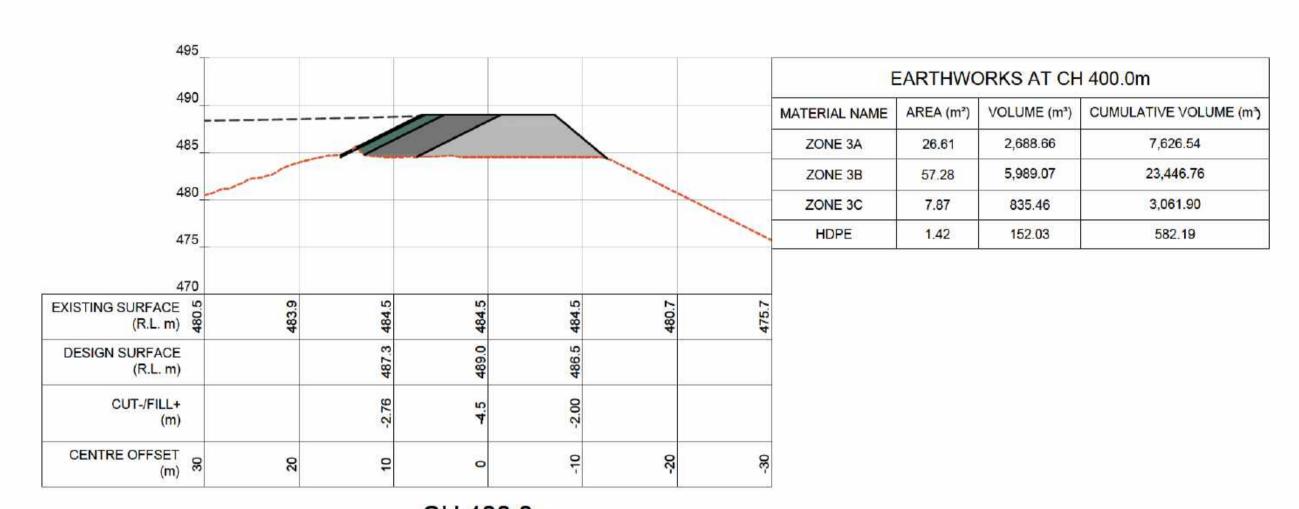


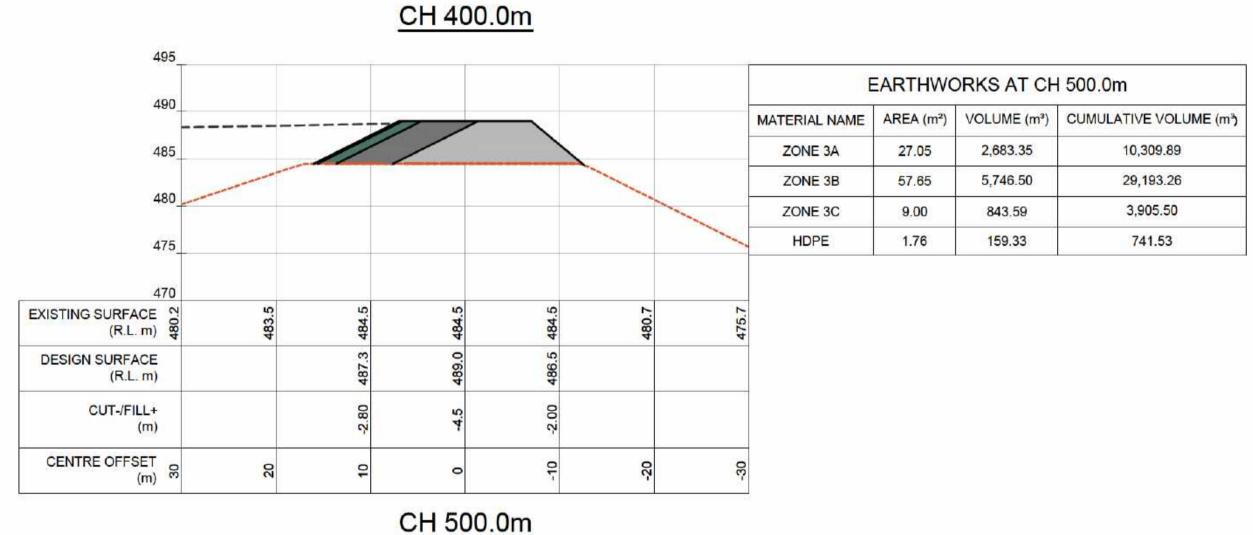


TAILINGS STORAGE FACILITY - NORTHERN EMBANKMENT CROSS SECTIONS - CH. 1,200.0 TO 1,500.0m

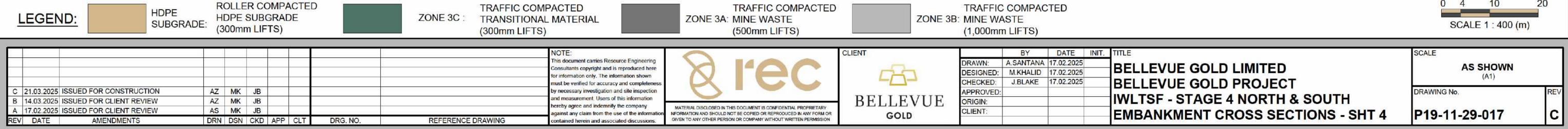



1. REFER TO DRAWING P19-11-29-001 FOR GENERAL NOTES.





CH 100.0m



TAILINGS STORAGE FACILITY - SOUTHERN EMBANKMENT CROSS SECTIONS - CH. 0.0 TO 500.0m SCALE 1: 400

0 4 10

17.84

57.61

8.76

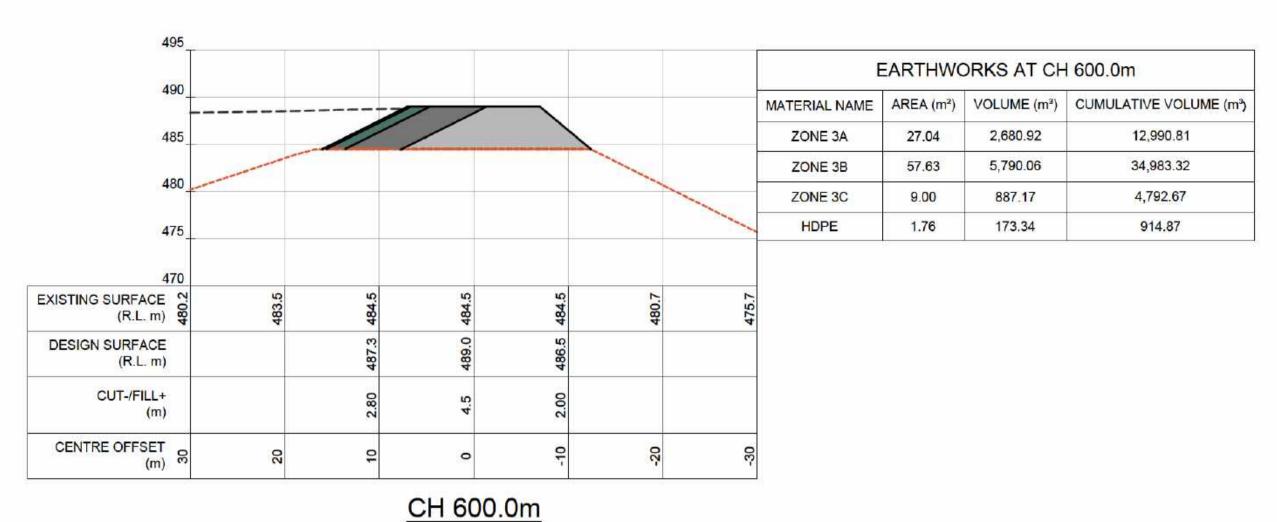
1.74

2,200.68

5,789.48

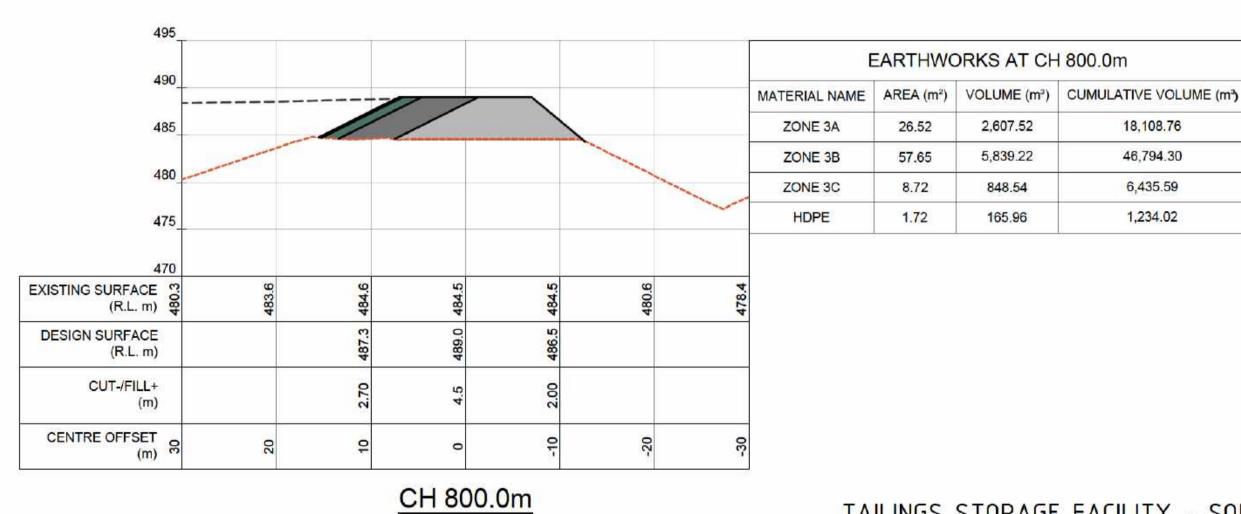
861.40

170.26


1. REFER TO DRAWING P19-11-29-001 FOR GENERAL NOTES.

20,309.43

52,583.78


7,296.98

1,404.27

MATERIAL NAME EXISTING SURFACE 9 (R.L. m) 👺 DESIGN SURFACE (R.L. m) CUT-/FILL+ CENTRE OFFSET

CH 700.0m

EARTHWORKS AT CH 900.0m MATERIAL NAME | AREA (m²) | VOLUME (m³) | CUMULATIVE VOLUME (m³) _____ ZONE 3A ZONE 3B ZONE 3C HDPE EXISTING SURFACE 2 (R.L. m) DESIGN SURFACE CUT-/FILL+ CENTRE OFFSET

CH 900.0m

CH 1000.0m

EARTHWORKS AT CH 1000.0m MATERIAL NAME | AREA (m²) | VOLUME (m³) | CUMULATIVE VOLUME (m³) 1,237.99 21,547.43 ZONE 3A 7.22 7.35 ZONE 3B 3,281.12 55,864.90 2.77 559.46 7,856.44 ZONE 3C 0.72 118.69 1,522.96 HDPE

-----EXISTING SURFACE . (R.L. m) **DESIGN SURFACE** (R.L. m) CUT-/FILL+ CENTRE OFFSET (m)

TAILINGS STORAGE FACILITY - SOUTHERN EMBANKMENT CROSS SECTIONS - CH. 600.0 TO 1,000.0m

LEGEND:

HDPE SUBGRADE:

ROLLER COMPACTED HDPE SUBGRADE (300mm LIFTS)

TRAFFIC COMPACTED TRANSITIONAL MATERIAL (300mm LIFTS)

EARTHWORKS AT CH 700.0m

2,510.43

5,971.76

794.37

153.19

27.00

57.61

9.00

1.76

ZONE 3A

ZONE 3B

ZONE 3C

AREA (m²) VOLUME (m³) CUMULATIVE VOLUME (m³)

15,501.23

40,955.08

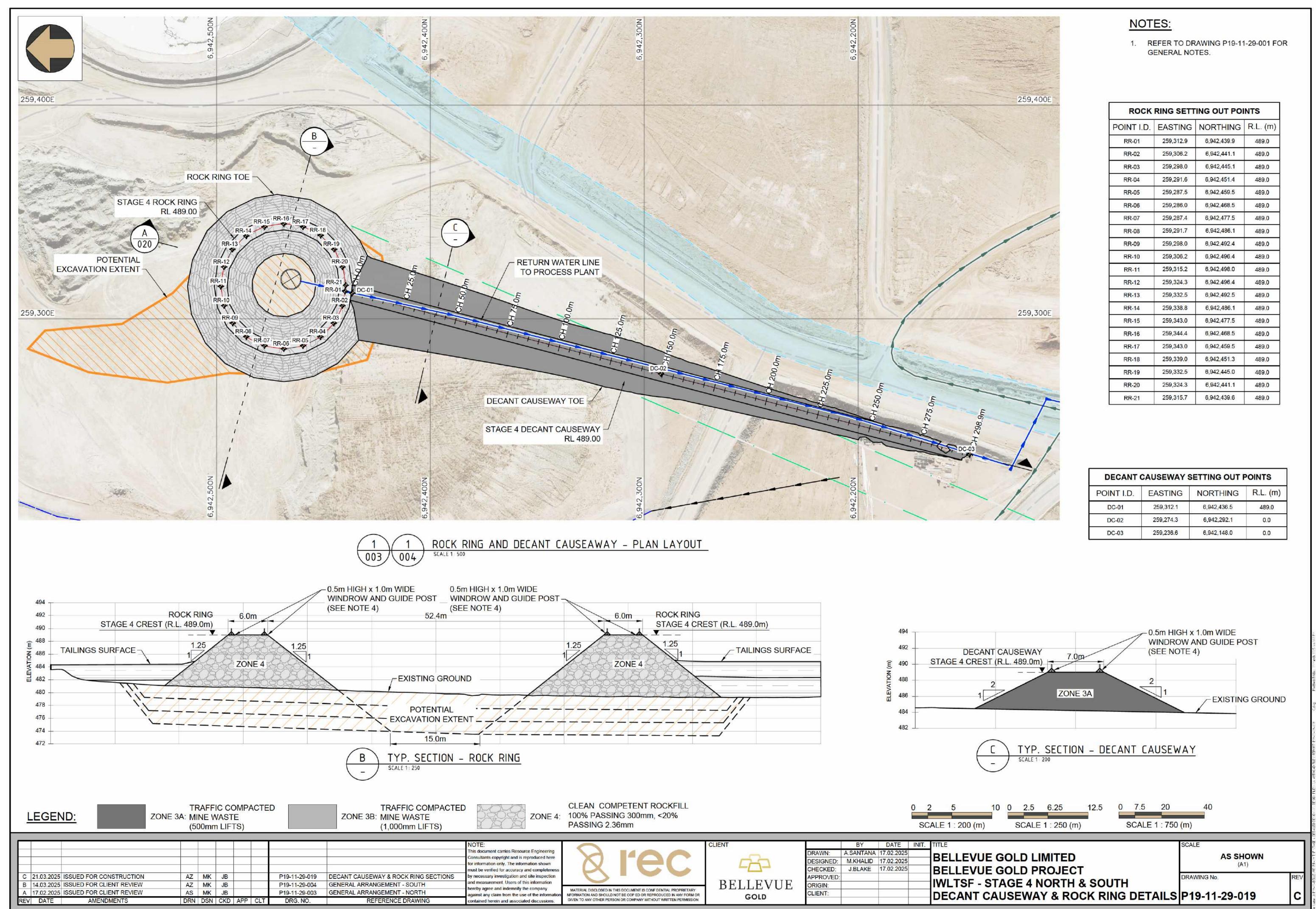
5,587.04

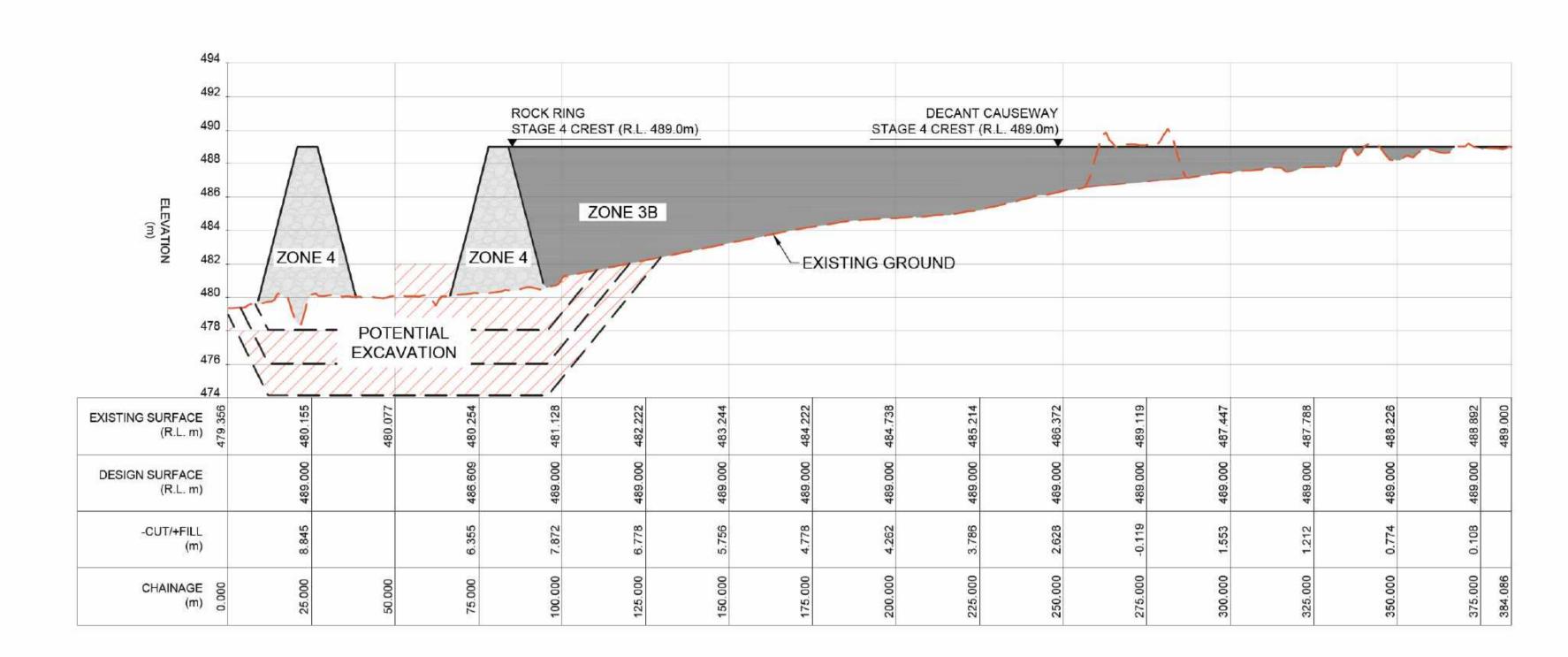
1,068.05

TRAFFIC COMPACTED ZONE 3A: MINE WASTE (500mm LIFTS)

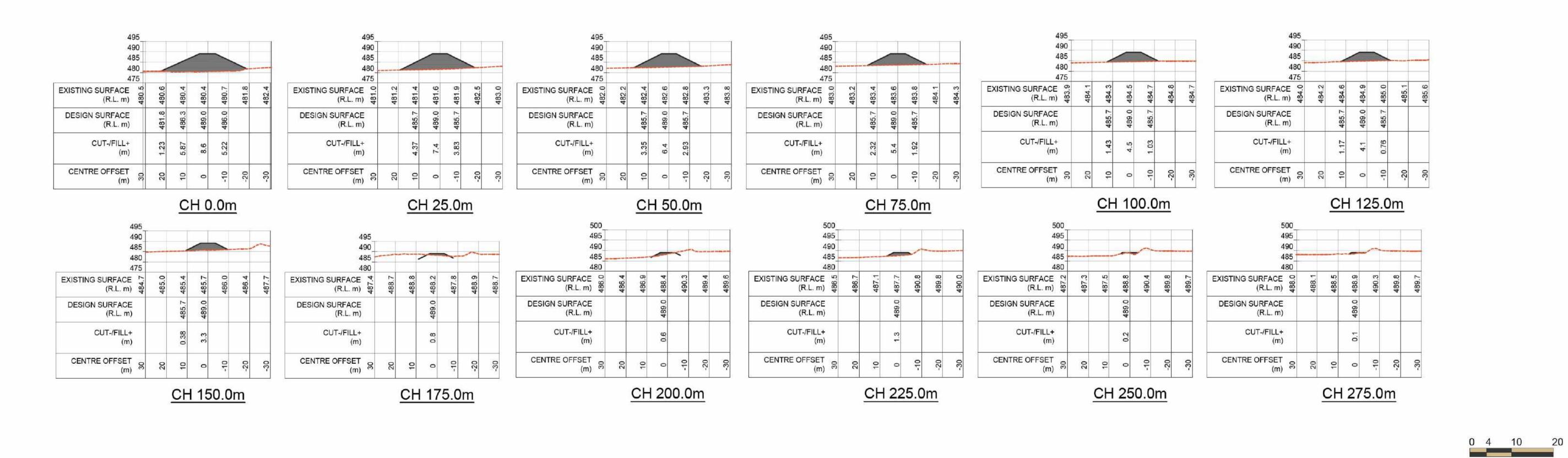
TRAFFIC COMPACTED ZONE 3B: MINE WASTE (1,000mm LIFTS)

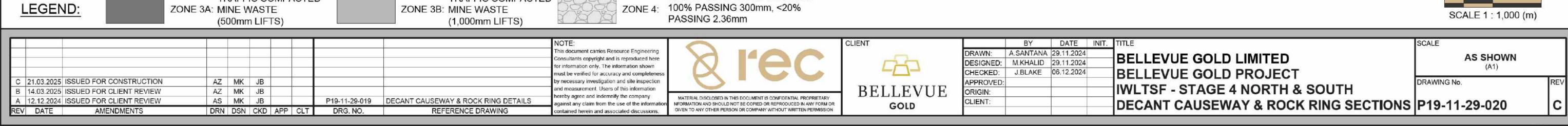
SCALE 1: 400 (m)


		150 mm	45			707		127		/
j										1
										7
D	21.03.2025	ISSUED FOR CONSTRUCTION	AZ	MK	JB					— fe
С	19.03.2025	ISSUED FOR CLIENT REVIEW	AZ	MK	JB		2			b
В	14.03.2025	ISSUED FOR CLIENT REVIEW	AZ	MK	JB					a
Α	17.02.2025	ISSUED FOR CLIENT REVIEW	AS	MK	JB					– h
REV	DATE	AMENDMENTS	DRN	DSN	CKD	APP	CLT	DRG. NO.	REFERENCE DRAWING	6


This document carries Resource Engineering Consultants copyright and is reproduced here for information only. The information shown must be verified for accuracy and completenes by necessary investigation and site inspection and measurement. Users of this information hereby agree and indemnify the company MATERIAL DISCLOSED IN THIS DOCUMENT IS CONFIDENTIAL PROPRIETARY. NFORMATION AND SHOULD NOT BE COPIED OR REPRODUCED IN ANY FORM OR against any claim from the use of the informa GIVEN TO ANY OTHER PERSON OR COMPANY WITHOUT WRITTEN PERMISSION contained herein and associated discussions.

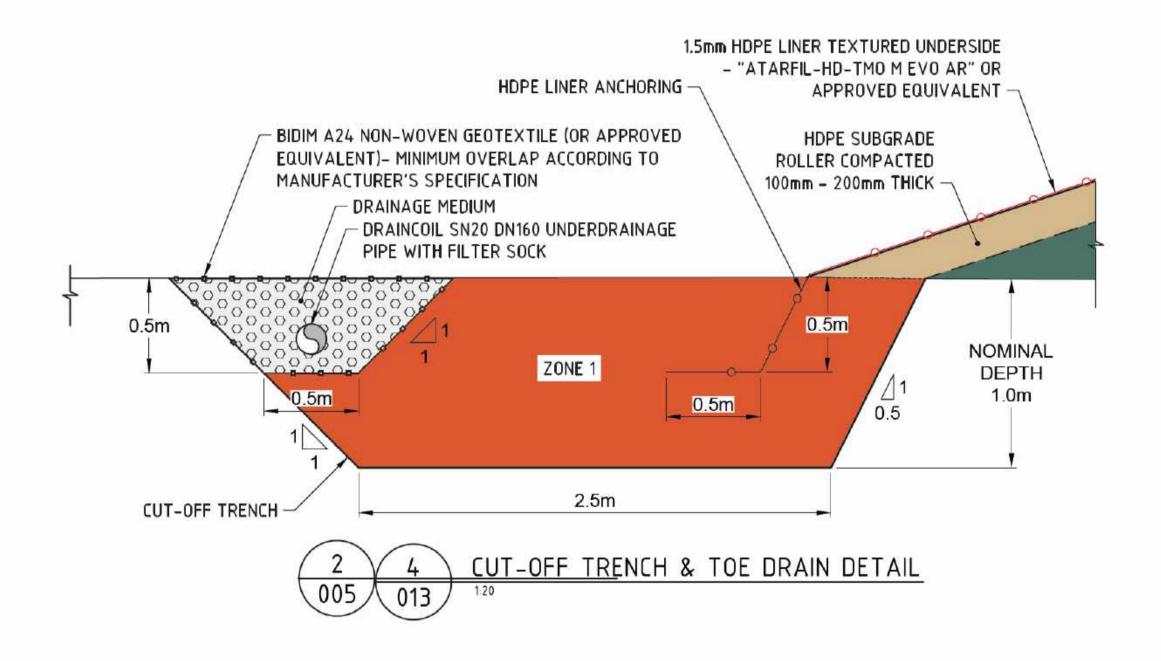
BELLEVUE
GOLD

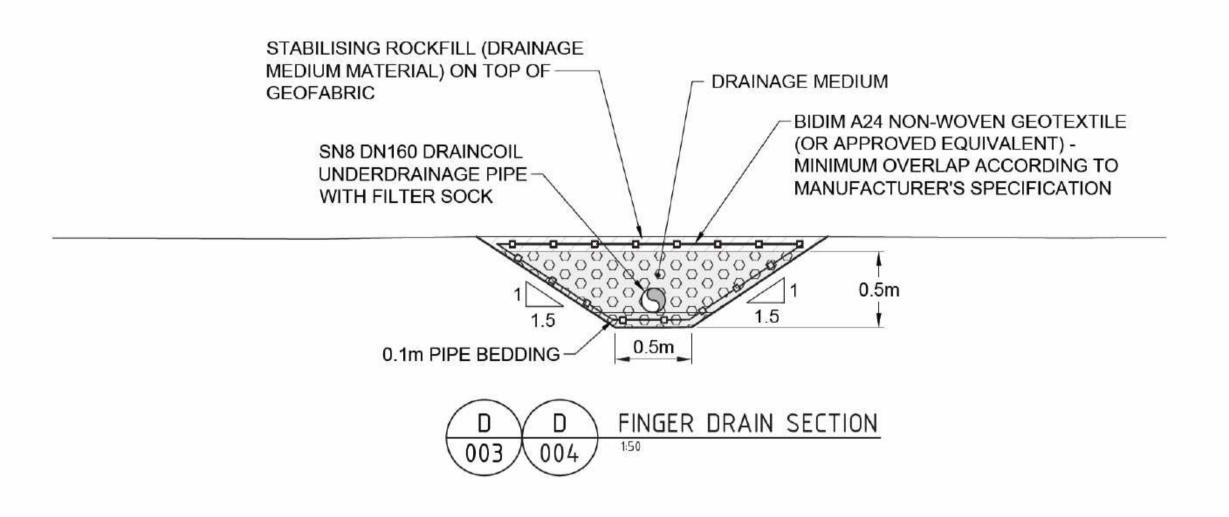

	BY	DATE	INIT.	TITLE
DRAWN:	A.SANTANA	17.02.2025		DELLEVUE COLD LIMITED
DESIGNED:	M.KHALID	17.02.2025		BELLEVUE GOLD LIMITED
CHECKED:	J.BLAKE	17.02.2025		BELLEVUE GOLD PROJECT
APPROVED:				
ORIGIN:				IWLTSF - STAGE 4 NORTH & SOUTH
CLIENT:				EMBANKMENT CROSS SECTIONS - SHT
				TEMBANKWIENI CROSS SECTIONS - SITI

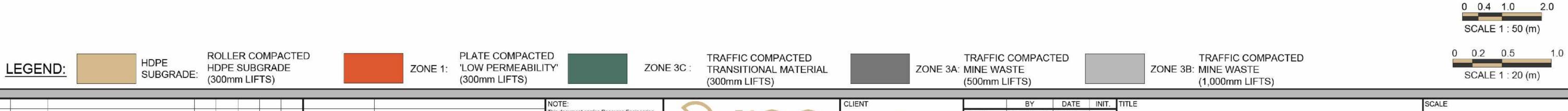

P19-11-29-018

CLEAN COMPETENT ROCKFILL

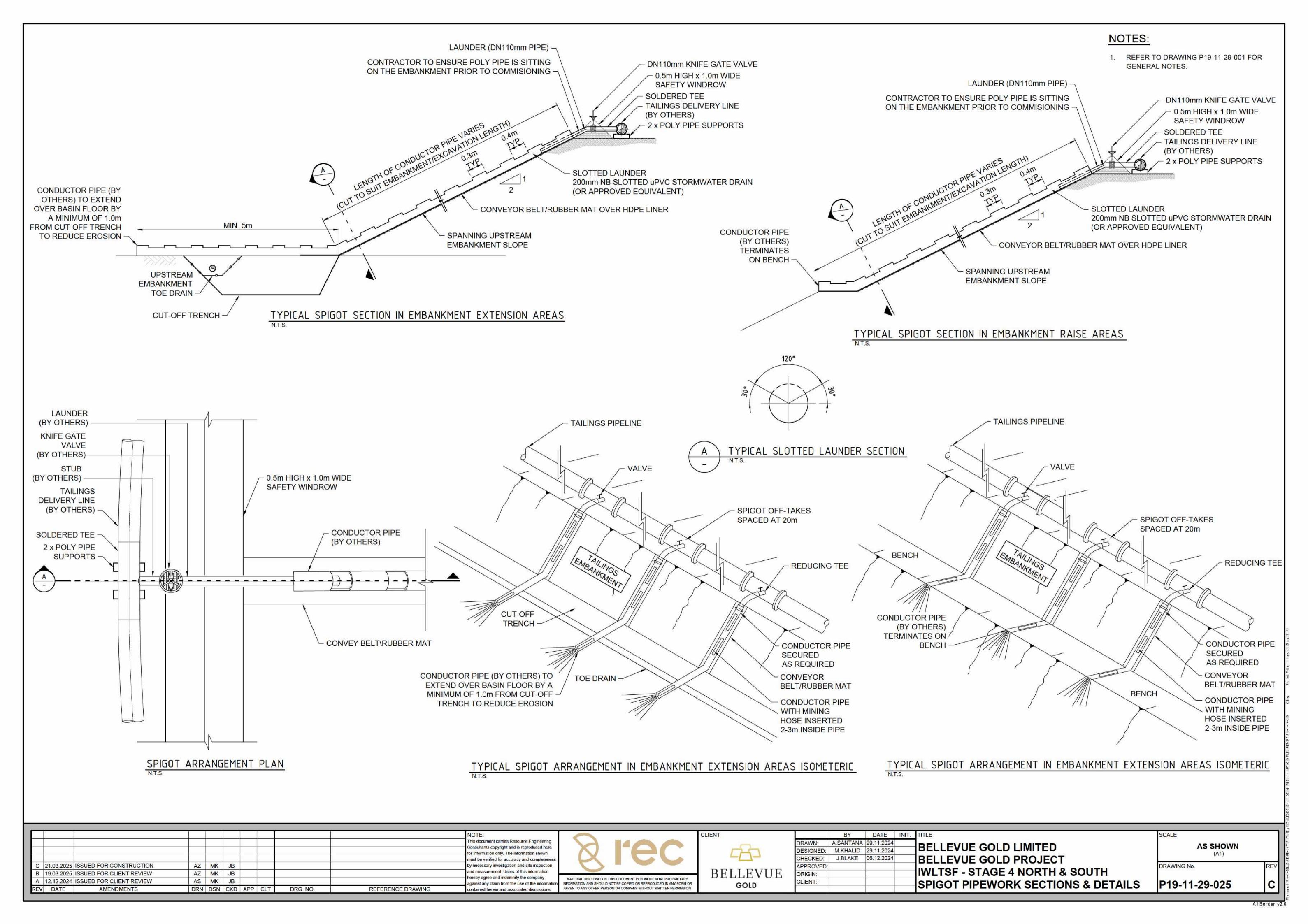
TRAFFIC COMPACTED


TRAFFIC COMPACTED


SCALE 1:500 (m)


0 10 25

NOTES:


 REFER TO DRAWING P19-11-29-001 FOR GENERAL NOTES.

				NOTE: This document carries Resource Engineering Consultants copyright and is reproduced here for information only. The information shown must be verified for accuracy and completeness	& rec	CLIENT	DRAWN: A.SANTANA 12.02.2025 DESIGNED: M.KHALID 12.02.2025	BELLEVUE GOLD LIMITED BELLEVUE GOLD PROJECT	AS SHOWN (A1)
21.03.2025 ISSUED FOR CONSTRUCTION B 19.03.2025 ISSUED FOR CLIENT REVIEW	AZ MK JB AZ MK JB	P19-11-29-013 P19-11-29-004	EMBANKMENT SECTIONS & DETAILS - SHT 2 GENERAL ARRANGEMENT - SOUTH	by necessary investigation and site inspection and measurement. Users of this information		BELLEVUE	APPROVED: ORIGIN:	IWLTSF - STAGE 4 NORTH & SOUTH	DRAWING No. RE
A 14.03.2025 ISSUED FOR CLIENT REVIEW EV DATE AMENDMENTS	AZ MK JB DRN DSN CKD APP CLT	P19-11-29-003 DRG. NO.	GENERAL ARRANGEMENT - NORTH REFERENCE DRAWING	 hereby agree and indemnify the company against any claim from the use of the information contained herein and associated discussions. 	MATERIAL DISCLOSED IN THIS DOCUMENT IS CONFIDENTIAL PROPRIETARY NFORMATION AND SHOULD NOT BE COPIED OR REPRODUCED IN ANY FORM OR GIVEN TO ANY OTHER PERSON OR COMPANY WITHOUT WRITTEN PERMISSION	GOLD	CLIENT:	TYPICAL DETAILS	P19-11-29-021

Appendix B

Geotechnical Field Investigation Test Pit Logs and Photographs

Reference: P19-11-PR-29-R01 Client: Bellevue Gold Limited

TEST PIT	L <mark>0</mark> G			
Job No:	P19-11-PR03	Date Started:	03-12-20	
Test Pit ID:	TSF-TP01	Date Finished:	03-12-20	_
Contractor:	Earth Australia Contracting	Bucket Width:	1.5 m Tiger Toothed	
Machine:	Kobelco SK350 LC 35-tonne Excavator	Easting:	51J 258831	
Loaned Dr.	EE .	Morthing	E047004	_

Groundwater recorded at _____ m on the ____/

Suite 2E, 2 Gerretone Blvd Cerine WA 6020 Australia T: +61 8 9435 5391 W: www.REC.com.au E: info@REC.com.au

Depths (From)	Depths (To)	Main material	Material Description	Comments	DCP Depth (mm)	DCP Blows/100m	Laboratory Samples
0	0.1		Sifty SAND, fine - medium grained, sub angular - sub rounded, red brown, dry	With some fine - medium roots and rootlets. Basait and quartz	100	5	
			rounded, red brown, dry	gravel / cobbles at surface	200	9/70 mm HB Ref	
					300		
					400		
				(%) (a)	500		
0.1	0.5		CALCRETE, MS-S, DW, cream, friable, becoming inferbedded with basalt cobbles and boulders from 0.5 m.		600		
			interbedded with basait colones and bouldes short 0.5 m		700		
					800		
					900		
		·	ethores and the control of the contr		1000		
0.5	3.3		BASALT, VS, SW, grey, blocky, cobble and gravel (fine -	Refusal at 1.0 m with bucket	1100		
			coarse) sized, within a silty sand (fine - medium) cream matrix, mixed with calcrete at top of layer		1200	4 3	
					1300		
					1400		
		1.0 m Refusal with bucket.	. Terminated with Ripper at 3.3 m	*	1500		
					1600		
					1700	4 3	
					1800		
					1900		
					2000		
					2100		
					2200	4 3	
					2300		
					2400		
		,	24	en e	2500		
					2600		
	•				2700		
					2800		
					2900		
			140	SA:	3000		

Origin	Soil Name	Group	Consistency	Plasticity/Grain size	Colour	With/Trace	Moisture
TOPSOIL	Primary	Pt	Fine Grain:	Fine grain:	red	clay	dry
CONCRETE	PEAT	ОН	very soft	non-plastic	orange	sit	dry to moist
BITUMEN	CLAY	OL.	flore	low plasticity	yellow	sand	moist
FILL	SIT	CH	firm	low - medium	brown	gravel	wet
BASSENDEAN SAND	SAND	CL	880	medium plasticity	purple	cobbles	moiat to wat
SAND FROM TAMALA LST	GRAVEL	MH	very stiff	medium to high	green	OM	saturated
TAMALA LST	COBBLES	ML	hard	high plasticity	white	BR	
GUILDFORD FORMATION	BOULDERS	SW	Coarse Grain:	Coarse Grain:	cream	Fines:	
ALLUVIUM	Scendary:	SP	very loose	Fire	grey	<=15% "Trace"	
COLLUVIUM	clayey	sc	loose	Medium	tstack.	15-30% "With"	
AEOLIAN	silty	SM	medium dense	Coarse Grain:	blue	>30% "Secondary"	
SWAMP DEPOSIT	sandy	GW	dense	Additional:	Additional:	Coarse:	
LATERITE	gravelly	GP	very dense	Unifor, gap graded, poorly graded.	Can be modified	<-5% "Trace"	
	cobbly	GC		Rounded, sub rounded, sub angular,	using pale, dark	5-12% "With"	
	bouldery	GM		angular, flaky, platy	and moted	>12% "Secondary"	


_ m and few small (1 - 2 mm) / medium (2 - 10 mm) / large (>10 mm) roots to ___

TSF - TP01

TSF - TP01

TEST PIT	L <mark>O</mark> G		
Job No:	P19-11-PR03	Date Started:	03-12-20
Test Pit ID:	TSF-TP02	Date Finished:	03-12-20
Contractor:	Earth Australia Contracting	Bucket Width:	1.5 m Tiger Toothed
Machine:	Kobelco SK350 LC 35-tonne Excavator	Essting:	51J 259006
Looned By:	JH .	Northing:	6942910

Suite 2E, 2 Genstone Blvd Carine WA 6020 Australia T: +61 8 9435 5391 W; www.REC.com.su E: info@REC.com.su

Depths (From)	Depths (To)	Main material	Material Description	Comments	DCP Depth (mm)	DCP Blows/100m	Laboratory Samples
0	0.05		Sifty SAND, fine - medium grained, sub angular - sub rounded, red brown, dry	With some fine - medium roots and rootlets.	100	4 / 40 mm HB Ref	
			rounded, red brown, dry	and rootiets.	200		
					300		
					400		
			The second secon	10. 20. NATIONAL NO. 100 NO. 1000	500		
0.05	1.3		CALCRETE, MS-S, DW, cream, friable, becoming more of a soil and weathered with depth, DW-RS, VW - MS,	Variable depth of layer on either side of pit	600		
			Sandy (fine - medium), silty GRAVEL, fine - coarse	auc or pri	700		
			grained, sub angular, cream with calcrete nodules, gravel and cobbles		800		
			CANTO SECURIO		900		
	65 66		TARE THE TARE TO STREET THE TARE TO STREET THE TARE TO STREET THE TARE THE		1000		
1.3	4.0		Sandy (fine - coarse) GRAVEL with clay (medium plasticity) and silt, fine - coarse grained, sub angular - sub		1100		
			rounded, red brown, moist. Interbedded with weathered		1200	1	
			basalt cobbles, boulders and gravel (fine - coarse grained), DW, S - VS, purple grey red brown cream,	ĺ	1300		
					1400		
		Terminated	- 18. The state of		1500		
					1600		
					1700	ľ j	
]	1800		
					1900		
	:05		- 10 ¹		2000		
					2100		
					2200	1	
					2300		
					2400		
	er en		14.7 Pag	ir N	2500		
					2600		
					2700		
					2800		
					2900		
	3		-127 	i i	3000		

Co-ordinate System:	, Zo	ne:					
Origin	Soil Name	Group	Consistency	Plasticity/Grain size	Colour	With/Trace	Moisture
TOPSOIL	Primary	Pt	Fine Grain:	Fine grain:	red	clay	dry
CONCRETE	PEAT	ОН	very soft	non-plastic	orange	sit	dry to moist
BITUMEN	CLAY	OL.	flore	lowplasticity	yellow	sand	moist
FILL	SIT	СН	firm	kow - medium	brown	gravel	wet
BASSENDEAN SAND	SAND	CL	BBET	medium plasticity	purple	cobbles	moiat to wet
SAND FROM TAMALA LST	GRAVEL	MH	very stiff	medium to high	green	OM	saturated
TAMALA LST	COBBLES	ML	hard	high plasticity	white	BR	
GUILDFORD FORMATION	BOULDERS	SW	Coarse Grain:	Coarse Grain:	cream	Fines:	
ALLUVIUM	Scondary:	SP	very loose	Fire	grey	<=15% "Trace"	
COLLUVIUM	clayey	sc	loose	Medium	track.	15-30% "With"	
AEOLIAN	sity	SM	medium dense	Coarse Grain:	blue	>30% "Secondary"	
SWAMP DEPOSIT	sandy	GW	dense	Additional:	Additional:	Coarse:	
LATERITE	gravally	GP	very dense	Unifor, gap graded, poorly graded.	Can be modified	<-5% "Trace"	
	cobbly	GC		Rounded, sub rounded, sub angular,	using pale, dark	5-12% "With"	
	broklane	CM	1	angular, flaky, platy	and moted	>10M *Separation /*	

m and few small (1 - 2 mm) / medium (2 - 10 mm) / large (>10 mm) roots to ____

TSF - TP02

TSF - TP02

TEST PIT	L <mark>0</mark> G		
Job No:	P19-11-PR03	Date Started:	03-12-20
Test Pit ID:	TSF-TP03	Date Finished:	03-12-20
Contractor:	Earth Australia Contracting	Bucket Width:	1.5 m Tiger Toothed
Machine:	Kobelco SK350 LC 35-tonne Excavator	Easting:	51J 259184
Looned By:	JH .	Northing:	6942911

Suite 2E, 2 Gernstone Blvd Carine WA 6020 Australia T: +61 8 9435 5391 W: www.REC.com.au E: info@REC.com.au

Depths (From)	Depths (To)	Main material	Material Description	Comments	DCP Depth (mm)	DCP Blows/100m	Laboratory Samples
0	0.1		Sifty SAND, fine - medium grained, sub angular - sub rounded, medium dense, with some fine - coarse gravel	With some fine - medium roots and rootlets.	100	7	
			and cobbles, red brown, dry	and rootets.	200	10	
					300	4 / 10 mm HB Ref	
					400		
				ta Angel yang kalaman yan	500		
0.1	1.0		CALCRETE, MS, SW, cream, friable	Excavated as rock / massive slabs	600		
				3 403	700		
					800		
					900		
	8. .		The second of the second secon	i i	1000		
1.0 1.8	1.8		CALCRETE, DW-RS, VW-MS, weathered calcrete soil as Sandy (fine - medium), sitty CRAVEL, fine - coarse		1100		
			grained, sub angular, cream - cream red brown, dry -		1200		
			moist, with calcrete nodules, gravel, cobbles and boulders		1300		
					1400		
	3.			7	1500		
1.8	4.2		Sandy (fine - coarse) GRAVEL with clay (medium		1600		
			plasticity), fine - coarse grained, sub angular - sub rounded, red brown, moist. Interbedded with weathered		1700		
			BASALT, S-VS, DW, as cobbles, boulders and gravel (fine - coarse), purple grey red brown cream, somewhat friable		1800		
			AND SHARESHARE CHARLES AND CONSCIONATION OF THE CON		1900		
	:0:	Terminated			2000		
					2100		
					2200		
					2300		
					2400		
	W ill		***	ir N	2500		
					2600		
					2700		
					2800		
					2900		
	85		- 10 ⁰		3000		

Origin	300 Name	Group	Consistency	Plasticity/Grain size	Colour	With Hace	Moisture
TOPSOIL	Primary	Pt	Fine Grain:	Fine grain:	red	clay	dry
CONCRETE	PEAT	OH	very soft	non-plastic	orange	sit	dry to moist
BITUMEN	CLAY	OL.	floe	lowplasticity	yellow	sand	moist
FILL	SILT	СН	firm	low - medium	brown	gravel	wet
BASSENDEAN SAND	SAND	CL	ENT	medium plasticity	purple	cobbles	moist to wet
SAND FROM TAMALA LST	GRAVEL	MH	very stiff	medium to high	green	OM	saturated
TAMALA LST	COBBLES	ML	hard	high plasticity	white	BR	
GUILDFORD FORMATION	BOULDERS	SW	Coarse Grain:	Coarse Grain	cream	Fines:	
ALLUVIUM	Scondary:	SP	very locate	Fire	grey	<=15% "Trace"	
COLLUVIUM	clayey	sc	loose	Medium	black.	15-30% "With"	
AEOLIAN	sity	SM	medium dense	Coarse Grain:	blue	>30% "Secondary"	
SWAMP DEPOSIT	sandy	GW	dense	Additional:	Additional:	Coarse:	
LATERITE	gravelly	GP	very dense	Unifor, gap graded, poorly graded.	Can be modified	~5% "Trace"	
	cobbly	GC		Rounded, sub rounded, sub angular,	using pale, dark	5-12% "With"	
	bouldery	GM	1	angular, flaky, platy	and molled	>12% "Secondary"	

TSF - TP03

TSF - TP03

TEST PIT	L <mark>0</mark> G			
Job No:	P19-11-PR03	Date Started:	02-12-20	
Test Pit ID:	TSF-TP04	Date Finished:	02-12-20	
Contractor:	Earth Australia Contracting	Bucket Width:	1.5 m Tiger Toothed	
Machine:	Kobelco SK350 LC 35-tonne Excavator	Easting:	51J 259353	\Box
Loaned Day		Morthing	E043000	T

Suite 2E, 2 Gerrstone Blvd Carine WA 6020 Australia T: +61 8 9435 5391 W: www.REC.com.au E: info@REC.com.au

Depths (From)	Depths (To)	Main material	Material Description	Comments	DCP Depth (mm)	DCP Blows/100m	Laboratory Samples
0	0.1		Sifty SAND, fine - medium grained, sub angular - sub rounded, medium dense, red brown, dry	With trace fine - medium roots and rootlets. Basalt cobbles and	100	7	
			rounded, medium dense, red brown, dry	quartz at surface	200	11 / 50 mm HB Ref	
				İ	300		
					400		
	\$ -		SERVICES CONTROL SERVICES OF THE	<i>h</i>	500		
0.1 0.3	0.2		CALCRETE, MS, DW, cream, friable, fractured		600		
	-				700		
					800		
					900		
	(d)		PRODUCES CONTROL SERVICE CONTROL CONTR	Å	1000		
0.2 0.8	0.8		CALCRETE, MS, DW, cream, friable, solid, massive		1100		
				1	1200	4	
				1	1300		
					1400		
	R	tefusal	- 1	*	1500		
					1600		
					1700		
					1800		
					1900		
	:0 1=		- 10 ¹ - 2 A		2000		
					2100		
				1	2200	1	
					2300		
					2400		
	\$2 5		- W	ali av	2500		
					2600		
					2700		
					2800		
					2900		
	_		W	.4	3000		

o-ordinate System:	, Zo	ne:	<u>\$</u>				
Origin	Soil Name	Group	Consistency	Plasticity/Grain size	Colour	With/Trace	Moisture
TOPSOIL	Primary	Pt	Fine Grain:	Fine grain:	red	clay	dry
CONCRETE	PEAT	OH	very soft	nor-plastic	orange	sit	dry to moist
BITUMEN	CLAY	OL.	floe	lowplasticity	yellow	sand	maist
FILL	SCT	СН	firm	kow - medium	brown	gravel	wet
BASSENDEAN SAND	SAND	CL	пив	medium plasticity	purple	cobbles	moiat to wat
SAND FROM TAMALA LST	GRAVEL	MH	very stiff	medium to high	green	OM	saturated
TAMALA LST	COBBLES	ML	hard	high plasticity	white	BR	
GUILDFORD FORMATION	BOULDERS	SW	Coarse Grain:	Coarse Grain	cream	Fines:	
ALLUVIUM	Scendary:	SP	very loose	Fine	grey	<=15% "Trace"	
COLLUVIUM	clayey	sc	loose	Medium	black.	15-30% "With"	
AEOLIAN	sity	SM	medium dense	Coarse Grain:	blue	>30% "Secondary"	
SWAMP DEPOSIT	sandy	GW	dense	Additional:	Additional:	Coarse:	
LATERITE	gravelly	GP	very dense	Unifor, gap graded, poorly graded.	Can be modified	<-5% "Trace"	
	cobbly	GC		Rounded, sub rounded, sub angular,	using pale, dark	5-12% "With"	
	broklery	GM		angular, flaky, platy	and moted	>12% "Secondary"	

Many small (1 - 2 mm) / medium (2 - 10 mm) / large (>10 mm) roots to ______ m and few small (1 - 2 mm) / medium (2 - 10 mm) / large (>10 mm) roots to _____

TSF - TP04

TSF - TP04

TEST PIT	L <mark>0</mark> G		
Job No:	P19-11-PR03	Date Started:	04-12-20
Test Pit ID:	TSF-TP05	Date Finished:	04-12-20
Contractor:	Earth Australia Contracting	Bucket Width:	1.5 m Tiger Toothed
Machine:	Kobelco SK350 LC 35-tonne Excavator	Easting:	51J 259618
Logged By:	JB	Northing:	6942876

bouldery

, Zone:

Groundwater recorded at ______ m on the _____/

Co-ordinate System:

Suite 2E, 2 Genstone Blvd Carine WA 6020 Australia T: +61 8 9435 5391 W; www.REC.com.su E: info@REC.com.su

Depths (From)	Depths (To)	Main material	Material Description	Comments	DCP Depth (mm)	DCP Blows/100m	Laboratory Samples
0	0.15		Sifty SAND, fine - medium grained, sub angular - sub rounded, medium dense, with some fine - coarse gravel,	With some fine - medium roots and rootlets. Quartz and basalt	100	8	
			red brown, dry	gravel and cobbles at surface	200	20 / 70 mm Ref	
					300		
					400		
					500		
0.15	1.7		CALCRETE, MS, SW, cream, friable. Becoming more weathered, cream mottled red brown yellow with depth,		600		
			friable, W, DW		700		
					800		
					900		
0 .		40	*	1000			
1.7	5.0		Clayey SAND, fine - medium grained, sub angular - sub	Stained white lense from 2.2 -	1100		
			rounded, medium dense, red brown yellow, moist, with gravet (fine - coarse) and cobbles in areas, red brown	2.7 m. With some red brown gypsum crystals throughout	1200	4	
			yellow with green veins		1300		
3)				1400			
			2	1500	9		
5	5.2		Cemented soil as rock, red brown yellow cream purple, MS, DW.		1600		
					1700	4 4	
					1800		
				1	1900		
	10)	Terminated		1	2000		
					2100		
				-	2200	4 3	
					2300		
					2400		
	(d)			# :	2500		
				T	2600		
					2700		
				-	2800		
					2900		
	-		4	A-	3000		

Origin	Soil Name	Group	Consistency	Plasticity/Grain size	Colour	With/Trace	Moisture
TOPSOIL	Primary	Pt	Fine Grain:	Fine grain:	red	clay	dry
CONCRETE	PEAT	OH	very soft	non-plestic	orange	sit	dry to moist
BITUMEN	CLAY	OL.	floe	low plasticity	yellow	sand	maist
FILL	SILT	СН	firm	low - medium	brown	gravel	wet
BASSENDEAN SAND	SAND	CL	BUT	medium plasticity	purple	cobbles	moist to wet
SAND FROM TAMALA LIST	GRAVEL	MH	very stiff	medium to high	green	OM	saturated
TAMALALST	COBBLES	ML	hard	high plasticity	white	BR	
GUILDFORD FORMATION	BOULDERS	SW	Coarse Grain:	Coarse Grain	cream	Fines:	
ALLUVIUM	Scondary:	SP	very locae	Fine	grey	<=15% "Trace"	
COLLUVIUM	clayery	sc	loose	Medium	black.	15-30% "With"	
AEOLIAN	sity	SM	medium dense	Coarse Grain:	blue	>30% "Secondary"	
SWAMP DEPOSIT	sandy	GW	dense	Additional:	Additional:	Coares:	
LATERITE	gravally	GP	very dense	Unifor, gap graded, poorly graded.	Can be modified	<-5% "Trace"	
	cobbly	GC		Rounded, sub rounded, sub angular,	using pale, dark	5-12% "With"	
	bouldery	GM	1	angular, flaky, platy	and moded	>12% "Secondary"	

____ m and few small (1 - 2 mm) / medium (2 - 10 mm) / large (≥10 mm) roots to ____

>12% "Secondary"

TSF - TP05

TSF - TP05

TEST PIT	L <mark>0</mark> G		
Job No:	P19-11-PR03	Date Started:	04-12-20
Test Pit ID:	TSF-TP06	Date Finished:	04-12-20
Contractor:	Earth Australia Contracting	Bucket Width:	1.5 m Tiger Toothed
Machine:	Kobelco SK350 LC 35-tonne Excavator	Easting:	51J 259686
Logged By:	JB	Northing:	6942773

Suite 2E, 2 Gernstone Blvd Carine WA 6020 Australia T: +61 8 9435 5391 W: www.REC.com.au E: info@REC.com.au

Pepths (From)	Depths (To)	Main material	Material Description	Comments	DCP Depth (mm)	DCP Blows/100m	Laboratory Samples
0	0.1		Silty SAND, fine - medium grained, sub angular - sub rounded, medium dense, with gravel (fine -coarse, sub		100	Refusal	
			angular - sub rounded), red brown, dry		200		
					300		
					400		
					500		
0.1	0.35		HARDPAN, S, SW, red brown speckled grey, highly cemented gravel soil		600		
	-		cernenieu grave sui		700		
					800		
					900		
		Refusal	数 Sin		1000		
					1100		
					1200		
					1300		
					1400		
	3. 		**************************************		1500		
					1600		
					1700	4 3	
					1800		
					1900		
	: (4) 				2000		
					2100		
	-				2200	4 3	
					2300		
					2400		
	(A)		24		2500		
	1 1				2600		
					2700		
					2800		
					2900		
	-		M. A.		3000		

6		285557	270-920-9	112400000000000000000000000000000000000	220600000	100000000000000000000000000000000000000	EV3589050
Origin	Soil Name	Group	Consistency	Plasticity/Grain size	Colour	With/Trace	Moisture
TOPSOIL	Primary	Pt	Fine Grain:	Fine grain:	red	clay	dry
CONCRETE	PEAT	OH	very soft	non-plestic	orange	sit	dry to moist
BITUMEN	CLAY	OL.	flore	lowplasticity	yellow	sand	moist
FILL	SLT	СН	firm	low - medium	brown	gravel	wef
BASSENDEAN SAND	SAND	CL	TIPS	medium plasticity	purple	colables	moiat to wat
SAND FROM TAMALA LST	GRAVEL	MH	very stiff	medium to high	green	OM	saturated
TAMALA LST	COBBLES	ML	hard	high plasticity	white	BR	
GUILDFORD FORMATION	BOULDERS	SW	Coarse Grain:	Coarse Grain	cream	Fines:	
ALLUVIUM	Scondary:	SP	very loose	Fire	grey	<=15% "Trace"	
COLLUVIUM	clayey	sc	loose	Medium	titack.	15-30% "With"	
AEOLIAN	sity	SM	medium dense	Coarse Grain:	blue	>30% "Secondary"	
SWAMP DEPOSIT	sandy	GW	dense	Additional:	Additional:	Coarse:	
LATERITE	gravelly	GP	very dense	Unifor, gap graded, poorly graded.	Can be modified	<-5% "Trace"	
	cobbly	GC		Rounded, sub rounded, sub angular,	using pale, dark	5-12% "With"	
	bouldery	GM	1	angular, flaky, platy	and moded	>12% "Secondary"	

Many small (1 - 2 mm) / medium (2 - 10 mm) / large (>10 mm) roots to ______ m and few small (1 - 2 mm) / medium (2 - 10 mm) / large (>10 mm) roots to _____

TSF - TP06

TSF - TP06

TEST PIT	L <mark>0</mark> G		
Job No:	P19-11-PR03	Date Started:	02-12-20
Test Pit ID:	TSF-TP07	Date Finished:	02-12-20
Contractor:	Earth Australia Contracting	Bucket Width:	1.5 m Tiger Toothed
Machine:	Kobelco SK350 LC 35-tonne Excavator	Essting:	51J 259430
Logged By:	JB JB	Northing:	6942719

<-5% "Trace"

5-12% "With"

>12% "Secondary"

Can be modified

using pale, dark and moted Suite 2E, 2 Gernstone Blvd Carine WA 6020 Australia T: +61 8 9435 5391 W: www.REC.com.au E: info@REC.com.au

Depths (From)	Depths (To)	Main material	Material Description	Comments	DCP Depth (mm)	DCP Blows/100m	Laboratory Samples
0	0.2			With some fine, medium and large roots and rootlets	100	3	
			rounded, loose, red blown, dry	large loots and rootlets	200	14	
					300	15 / 20 mm HB Ref	
					400		
				13	500		
0.2 1.0	1.0		BASALT, VS, SW - DW, grey stained yellow red brown in		600		
	-		areas, massive, blocky, cobble and gravel (medium - coarse) sized, fractures present		700		
					800		
					900		
	0. 0	Refusal	- 10 S	Å.	1000		
					1100		
					1200	4	
					1300		
					1400		
	3. 				1500		
					1600		
					1700	4	
					1800		
					1900		
	: (v)				2000		
					2100		
					2200	4	
					2300		
					2400		
	W		2.5	10	2500		
					2600		
	•				2700		
					2800		
					2900		
	9				3000		

Origin	Soil Name	Group	Consistency	Plasticity/Grain size	Colour	With/Trace	Moisture
TOPSOIL	Primary	Pt	Fine Grain:	Fine grain:	red	clay	dry
CONCRETE	PEAT	OH	very soft	non-plastic	orange	eit	dry to moist
BITUMEN	CLAY	OL.	floe	low plasticity	yellow	sand	moist
FILL	SLT	СН	firm	low - medium	brown	gravel	wel
BASSENDEAN SAND	SAND	CL	TES	medium plasticity	purple	cobbles	moiat to wat
SAND FROM TAMALA LIST	GRAVEL	MH	very stiff	medium to high	green	OM	saturated
TAMALA LST	COBBLES	ML	hard	high plasticity	white	BR	
GUILDFORD FORMATION	BOULDERS	SW	Coarse Grain:	Coarse Grain	cream	Fines:	
ALLUVIUM	Scondary:	SP	very locae	Fire	grey	<=15% "Trace"	
COLLUVIUM	clayey	sc	loose	Medium	triack.	15_30% "With"	
AEOLIAN	silty	SM	medium dense	Coarse Grain:	blue	>30% "Secondary"	
SWAMP DEPOSIT	eandy	CW	dones	Additional	Additional:	Coorse	

Unifor, gap graded, poorly graded. Rounded, sub rounded, sub angular, angular, flaky, platy

very dense

Many small (1 - 2 mm) / medium (2 - 10 mm) / large (>10 mm) roots to ______ m and few small (1 - 2 mm) / medium (2 - 10 mm) / large (>10 mm) roots to _____

GΡ

GC

Groundwater recorded at ______ m on the _____ / _/
Co-ordinate System: ______, Zone: ______

gravelly

cobbly

bouldery

LATERITE

TSF - TP07

TSF - TP07

TEST PIT	L <mark>0</mark> 6		
Job No:	P19-11-PR03	Date Started:	03-12-20
Test Pt ID:	TSF-TP08	Date Finished:	03-12-20
Contractor:	Earth Australia Contracting	Bucket Width:	1.5 m Tiger Toothed
Machine:	Kobelco SK350 LC 35-tonne Excavator	Easting:	51J 259227
Loaned By:	JB T	Morthing:	6947737

Suite 2E, 2 Gernstone Blvd Carine WA 6020 Australia T: +61 8 9435 5391 W: www.REC.com.au E: info@REC.com.au

Depths (From)	Depths (To)	Main material	Material Description	Comments	DCP Depth (mm)	DCP Blows/100m	Laboratory Samples
0	0.1		Sifty SAND, fine - medium grained, sub angular - sub rounded, medium dense, red brown, dry	With some fine, medium and large roots and rootlets. Basalt	100	4	
			rounded, medium dense, red brown, dry	cobbles and gravel at surface	200	3 / 0 mm HB Ref	
				Î	300		
					400		
				W.	500		
0.1	1.0		CALCRETE, MS, SW, cream, friable, mixed with some BASALT throughout layer (more so at base)		600		
			DALAK, Full Displace layer (Hore 30 at base)	i	700		
					800		
				ĺ	900		
8 /-				1000			
1.0	3.2		BASALT, VS, SW, grey, massive, cobble, boulder and		1100		
			gravel (medium - coarse) sized, fractures present. Interbedded with pale brown Silty SAND		1200		
				1	1300		
					1400		
		Terminated	- वर्षे - २४	100	1500		
			T		1600		
					1700		
				į.	1800		
					1900		
	:05		- W		2000		
			T		2100		
					2200		
					2300		
					2400		
	(4)		14		2500		
					2600		
					2700		
					2800		
					2900		
	100		- 137	-A-	3000		

Origin	Soil Name	Group	Consistency	Plasticity/Grain size	Colour	With/Trace	Moisture
TOPSOIL	Primary	Pt	Fine Grain:	Fine grain:	red	clay	dry
CONCRETE	PEAT	OH	very soft	non-plestic	orange	sit	dry to moist
BITUMEN	CLAY	OL.	floe	low plasticity	yellow	sand	maist
FILL	SCT	СН	firm	low - medium	brown	gravel	wet
BASSENDEAN SAND	SAND	CL	BUTT	medium plasticity	purple	cobblee	moiat to wet
SAND FROM TAMALA LST	GRAVEL	MH	very stiff	medium to high	green	OM	saturated
TAMALA LST	COBBLES	ML	hard	high plasticity	white	BR	
GUILDFORD FORMATION	BOULDERS	SW	Coarsic Grain:	Coarse Grain	cream	Fines:	
ALLUVIUM	Scendary:	SP	very locate	Fine	grey	<=15% "Trace"	
COLLUVIUM	clayey	sc	loose	Medium	tstack.	15-30% "With"	
AEOLIAN	silty	SM	medum dense	Coarse Grain:	blue	>30% "Secondary"	
SWAMP DEPOSIT	sandy	GW	dense	Additional:	Additional:	Coarse:	
LATERITE	gravelly	GP	very dense	Unifor, gap graded, poorly graded.	Can be modified	<-5% "Trace"	
	cobbly	GC		Rounded, sub rounded, sub angular,	using pale, dark	5-12% "With"	
	bouldery	GM	1	angular, flaky, platy	and molled	>12% "Secondary"	

TSF - TP08

TSF - TP08

TEST PIT	L <mark>O</mark> G			
Job No:	P19-11-PR03	Date Started:	03-12-20	
Test Pit ID:	TSF-TP09	Date Finished:	03-12-20	_
Contractor:	Earth Australia Contracting	Bucket Width:	1.5 m Tiger Toothed	_
Machine:	Kobelco SK350 LC 35-tonne Excavator	Easting:	51J 25 9 053	_
Loaned Dr.	EE .	Morthing	EDA 3778	_

Suite 2E, 2 Gerretone Blvd Cerine WA 6020 Australia T: +61 8 9435 5391 W: www.REC.com.au E: info@REC.com.au

Depths (From)	Depths (To)	Main material	Material Description	Comments	DCP Depth (mm)	DCP Blows/100m	Laboratory Samples
0	0.1		Silty SAND, fine - medium grained, sub angular - sub	With some fine - medium roots	100	1	
			rounded, loose, red brown, dry	and rootlets.	200	4 / 30 mm HB Ref	
					300		
					400		
			***	A	500		
0.1	0.9		CALCRETE, MS, SW, cream, friable	With some medium and large roots	600		
				roots	700		
					800		
					900		
	3. .		40		1000		
0.9	1.8		Clayey Sandy (fine - medium) GRAVEL, fine - coarse	Excavated as friable lightly	1100		
			grained, sub angular - sub rounded, loose - medium dense, red brown green yellow with grey black in areas,	cemented soil / rock. With some - red brown and clear gypsum	1200	4 3	
			moist. Interbedded with some Basait gravel (fine - coarse) and cobbles, grey	crystals throughout	1300		
					1400		
				*	1500		
1.8	4.1			Excavated as friable lightly	1600		
				cemented soil / rock	1700	4 3	
					1800		
					1900		
	(0)	Terminated			2000		
					2100		
					2200	4 3	
					2300		
					2400		
	(d)		\		2500		
					2600		
					2700		
					2800		
					2900		
	9		147		3000		

Many small (1 - 2 mm) / medium (2 - 10 mm) / large (>10 mm) roots to _____ m and few small (1 - 2 mm) / medium (2 - 10 mm) / large (>10 mm) roots to ____

Groundwater recorded at ______ m on the ____/ __/

Co-ordinate System: ______, Zone: ______

Origin	Soil Name	Group	Consistency	Plasticity/Grain size	Colour	With/Trace	Moisture
TOPSOIL	Primary	Pt	Fine Grain:	Fine grain:	red	clay	dry
CONCRETE	PEAT	ОН	very soft	non-plastic	orange	ait	dry to moist
BITUMEN	CLAY	OL.	floe	lowplasticity	yellow	sand	maist
FILL	SILT	CH	fem	low - medium	brown	gravel	wet
BASSENDEAN SAND	SAND	CL	nes	medium plaeticity	purple	cobbles	moiat to wat
SAND FROM TAMALA LIST	GRAVEL	MH	very striff	medium to high	green	OM	saturated
TAMALA LST	COBBLES	ML	hard	high plasticity	white	BR	
CUILDFORD FORMATION	BOULDERS	SW	Coarse Grain:	Coarse Grain:	cream	Fines:	
ALLUVIUM	Scendary:	SP	very loose	Fine	grey	<=15% 'Trace'	
COLLUVIUM	clayey	sc	loose	Medium	black.	15-30% "With"	
AEOLIAN	sity	SM	medium dense	Coarse Grain:	blue	>30% "Secondary"	
SWAMP DEPOSIT	sandy	GW	dense	Additional:	Additional:	Coarse:	
LATERITE	gravally	GP	very dense	Under one marked send market	Can be modified	<-5% "Trace"	
	cobbly	GC		Unifor, gap graded, poorly graded. Rounded, sub rounded, sub angular,	using pale, dark	5-12% "With"	
	bouldery	GM		angular, flaky, platy	and moted	>12% "Secondary"	

TSF - TP09

TSF - TP09

TEST PIT	. <mark>0</mark> 6		
Job No:	P19-11-PR03	Date Started:	03-12-20
TestPtID:	TSF-TP10	Date Finished:	03-12-20
Contractor:	Earth Australia Contracting	Bucket Width:	1.5 m Tiger Toothed
Machine:	Kobelco SK350 LC 35-tonne Excavator	Easting:	51J 258863
Logged By:	JB	Northing:	6942675

Groundwater recorded at _____ m on the ____

Suite 2E, 2 Gernstone Blvd Carine WA 6020 Australia T: +61 8 9435 5391 W: www.REC.com.au E: info@REC.com.au

Depths (From)	Depths (To)	Main material	Material Description	Comments	DCP Depth (mm)	DCP Blows/100m	Laboratory Samples
0	0.15		Sifty SAND, fine - medium grained, sub angular - sub rounded, medium dense, red brown, dry	With some fine - medium roots and rootiets. Basalt cobbles and	100	4	
			rounded, medium dense, red brown, dry	gravel at surface	200	10	
					300	18	
					400	5 / 20 mm HB Ref	
			The second secon	1	500		
0.15	0.15 0.8		BASALT, VS, SW, gravel (fine - coarse) and cobble size, fractured, grey. Interbedded with calcrete in areas, cream,		600		
			friable, MS, SW		700		
				1	800		
				1	900		
				*	1000		
0.8	2.8		BASALT, VS, SW, gravel (fine - coarse) and cobble size		1100		
			with some boulders, grey. Interbedded with some pale brown Sitty SAND		1200	4 3	
				Ì	1300		
				Ì	1400		
	33	Refusal			1500		
					1600		
				1	1700	4 3	
					1800		
					1900		
	(0)				2000		
					2100		
					2200		
				1	2300		
					2400		
	V2		77 78	de ov	2500		
					2600		
					2700		
					2800		
					2900		
	9			A.	3000		

Origin	Soil Name	Group	Consistency	Plasticity/Grain size	Colour	With/Trace	Moisture
TOPSOIL	Primary	Pt	Fine Grain:	Fine grain:	red	clay	dry
CONCRETE	PEAT	ОН	very soft	non-plastic	orange	sit	dry to moist
BITUMEN	CLAY	OL.	floe	lowplasticity	yellow	sand	maist
FILL	SIT	CH	firm	low - medium	brown	gravel	wet
BASSENDEAN SAND	SAND	CL	SULL	medium plasticity	purple	cobbles	moiat to wat
SAND FROM TAMALA LST	GRAVEL	MH	very striff	medium to high	green	OM	saturated
TAMALA LST	COBBLES	ML	hard	high plasticity	white	BR	
GUILDFORD FORMATION	BOULDERS	SW	Coarse Grain:	Coarse Grain	cream	Fines:	
ALLUVIUM	Scondary:	SP	very locate	Fine	grey	<=15% "Trace"	
COLLUVIUM	clayey	sc	loose	Medium	black.	15-30% "With"	
AEOLIAN	silty	SM	medum dense	Coarse Grain:	blue	>30% "Secondary"	
SWAMP DEPOSIT	sandy	GW	dense	Additional:	Additional:	Coarse:	
LATERITE	gravelly	GP	very dense	Unifor, gap graded, poorly graded.	Can be modified	<-5% "Trace"	
	cobbly	GC		Rounded, sub rounded, sub angular,	using pale, dark	5-12% "With"	
	bouldery	GM		angular, flaky, platy	and moded	>12% "Secondary"	

m and few small (1 - 2 mm) / medium (2 - 10 mm) / large (>10 mm) roots to ____

TSF - TP10

TSF - TP10

TEST PIT	L <mark>O</mark> G		
Job No:	P19-11-PR03	Date Started:	02-12-20
Test Pit ID:	TSF-TP11	Date Finished:	02-12-20
Contractor:	Earth Australia Contracting	Bucket Width:	1.5 m Tiger Toothed
Machine:	Kobelco SK350 LC 35-tonne Excavator	Easting:	51J 259018
Looned By:	JH .	Northing:	6042542

Groundwater recorded at ______ m on the ____/

Suite 2E, 2 Gernstone Blvd Carine WA 6020 Australia T: +61 8 9435 5391 W: www.REC.com.au E: info@REC.com.au

Depths (From)	Depths (To)	Main material	Material Description	Comments	DCP Depth (mm)	DCP Blows/100m	Laboratory Samples
0	0.1		Sifty SAND, fine - medium grained, sub angular - sub rounded, medium dense, with some cobbles and gravel.	With some fine - medium roots and rootlets. Basalt cobbles and	100	4	
			red brown, dry	gravel at surface	200	11	
					300	4 / 20 mm HB Ref	
					400		
	(d)		THE THE SECOND CONTRACTOR OF THE SECOND CONTRA		500		
0.1	1.2		CALCRETE, W-MS, DW, cream becoming stained red brown, friable. Interbedded with some Basalt gravel		600		
	-		(medium - coarse) and cobbles, grey, VS, SW		700		
					800		
				Î	900		
			A	1000			
1.2	1.2 2.1		Sity SAND with some clay, fine - medium grained, sub angular - sub rounded, medium dense, red brown cream,	Excavated as soil and lightly cemented rock	1100		
			angurar - suo rounded, medium dense, red brown cream, moist, with some gravel (fine - medium)	cemented rock	1200		
				Ì	1300		
				Ì	1400		
	3 .			*	1500		
2.1	3.5		Weathered BASALT, purple black moffled red brown cream, DW, MS, fractured, as cobble and gravel (medium further digging coarse) size, some parts friable others quite strong. Interbedded with red brown Sitty SAND	Small amount of rock preventing	1600		
				-furiner digging	1700		
					1800		
				Ì	1900		
		Terminated	0.5		2000		
					2100		
					2200		
					2300		
				1	2400		
	()				2500	1	
			1		2600		
					2700		
					2800		
				Ì	2900		
	83 .		4	A .	3000	1	

Origin	Soil Name	Group	Consistency	Plasticity/Grain size	Colour	With/Trace	Moisture
TOPSOIL	Primary	Pt	Fine Grain:	Fine grain:	red	clay	dry
CONCRETE	PEAT	ОН	very soft	non-plastic	orange	sit	dry to moist
BITUMEN	CLAY	OL.	floe	lowplasticity	yellow	sand	moist
FILL	SIT	CH	firm	low - medium	brown	gravel	wet
BASSENDEAN SAND	SAND	CL	BUTT	medium plasticity	purple	cobbles	moiat to wat
SAND FROM TAMALA LST	GRAVEL	MH	very striff	medium to high	green	OM	saturated
TAMALA LST	COBBLES	ML	hard	high plasticity	white	BR	
GUILDFORD FORMATION	BOULDERS	SW	Coarse Grain:	Coarse Grain	cream	Fines:	
ALLUVIUM	Scondary:	SP	very locate	Fine	grey	<=15% "Trace"	
COLLUVIUM	clayey	sc	loose	Medium	triack.	15-30% "With"	
AEOLIAN	sity	SM	medum dense	Coarse Grain:	blue	>30% "Secondary"	
SWAMP DEPOSIT	sandy	GW	dense	Additional:	Additional:	Coarse:	
LATERITE	gravelly	GP	very dense	Unifor, gap graded, poorly graded.	Can be modified	~5% "Trace"	
	cobbly	GC		Rounded, sub rounded, sub angular,	using pale, dark	5-12% "With"	
	bouldery	GM		angular, flaky, platy	and moted	>12% "Secondary"	

_ m and few small (1 - 2 mm) / medium (2 - 10 mm) / large (≥10 mm) roots to __

TSF - TP11

TSF - TP11

TEST PIT	L <mark>0</mark> 6		
Job No:	P19-11-PR03	Date Started:	02-12-20
Test Pit ID:	TSF-TP12	Date Finished:	02-12-20
Contractor:	Earth Australia Contracting	Bucket Width:	1.5 m Tiger Toothed
Machine:	Kobelco SK350 LC 35-tonne Excavator	Easting:	51J 259163
Looped By:	JB I	Northing:	6942535

Suite 2E, 2 Genstone Blvd Carine WA 6020 Australia T: +61 8 9435 5391 W; www.REC.com.au E: info@REC.com.au

(From)	Depths (To)	Main material	Material Description	Comments	DCP Depth (mm)	DCP Blows/100m	Laboratory Samples
0	0.15		Sifty SAND, fine - medium grained, sub angular - sub rounded, red brown, dry, medium dense, with some basalt	With trace fine - large roots and	100	10	
			cobbles and gravel (coarse) within	quartz gravel at surface	200	1 / 0 mm HB Ref	
					300		
					400		
	S		Section Company Section 1	10 10 10 10 10 10 10 10 10 10 10 10 10 1	500		
0.15	0.6		CALCRETE, W-MS, DW, cream with some red brown grey, friable. Interbedded with BASALT, VS, SW, grey,	Initial refusal with bucket at 0.5 m	600		
	-		massive, boulder and cobble size, some areas slightly	176	700		
			more weathered and friable, grey red brown cream		800		
					900		
	(i)		All the second of the second o	A second	1000		
0.6 1.2	1.2		BASALT, VS, SW, grey, massive	Starting higher in areas	1100		
	-				1200	4 3	
					1300		
					1400		
		Initial refusal with bucket (0.5 m. Ripper used for remaining depth and then terminated.				
					1600		
					1700	4 3	
					1800		
					1900		
	97				2000		
					2100		
					2200	4 3	
					2300		
					2400		
	₩ <u></u>			i i	2500		
					2600		
	•				2700		
					2800		
					2900		
	10 m		₩		3000		

Origin	Soil Name	Group	Consistency	Plasticity/Grain size	Colour	With/Trace	Moisture
TOPSOIL	Primary	Pt	Fine Grain:	Fine grain:	red	clay	dry
CONCRETE	PEAT	ОН	very soft	non-pleatic	orange	ait	dry to moist
BITUMEN	CLAY	OL.	flore	lowplasticity	yellow	sand	rnoist
FILL	SLT	СН	firm	low - medium	brown	gravel	wet
BASSENDEAN SAND	SAND	CL	TES	medium plaeticity	purple	colbbies	moiat to wat
SAND FROM TAMALA LIST	GRAVEL	MH	very strit	medium to high	green	OM	saturated
TAMALA LST	COBBLES	ML	herd	high plasticity	white	BR	
GUILDFORD FORMATION	BOULDERS	SW	Coarsic Grain:	Coarse Grain:	cream	Fines:	
ALLUVIUM	Scondary:	SP	very locate	Fire	grey	<=15% "Trace"	
COLLUVIUM	clayey	sc	loose	Medium	black.	15-30% "With"	
AEOLIAN	sity	SM	medium dense	Coarse Grain:	blue	>30% "Secondary"	
SWAMP DEPOSIT	sandy	GW	dense	Additional:	Additional:	Coarse:	
LATERITE	gravelly	GP	very dense	Unifor, gap graded, poorly graded.	Can be modified	<-5% "Trace"	
	cobbly	GC		Rounded, sub rounded, sub angular,	using pale, dark	5-12% "With"	
	bouldery	GM		angular, flaky, platy	and moted	>12% "Secondary"	

Many small (1 - 2 mm) / medium (2 - 10 mm) / large (>10 mm) roots to ______ m and few small (1 - 2 mm) / medium (2 - 10 mm) / large (>10 mm) roots to _____

TSF - TP12

TSF - TP12

TEST PIT	L <mark>0</mark> G		
Job No:	P19-11-PR03	Date Started:	03-12-20
Test Pt ID:	TSF-TP13	Date Finished:	03-12-20
Contractor:	Earth Australia Contracting	Bucket Width:	1.5 m Tiger Toothed
Machine:	Kobelco SK350 LC 35-tonne Excavator	Easting:	51J 259384
		i i	

>12% "Secondary"

Suite 2E, 2 Genstone Blvd Carine WA 6020 Australia T: +61 8 9435 5391 W; www.REC.com.su E: info@REC.com.su

Depths (From)	Depths (To)	Main material	Material Description	Comments	DCP Depth (mrn)	DCP Blows/100m	Laboratory Samples
0	0.1		Sifty SAND, fine - medium grained, sub angular - sub rounded, medium dense, red brown, dry		100	2	
			rounded, medium dense, rod drown, dry		200	3 / 10 mm HB Ref	
					300		
					400		
					500		
0.1	1.1 BASALT, VS, SW, grey, blocky, massive, fractured, gravel (medium - coarse) and cobble sized		600				
			(Viteratili) Salas and as to contact a faces		700		
					800		
					900		
	(i) (i) (ii) (ii) (ii) (ii) (ii) (ii) (Refusal	12		1000		
					1100		
					1200		
					1300		
					1400		
					1500		
					1600		
					1700		
					1800		
	L				1900		
	197		10 10 10 10 10 10 10 10 10 10 10 10 10 1		2000		
					2100		
					2200		
					2300		
					2400		
	947 925 (44)		- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10		2500		
					2600		
					2700		
					2800		
	,,				2900		
	25		1.0		3000		

NOTES AND COMMENTS

bouldery

Many small (1 - 2 mm) / medium (2 - 10) mm) / large (>10 mm) roots to	m and few small (1 - 2 mm) / medium (2 - 10 mm) / large (≥10 mm) roots tom.
Groundwater recorded at	_ m on the//	

Origin	Soil Name	Group	Consistency	Plasticity/Grain size	Colour	With/Trace	Moisture
TOPSOIL	Primary	Pt	Fine Grain:	Fine grain:	red	clay	dry
CONCRETE	PEAT	OH	very soft	non-plestic	orange	sit	dry to moist
BITUMEN	CLAY	OL.	floe	lowplasticity	yellow	sand	maist
FILL	SILT	СН	firm	low - medium	brown	gravel	wet
BASSENDEAN SAND	SAND	CL	прв	medium plaeticity	purple	cobbles	moiat to wa
SAND FROM TAMALA LST	GRAVEL	MH	very strr	medium to high	green	OM	saturated
TAMALALST	COBBLES	ML	hard	high plasticity	white	BR	
GUILDFORD FORMATION	BOULDERS	SW	Coarse Grain:	Coarse Grain	cream	Fines:	
ALLUVIUM	Scondary:	SP	very loose	Fire	grey	<=15% "Trace"	
COLLUVIUM	clayey	sc	loose	Medium	black.	15-30% "With"	
AEOLIAN	sity	SM	medum dense	Coarse Grain:	blue	>30% "Secondary"	
SWAMP DEPOSIT	sandy	GW	dense	Additional:	Additional:	Coarse:	
LATERITE	gravally	GP	very dense	Unifor, gap graded, poorly graded.	Can be modified	<-5% "Trace"	
	cobbly	GC		Rounded, sub rounded, sub angular,	using pale, dark	5-12% "With"	
	bouldery	GM	1	angular, flaky, platy	and moted	>12% "Secondary"	

TSF - TP13

TSF - TP13

TEST PIT	L <mark>0</mark> G		
Job No:	P19-11-PR03	Date Started:	02-12-20
Test Pit ID:	TSF-TP14	Date Finished:	02-12-20
Contractor:	Earth Australia Contracting	Bucket Width:	1.5 m Tiger Toothed
Machine:	Kobelco SK350 LC 35-tonne Excavator	Easting:	51J 259392
Logged By:	JB	Northing:	6942348

Suite 2E, 2 Genstone Blvd Carine WA 6020 Australia T: +61 8 9435 5391 W; www.REC.com.au E: info@REC.com.au

Depths (From)	Depths (To)	Main material	Material Description	Comments	DCP Depth (mm)	DCP Blows/100m	Laboratory Samples
0	0.1		Sifty SAND, fine - medium grained, sub angular - sub rounded, medium dense, red brown, dry, interbedded with	With trace fine - medium roots and rootlets. Basalt outcrops,	100	4 / 80 mm HB Ref	
			some basalt cobbles and boulders	cobbles, boulders and gravel at surface	200		
					300		
					400		
	S-				500		
0.1	0.4		BASALT, VS, SW, cobbles and boulders sized, grey-grey red brown cream. Interbedded with CALCRETE, cream		600		
			with grey and some red brown in areas, W - MS, DW.		700		
			friable, with some BASALT in matrix		800		
					900		
	10.00 M	Refusal	- 1	ž	1000		
					1100		
					1200		
					1300		
					1400		
	3.				1500		
					1600		
				1	1700	1	
					1800		
					1900		
	:0 1		- 10 ¹ - 2.5		2000		
					2100		
					2200	4	
				1	2300		
					2400		
	4)		14.7 Page 1	r v	2500		
				2600			
				1	2700		
					2800		
					2900		
	-		1 .7		3000		

NOTES AND COMMENTS

Many small (1 - 2 mm) / medium (2 - 10 mm) / large (>10 mm) roots to ______ m and few small (1 - 2 mm) / medium (2 - 10 mm) / large (>10 mm) roots to _____ m. Groundwater recorded at ______ m on the ____/ __/
Co-ordinate System: ______, Zone: ______

Origin	Soil Name	Group	Consistency	Plasticity/Grain size	Colour	With/Trace	Moisture
TOPSOIL	Primary	Pt	Fine Grain:	Fine grain:	red	clay	dry
CONCRETE	PEAT	ОН	very soft	nor-plastic	orange	sit	dry to moist
BITUMEN	CLAY	OL.	floe	lowplasticity	yellow	sand	maist
FILL	SILT	CH	firm	low - medium	brown	gravel	wet
BASSENDEAN SAND	SAND	CL	TIES	medium plasticity	purple	cobbles	moiat to wat
SAND FROM TAMALA LST	GRAVEL	MH	very stiff	medium to high	green	OM	saturated
TAMALA LST	COBBLES	ML	hard	high plasticity	white	BR	
GUILDFORD FORMATION	BOULDERS	SW	Coarac Grain:	Coarse Grain	cream	Fines:	
ALLUVIUM	Scendary:	SP	very loose	Fine	grey	<=15% "Trace"	
COLLUVIUM	clayey	sc	loose	Medium	black.	15-30% "With"	
AEOLIAN	silty	SM	medum dense	Coarse Grain:	blue	>30% "Secondary"	
SWAMP DEPOSIT	sandy	GW	dense	Additional:	Additional:	Coarse:	
LATERITE	gravelly	GP	very dense	Unifor, gap graded, poorly graded.	Can be modified	<-5% "Trace"	
	cobbly	GC		Rounded, sub rounded, sub angular,	using pale, dark	5-12% "With"	
	bouldery	GM		angular, flaky, plety	and moted	>12% "Secondary"	

TSF - TP14

TSF - TP14

TEST PIT	L <mark>0</mark> 6		
Job No:	P19-11-PR03	Date Started:	02-12-20
Test Pt ID:	TSF-TP15	Date Finished:	02-12-20
Contractor:	Earth Australia Contracting	Bucket Width:	1.5 m Tiger Toothed
Machine:	Kobelco SK350 LC 35-tonne Excavator	Easting:	51J 259545
Loaned By:	JB T	Morthing:	6047730

Groundwater recorded at ______ m on the ____/

Suite 2E, 2 Gerretone Blvd Cerine WA 6020 Australia T: +61 8 9435 5391 W: www.REC.com.au E: info@REC.com.au

Depths (From)	Depths (To)	Main material	Material Description	Comments	DCP Depth (mm)	DCP Blows/100m	Laboratory Samples
0	0.2		Sifty SAND, fine - medium grained, sub angular - sub rounded, loose - medium dense, red brown, dry, with	With some tine - large roots and rootlets. Basalt cobbles at	100	5	
			some gravel (fine - medium)	Surface	200	3	
					300	5	
					400	HB Ref	
	\$ -			\	500		
0.2	0.8		CALCRETE, MS, DW - SW, cream stained red brown in areas, friable		600		
			areas, made		700		
					800		
				Ì	900		
	8. 5		40	.	1000		
0.8	2.5	CALCRETE, W - MS, XW - DW, cream red brown, friable. Excavated as soil. We interbedded with BASALT cobbles and gravel (coarse), more weathered than a above.		1100			
				1200	4 3		
					1300		
					1400		
	3) 			<u> </u>	1500	3	
2.5	4.0		Clayey (medium plasticity) SAND, fine - medium grained, Son	Some areas more clayey Red	1600		
			sub rounded, red brown, medium dense, moist. Varying to CLAY with sand. With some weathered BASALT, MS, XW	clay as gypsum	1700	4 3	
			- DW, purple red brown grey, friable.		1800		
					1900		
	(6)	Terminated			2000		
					2100		
					2200	E 3	
					2300		
					2400		
	(d)				2500		
				i i	2600		
	•				2700		
					2800		
					2900		
	33		4	h	3000	1	

Origin	Soil Name	Group	Consistency	Plasticity/Grain size	Colour	With/Trace	Moisture
TOPSOIL	Primary	Pt	Fine Grain:	Fine grain:	red	clay	dry
CONCRETE	PEAT	ОН	very soft	non-plastic	orange	sit	dry to moist
BITUMEN	CLAY	OL.	flore	low plasticity	yellow	sand	moist
FILL	SIT	CH	firm	low - medium	brown	gravel	wet
BASSENDEAN SAND	SAND	CL	880	medium plasticity	purple	cobbles	moiat to wat
SAND FROM TAMALA LST	GRAVEL	MH	very stiff	medium to high	green	OM	saturated
TAMALA LST	COBBLES	ML	hard	high plasticity	white	BR	
GUILDFORD FORMATION	BOULDERS	SW	Coarse Grain:	Coarse Grain:	cream	Fines:	
ALLUVIUM	Scendary:	SP	very loose	Fire	grey	<=15% "Trace"	
COLLUVIUM	clayey	sc	loose	Medium	tstack.	15-30% "With"	
AEOLIAN	silty	SM	medium dense	Coarse Grain:	blue	>30% "Secondary"	
SWAMP DEPOSIT	sandy	GW	dense	Additional:	Additional:	Coarse:	
LATERITE	gravelly	GP	very dense	Unifor, gap graded, poorly graded.	Can be modified	<-5% "Trace"	
	cobbly	GC		Rounded, sub rounded, sub angular,	using pale, dark	5-12% "With"	
	bouldery	GM		angular, flaky, platy	and moted	>12% "Secondary"	

_ m and few small (1 - 2 mm) / medium (2 - 10 mm) / large (≥10 mm) roots to ___

TSF - TP15

TSF - TP15

TEST PIT	L <mark>0</mark> G		
Job No:	P19-11-PR03	Date Started:	02-12-20
Test Pit ID:	TSF-TP16	Date Finished:	02-12-20
Contractor:	Earth Australia Contracting	Bucket Width:	1.5 m Tiger Toothed
Machine:	Kobelco SK350 LC 35-tonne Excavator	Easting:	51J 259136
Looned By:	JB T	Morthing:	6042326

bouldery

Groundwater recorded at ______ m on the _____/

Co-ordinate System:_

Suite 2E, 2 Genstone Blvd Carine WA 6020 Australia T: +61 8 9435 5391 W; www.REC.com.su E: info@REC.com.su

Depths (From)	Depths (To)	Main material	Material Description	Comments	DCP Depth (mm)	DCP Blows/100m	Laboratory Samples
۵	0.15		rounded, medium dense, red brown, dry	With trace fine - medium roots and rootlets. Basalt cobbles, boulders and gravel at surface. Some quartz at surface	100	10	
					200	13 / 50 mm HB ref	
					300		
					400		
			and the second s	12	500		
0.15	.0.6		CALCRETE, W-MS, DW, cream with some grey stained red brown in areas, friable. Interbedded with BASALT, VS, SW, grey within the calcrete matrix. With some cobbles, boulders and gravel sized BASALT.		600		
					700		
					800		
					900		
	0. 0	Refusal	- 1	A.	1000		
					1100		
					1200		
					1300		
					1400		
	5. 		*		1500		
					1600		
					1700	4	
					1800		
					1900		
	: (v)				2000		
					2100		
					2200		
					2300		
					2400		
	W		34 24	10	2500		
					2600		
	•				2700		
				İ	2800		
					2900		
	9		M		3000		

Origin	Soil Name	Group	Consistency	Plasticity/Grain size	Colour	With/Trace	Moisture
TOPSOIL	Primary	Pt	Fine Grain:	Fine grain:	red	clay	dry
CONCRETE	PEAT	OH	very soft	non-plestic	orange	ait	dry to moist
BITUMEN	CLAY	OL.	flore	lowplasticity	yellow	sand	maist
FILL	SLT	CH	firm	low - medium	brown	gravel	wet
BASSENDEAN SAND	SAND	CL	BUT	medium plasticity	purple	cobbles	moiat to wet
SAND FROM TAMALA LIST	GRAVEL	MH	very stiff	medium to high	green	OM	saturated
TAMALA LST	COBBLES	ML	hard	high plasticity	white	BR	
GUILDFORD FORMATION	BOULDERS	SW	Coarse Grain:	Coarse Grain	cream	Fines:	
ALLUVIUM	Scondary:	SP	very locate	Fire	grey	<=15% "Trace"	
COLLUVIUM	clayey	sc	loose	Medium	black.	15-30% "With"	
AEOLIAN	sity	SM	medium dense	Coarse Grain:	blue	>30% "Secondary"	
SWAMP DEPOSIT	sandy	GW	dense	Additional:	Additional:	Coarse:	
LATERITE	gravally	GP	very dense	Unifor, gap graded, poorly graded.	Can be modified	<-5% "Trace"	
	cobbly	GC		Rounded, sub rounded, sub angular,	using pale, dark	5-12% "With"	
	bouldery	GM		angular, flaky, platy	and moted	>12% "Secondary"	

__m and few small (1 - 2 mm) / medium (2 - 10 mm) / large (>10 mm) roots to ___

>12% "Secondary"

TSF - TP16

TSF - TP16

TEST PIT	L <mark>0</mark> G		
Job No:	P19-11-PR03	Date Startect	02-12-20
Test Pit ID:	TSF-TP17	Date Finished:	02-12-20
Contractor:	Earth Australia Contracting	Bucket Width:	1.5 m Tiger Toothed
Machine:	Kobelco SK350 LC 35-tonne Excavator	Easting:	51J 258922
Loaned Day		Morthing	ED47275

Many small (1 - 2 mm) / medium (2 - 10 mm) / large (>10 mm) roofs to ____

Suite 2E, 2 Gernstone Blvd Carine WA 6020 Australia T: +61 8 9435 5391 W: www.REC.com.au E: info@REC.com.au

(From)	Depths (To)	Main material	Material Description	Comments	DCP Depth (mm)	DCP Blows/100m	Laboratory Samples
0	0.1		Sifty SAND, fine - medium grained, sub angular - sub rounded, medium dense, red brown, dry	With some fine - medium roots and rootlets	100	4 / 60 mm HB Ref	
			rounded, medium dense, red brown, dry	and rootets	200		
					300		
					400		
					500		
0.1	1.9		CALCRETE, MS, DW - SW, cream with some grey , friable. Interbedded with BASALT, VS, SW, grey within the	Localised silt powder within this area	600		
			calcrete matrix. With some cobbles, boulders of BASALT,	alea	700		
			generally elongated and platey		800		
					900		
			The second secon		1000		
1.9	4.0		Clayey, sitty SAND, fine - medium grained, sub angular - sub rounded, loose, red brown, moist, interbedded with		1100		
			some weathered BASALT as gravel (fine - coarse) and		1200		
			cobbles, MS - VS, DW - SW, purple grey red cream brown (some unweathered grey BASALT too)	Î	1300		
			State College of Market College College of State College of College College of College		1400		
	30	Terminated			1500		
					1600		
					1700	4 3	
					1800		
					1900		
	100		-11. 		2000		
					2100		
				i	2200	1	
					2300		
					2400		
	er er		MA SA		2500		
					2600		
					2700		
					2800		
					2900		
	32		- 19 · · · · · · · · · · · · · · · · · ·	ì	3000		

o-ordinate System:		ne:					
Origin	Soil Name	Group	Consistency	Plasticity/Grain size	Colour	With/Trace	Moisture
TOPSOIL	Primary	Pt	Fine Grain:	Fine grain:	red	clay	dry
CONCRETE	PEAT	OH	very soft	non-plastic	orange	sit	dry to moist
BITUMEN	CLAY	OL.	flore	lowplasticity	yellow	sand	moist
FILL	SET	СН	fem	kow - medium	brown	gravel	wet
BASSENDEAN SAND	SAND	CL	TIPS	medium plasticity	purple	colables	moiat to wet
SAND FROM TAMALA LST	GRAVEL	MH	very stiff	medium to high	green	OM	saturated
TAMALA LST	COBBLES	ML	hard	high plasticity	white	BR	
GUILDFORD FORMATION	BOULDERS	SW	Coarse Grain:	Coarse Grain	cream	Fines:	
ALLUVIUM	Scendary:	SP	very loose	Fine	grey	<=15% "Trace"	
COLLUVIUM	clayey	sc	loose	Medium	black.	15-30% "With"	
AEOLIAN	sity	SM	medium dense	Coarse Grain:	blue	>30% "Secondary"	
SWAMP DEPOSIT	sandy	GW	dense	Additional:	Additional:	Coarse:	
LATERITE	gravelly	GP	very dense	Unifor, gap graded, poorly graded.	Can be modified	~5% "Trace"	
	cobbly	GC		Rounded, sub rounded, sub angular,	using pale, dark	5-12% "With"	
	brokhere	CM		angular, flaky, platy	and moded	>12M *Secondary?	

m and few small (1 - 2 mm) / medium (2 - 10 mm) / large (>10 mm) roots to ____

TSF - TP17

TSF - TP17

TEST PIT	L <mark>0</mark> G		
Job No:	P19-11-PR03	Date Started:	03-12-20
TestPtID:	TSF-TP18	Date Finished:	03-12-20
Contractor:	Earth Australia Contracting	Bucket Width:	1.5 m Tiger Toothed
Machine:	Kobelco SK350 LC 35-tonne Excavator	Easting:	51J 2596769
200000000000000000000000000000000000000		2000 CONTRACTOR	9.7903-662-5

Suite 2E, 2 Gerretone Blvd Cerine WA 6020 Australia T: +61 8 9435 5391 W: www.REC.com.au E: info@REC.com.au

Depths (From)	Depths (To)	Main material	Material Description	Comments	DCP Depth (mm)	DCP Blows/100m	Laboratory Samples
0	0.2		Sifty SAND, fine - medium grained, sub angular - sub rounded, medium dense, red brown, dry	With some fine - medium roots and rootlets. Basalt gravel and	100	5	
			rounded, medium dense, red brown, dry	cobbles at surface	200	2 / 0 mm HB Ref	
					300		
					400		
	S-			The state of the s	500		
0.2	1.0		CALCRETE, MS, DW, cream, friable. Becoming interbedded with some BASALT cobbles, grey, VS, SW	Rootlets throughout in areas	600		
			from 0.4 m		700		
					800		
					900		
	11.5 20.0	Refusal	की 	数 (a)	1000		
					1100		
					1200		
					1300		
					1400		
					1500		
					1600		
					1700	1	
					1800		
					1900		
	4) 		- 1.1 - 1.4	1	2000		
					2100		
					2200	4	
					2300		
					2400		
	(4)		50 66	EF S	2500		
					2600		
					2700		
					2800		
					2900		
	33		M. Comments of the Comments of	γA:	3000		

o-ordinate System:	, 20	ne:					
Origin	Soil Name	Group	Consistency	Plasticity/Grain size	Colour	With/Trace	Moisture
TOPSOIL	Primary	Pt	Fine Grain:	Fine grain:	red	clay	dry
CONCRETE	PEAT	OH	very soft	non-plastic	orange	sit	dry to moist
BITUMEN	CLAY	OL.	flore	lowplasticity	yellow	sand	moist
FILL	SCT	СН	fem	low - medium	brown	gravel	wet
BASSENDEAN SAND	SAND	CL	mes	medium placeaty	purple	cobbles	moiat to wat
SAND FROM TAMALA LST	GRAVEL	MH	very stiff	medium to high	green	OM	saturated
TAMALA LST	COBBLES	ML	hard	high plasticity	white	BR	
GUILDFORD FORMATION	BOULDERS	SW	Coarse Grain:	Coarse Grain:	cream	Fines:	
ALLUVIUM	Scendary:	SP	very loose	Fine	grey	<=15% "Trace"	
COLLUVIUM	clayey	sc	loose	Medium	tstack.	15-30% "With"	
AEOLIAN	sity	SM	medium dense	Coarse Grain:	blue	>30% "Secondary"	
SWAMP DEPOSIT	sandy	GW	dense	Additional:	Additional:	Coarse:	
LATERITE	gravelly	GP	very dense	Unifor, gap graded, poorly graded.	Can be modified	<-5% "Trace"	
	cobbly	GC		Rounded, sub rounded, sub angular,	using pale, dark	5-12% "With"	
	brokhere	CM	1	angular, flaky, platy	and moted	>12M *Secondary?	

Many small (1 - 2 mm) / medium (2 - 10 mm) / large (>10 mm) roots to ______ m and few small (1 - 2 mm) / medium (2 - 10 mm) / large (>10 mm) roots to _____

TSF - TP18

TSF - TP18

TEST PIT	L <mark>0</mark> 6		
Job No:	P19-11-PR03	Date Started:	04-12-20
Test Pt ID:	TSF-TP19	Date Finished:	04-12-20
Contractor:	Earth Australia Contracting	Bucket Width:	1.5 m Tiger Toothed
Machine:	Kobelco SK350 LC 35-tonne Excavator	Easting:	51J 259776
Loaned By:	JB	Northing:	6042550

Many small (1 - 2 mm) / medium (2 - 10 mm) / large (>10 mm) roots to ___

Groundwater recorded at ______ m on the _____/

Co-ordinate System:

Suite 2E, 2 Genstone Blvd Carine WA 6020 Australia T: +61 8 9435 5391 W; www.REC.com.au E: info@REC.com.au

Depths (From)	Depths (To)	Main material	Material Description	Comments	DCP Depth (mm)	DCP Blows/100m	Laboratory Samples
0	0.15		Slity SAND, fine - medium grained, sub angular - sub rounded, medium dense, red brown, dry	Trace rootiets, Ironstone gravel and cobbles at surface.	100	Ref	
			rounded, median dense, ned drown, dry	Conglomerate at surface	200		
					300		
					400		
	100 100		THE STATE OF THE S	State CANSON out ones	500		
0.15	.0.3		HARDPAN, S, SW, red brown speckled grey in areas, cemented soil containing ironstone gravel / cobble	Rootlets throughout in areas	600		
			Control of Control of Control		700		
					800		
					900		
	99 80 - AO	Refusal	数 20	500	1000		
					1100		
					1200	4	
					1300		
					1400		
	9. 			- 3X	1500		
				1600			
					1700		
					1800		
	L				1900		
	197		127	- 1	2000		
					2100		
					2200		
					2300		
	L				2400		
	747 20: 100		59 68	300	2500		
					2600		
					2700		
					2800		
	,,				2900		
	25		4.0	-A-	3000		

Origin	Soil Name	Group	Consistency	Plasticity/Grain size	Colour	With/Trace	Moisture
TOPSOIL	Primary	Pt	Fine Grain:	Fine grain:	red	clay	dry
CONCRETE	PEAT	OH	very soft	non-plestic	orange	ait	dry to moist
BITUMEN	CLAY	OL.	flore	lowplasticity	yellow	sand	rnoist
FILL	SLT	сн	firm	low - medium	brown	gravel	wet
BASSENDEAN SAND	SAND	CL	RMT	medium plasticity	purple	cobbles	moiat to wat
SAND FROM TAMALA LST	GRAVEL	MH	very stiff	medium to high	green	OM	saturated
TAMALA LST	COBBLES	ML	hard	high plasticity	white	BR	
GUILDFORD FORMATION	BOULDERS	SW	Coarsic Grain:	Coarse Grain	cream	Fines:	
ALLUVIUM	Scendary:	SP	very loose	Fine	grey	<=15% "Trace"	
COLLUVIUM	clayey	sc	loose	Medium	black.	15-30% "With"	
AEOLIAN	silty	SM	medum dense	Coarse Grain:	blue	>30% "Secondary"	
SWAMP DEPOSIT	sandy	GW	dense	Additional:	Additional:	Coarse:	
LATERITE	gravelly	GP	very dense	Unifor, gap graded, poorly graded.	Can be modified	<-5% "Trace"	
	cobbly	GC		Rounded, sub rounded, sub angular,	using pale, dark	5-12% "With"	
	bouldery	GM	1	angular, flaky, platy	and moted	>12% "Secondary"	

m and few small (1 - 2 mm) / medium (2 - 10 mm) / large (>10 mm) roots to _____

TSF - TP19

TSF - TP19

TEST PIT	L <mark>0</mark> G			
Job No:	P19-11-PR03	Date Started:	03-12-20	\Box
Test Pt ID:	TSF-TP20	Date Finished:	03-12-20	
Contractor:	Earth Australia Contracting	Bucket Width:	1.5 m Tiger Toothed	
Machine:	Kobelco SK350 LC 35-tonne Excavator	Easting:	51J 259495	

Suite 2E, 2 Gerretone Blvd Carine WA 6020 Australia T: +61 8 9435 5391 W: www.REC.com.au E: info@REC.com.au

Depths	Tanan salasanan sala	- Tarak Maria Sanagan	The state of the s	remanade	DCP Depth	Canada Ing Constitution	2.0200092882.0246767323
(From)	Depths (To)	Main material	Material Description	Comments	(mm)	DCP Blows/100m	Laboratory Samples
0	0.1		Sity SAND, fine - medium grained, sub angular - sub rounded, medium dense, red brown, dry		100	4	
					200	15	
					300	HB Ref	
	,.				400		
	100 M			No	500		
0.1	1.2		CALCRETE, MS, SW, cream, friable		600		
					700		
					800		
					900		
	0.0		Fig. 1880 No. 1880 Commonwell (1880 No. 1880 No.		1000		
1.2	1.8		Sandy (fine - medium) clayey GRAVEL, fine - coarse grained, sub angular, medium dense, red brown yellow,	With some fine brown gypsum crystais.	1100		
			moist. With some BASALT gravel and cobbles.	Cysiais.	1200		
					1300		
					1400		
	31 			Ž	1500		
1.8	4.2		CLAY with sand (fine - medium) with gravel (fine - coarse, sub angular as BASALT mostly, red brown - red brown		1600		
			yellow, moist, soft. Interbedded with weathered BASALT,		1700	4	
			MS - S, DW, purple, some parts friable, gravel and cobble sized (some unweathered grey BASALT throughout layer		1800		
			also).		1900		
	(V 	Terminated			2000		
					2100		
					2200		
					2300		
					2400		
	V4 7		24	ile -	2500		
					2600		
					2700		
					2800		
					2900		
	2		<u>!</u>	M ·	3000		

o-ordinate System:	, Zo			•			
Origin	Soil Name	Group	Consistency	Plasticity/Grain size	Colour	With/Trace	Moisture
TOPSOIL	Primary	Pt	Fine Grain:	Fine grain:	red	clay	dry
CONCRETE	PEAT	OH	very soft	non-plastic	orange	ait	dry to moist
BITUMEN	CLAY	OL.	floe	lowplasticity	yellow	sand	maist
FILL	SLT	СН	firm	low - medium	brown	gravel	wet
BASSENDEAN SAND	SAND	CL	TIPS	medium plasticity	purple	cobbles	moiat to wet
SAND FROM TAMALA LST	GRAVEL	MH	very strift	medium to high	green	OM	saturated
TAMALA LST	COBBLES	ML	hard	high plasticity	white	BR	
GUILDFORD FORMATION	BOULDERS	SW	Coarse Grein:	Coarse Grain	cream	Fines:	
ALLUVIUM	Scondary:	SP	very loose	Fine	grey	<=15% "Trace"	
COLLUVIUM	clayey	sc	loose	Medium	titack.	15-30% "With"	
AEOLIAN	sity	SM	medium dense	Coarse Grain:	blue	>30% "Secondary"	
SWAMP DEPOSIT	sandy	GW	dense	Additional:	Additional:	Coarse:	
LATERITE	gravelly	GP	very dense	Unifor, gap graded, poorly graded.	Can be modified	~5% "Trace"	
	cobbly	GC		Rounded, sub rounded, sub angular,	using pale, dark	5-12% "With"	
	bouldery	GM	1	angular, flaky, platy	and moted	>12% "Secondary"	

Many small (1 - 2 mm) / medium (2 - 10 mm) / large (>10 mm) roots to ______ m and few small (1 - 2 mm) / medium (2 - 10 mm) / large (>10 mm) roots to _____ m.

TSF - TP20

TSF - TP20

BOREHOLE NO.: 3A

SHEET: 1 OF 3

CLIENT: Bellevue Gold Limited

PROJECT: IWLTSF

LOCATION: Bellevue Gold Mine

JOB NUMBER:

DATE COMMENCED: 26/1/2021 DATE COMPLETED: 27/1/2021

Drill Model: DDR004 Drill Fluid: Bentonite Bearing: N/A Northing: 6,942,325	Surface RL: Datum: GDA94 Zone 51 rds/Comments
	rds/Comments
The second secon	iter
8 S S S S S S S S S S S S S S S S S S S	Wa
ML Gravelly SILT (TOPSOIL), low plasticity, medium to coarse ironstone gravel and subangular to angular, red brown Clayey SAND, fine to medium grained, sub-rounded to subangular, low plasticity, red brown with mottled white 1.0 -	250 kPa 300 kPa 3, 5, 4 N = 9 2, 5, 5 N = 10 100 kPa 500 kPa 5, 5, 8 N = 13

BOREHOLE NO.: 3A

SHEET: 2 OF 3

CLIENT: Bellevue Gold Limited

PROJECT: IWL TSF

LOCATION: Bellevue Gold Mine

JOB NUMBER:

DATE COMMENCED: 26/1/2021 DATE COMPLETED: 27/1/2021

			ntractor	3777	ae F	rilling	Bore Size: HQ	Hol	e Ang	e nº		Fac	ting: 259,681 Surface RL:	-
			del: DDF			o mang	Drill Fluid: Bentonite		aring:				thing: 6,942,325 Datum: GDA94 Zone	51
Γ		n)					Material Description						Field Records/Comments	
Method	Casing	Drill Rate (min/m)	Depth (m)	Geological Unit	Graphic Log	Classification Symbol	c	3	Moisture Condition	Consistency/ Strength	Weathering/ Cementation	Sample/Test		Water
HQ coring		ir and the second secon	5.5 — 6.0 — 6.5 — 7.0 — 7.5 — 8.0 —	Tertiary Sediments (Laterii			becoming red to red brow with iron induration becoming black grey to red brown, partially cemented	ed -	D	H-			PP@5.25 m = 350 kPa PP@5.5 m = 550 kPa PP@5.75 m = 450 kPa SPT@6.0 m = 6, 10, 9 N = 19 PP@6.75 m = > 600 kPa PP@7.25 m = 400 kPa SPT@7.5 m = 13, 18, R (18/130 mm) (hammer bounce @430 mm penetration)	
				formation			weathered to fresh, high to extremely high strength, sheared seams infilled with kaolinite clay of medium to plasticity, grey to black grey			EH				
			1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				End of Hole at 9.0 m							

BOREHOLE NO .: 3A

SHEET: 3 OF 3

DATE COMPLETED: 27/1/2021

CLIENT: Bellevue Gold Limited

PROJECT: **IWL TSF**

LOCATION: Bellevue Gold Mine

JOB NUMBER:

Drill Contractor: Edge Drilling Drill Model: DDR004

Bore Size: HQ Drill Fluid: Bentonite

Hole Angle: 0° Bearing: N/A

Easting: 259,681 Surface RL:

Northing: 6,942,325 Datum: GDA94 Zone 51

Core tray - 0.0 m to 5.0 m

Core tray - 5.0 m to 9.0 m

BOREHOLE NO .:

SHEET: 1 OF 3

CLIENT: Bellevue Gold Limited

PROJECT: **IWL TSF**

LOCATION: Bellevue Gold Mine

JOB NUMBER:

DATE COMMENCED: 27/1/2021 DATE COMPLETED: 27/1/2021

Drill Contractor: Edge Drilling Bore Size: HQ Hole Angle: 0° Surface RL: Easting: 259,597 Drill Model: DDR004 Drill Fluid: Bentonite Northing: 6,943,025 Datum: GDA94 Zone 51 Bearing: N/A Material Description Field Records/Comments Drill Rate (min/m) Geological Unit Classification Symbol Weathering/ Cementation Consistency/ Strength Graphic Log Sample/Test Moisture Depth (m) Casing ML Sandy SILT (TOPSOIL), low D SPT@0.0 m = 9, 23, 23 N = 46 plasticity, red brown VL. D CALCRETE, medium to coarse L grained, vuggy, with 0.5 interbedded horizontal seams of sandy SILT of low plasticity, ML white to yellow brown with red St Sandy SILT with CALCRETE 1.0 gravels, low plasticity, red brown 7.0 - - 5.1 Fertiary Sediments (Laterite) CORE LOSS - 0.80 m to 1.30 m St-Sandy CLAY, medium to high VSt plasticity, magnesite / kaolinite SPT@1.5 m = 6, 6, 5 N = 11CM seam infill present, red brown CH to yellow brown with white veins PP@2.25 m = 600 kPa HQ coring 2.5 PP@2.5 m = 500 kPaPP@2.75 m = 600 kPa ... core between 22.95 m and SPT@3.0 m = 5, 5, 6 N = 11 3.0-3.00m destroyed by mistake 3.5 -PP@3.5 m = 500 kPa Sandy CLAY (residual soil), **VSt** CM. medium to high plasticity, with CH coarse grained quartz and basalt gravels / cobbles, basalt 4.0 cobbles are extremely to highly weathered, very low strength, with kaolinite clay infill seams, PP@4.25 m = 350 kPa yellow brown to orange brown SPT@4.5 m = 6, 12, 12 N = 24

BOREHOLE NO .:

6

SHEET: 2 OF 3

CLIENT: Bellevue Gold Limited

PROJECT: **IWL TSF**

LOCATION: Bellevue Gold Mine

DATE COMMENCED: 27/1/2021 DATE COMPLETED: 27/1/2021

JOB NUMBER: Drill Contractor: Edge Drilling Bore Size: HQ Hole Angle: 0° Easting: 259,597 Surface RL: Drill Model: DDR004 Drill Fluid: Bentonite Northing: 6,943,025 Datum: GDA94 Zone 51 Bearing: N/A Field Records/Comments **Material Description** Drill Rate (min/m) Geological Unit Classification Symbol Consistency/ Strength Weathering/ Cementation Graphic Log Sample/Test Depth (m) Moisture Casing Greenstone formation 5.5 **–** PP@5.5 m = 450 kPa... with CALCRETE, very low to medium strength, highly to PP@5.75 m = 450 kPamoderately weathered, white yellow End of Hole at 6.0 m HQ coring

BOREHOLE NO .:

SHEET: 3 OF 3

CLIENT: Bellevue Gold Limited

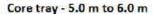
PROJECT: **IWL TSF**

LOCATION: Bellevue Gold Mine

JOB NUMBER:

Drill Contractor: Edge Drilling Bore Size: HQ

Drill Model: DDR004 Drill Fluid: Bentonite Bearing: N/A


DATE COMPLETED: 27/1/2021

e RL:

Northing: 6,943,025 Datum: GDA94 Zone 51

CLIENT: Bellevue Gold Limited DATE COMMENCED: 8/05/2021
PROJECT: Geotechnical Services DATE COMPLETED: 8/05/2021

LOCATION: JOB NUMBE		rue Gold Project 1-PR-05						
Contractor: Equipment:	Top d <mark>rill</mark> RC	Hole Width: Hole Length:	East	ng: ning:	259 6943		Surface RL: Datum: GDA94 Zon	e 51
Method Support Duration (mins) R.L.: (m) Depth (m)	Geological Unit Graphic Log Classification Symbol	Material Description	Moisture Condition	Consistency/ Strength	Weathering/ Cementation	Sample/ Test	Field Records/Comments	
1.0 - 2.0 - 3.0 - 5.0 - 7.0 -		SAPROLITE, grey brown, low plasticity, sandy (medium-coarse grained), gravelly basalt fragments						

BOREHOLE No.: IWL-BH04

8/05/2021

SHEET 2 OF 2

CLIENT: Bellevue Gold Limited
PROJECT: Geotechnical Services

LOCATION: Bellevue Gold Project

DATE COMPLETED: 8/05/2021

DATE COMMENCED:

		TION:	p.	Be	ellevi	ue Gold Project I-PR-05								
		ctor:			rill	Hole Width:		Easti	ng:	259	365	Surface R	L:	
		nent:	R	2_	rysucc	Hole Length:			ning:	6943		Datum:	GDA94 Zon	e 51
potpe	ration (mins)	R.L.: (m) Depth (m)	Geological Unit	aphic Log	Classification Symbol	Material Description		Moisture	Consistency/ Strength	Weathering/ Cementation	Sample/ Test	Field Record	ds/Comments	Water
Ž	ď	P. Pe	පි	ΰ	បីសិ		-	ဋိပိ	လို နို	30	Sa			Š
		11.0- 12.0- 13.0- 15.0- 16.0- 17.0-				Terminated								

BOREHOLE No.: IWL-BH30

SHEET 1 OF 2

CLIENT: Bellevue Gold Limited DATE COMMENCED: 8/05/2021
PROJECT: Geotechnical Services DATE COMPLETED: 8/05/2021

LOCATION: Bellevue Gold Project JOB NUMBER: P19-11-PR-05 Top drill Hole Width: 259640 Contractor: Easting: Surface RL: Equipment: RC Hole Length: Northing: 6943187 Datum: GDA94 Zone 51 Material Description Field Records/Comments Duration (mins) Geological Unit Graphic Log Classification Symbol Weathering/ Cementation Consistency/ Strength Sample/ Test R.L.: (m) Depth (m) CALCRETE, gravel (fine - coarse grained), sandy (fine - coarse grained) with clay, red brown cream, medium plasticity, with trace clear brown gypsum fragments 1.0 2.0 3.0 Quartz fragments, cobble / gravel size 4.0 5.0 SAPROLITE, cream /cream brown 6.0 7.0 SAPROLITE, grey / green grey 8.0 9.0

BOREHOLE No.: IWL-BH30

SHEET 2 OF 2

CLIENT: Bellevue Gold Limited DATE COMMENCED: 8/05/2021 PROJECT: Geotechnical Services DATE COMPLETED: 8/05/2021

LOCATION: Bellevue Gold Project

							I-PR-05			DED	240	6 (5)	
			tor: ent:	R	op o	frill	Hole Width: Hole Length:	East	ing: hing:	2596 6943			e 51
			R.L. (m) Depth (m)	1		Classification Symbol	Material Description	Moisture	ıcy/		Sample/ Test	Field Records/Comments	
Met	Sup	Dura	R.L. Dept	0 9 9	Gra	Sym		No.	Con	Wea	Sarr		Water
			11.0-				continued			54			
			12.0_										
			13.0				- - -						
			14.0-										
			15.0-				3 3 3 3						
			16.0-				8 2 3						
			17.0-				1) - 2) 9						
			18.0-				3 - 9 3 3						
			19.0				3 2 3						

BOREHOLE No.: IWL-BH03

SHEET 1 OF 2

CLIENT: Bellevue Gold Limited DATE COMMENCED: 8/05/2021
PROJECT: Geotechnical Services DATE COMPLETED: 8/05/2021

			CT:				chnical Services	DAT	E CC	MPL	ETE	ED: 8/05/2021	
			ION:				ue Gold Project						
							1-PR-05			ni n			_
			tor: ent:	R		drill	Hole Width: Hole Length:	East	ing: hing:	259 6943		Surface RL: Datum: GDA94 Zone	51
-	Jun	7111	CIII.	IX	Ť	$\overline{}$		NOIL	mrig.	0040	101		21
ı					l		Material Description					Field Records/Comments	
ı		(SI		Ħ	l	_			2.1				
L		(mir		ia C	60	ation		-	ncy/	ing/	Sample/ Test		
bo	port	tion	E E	ogic	hic	양이		difficient	siste	ther	ple/		Je.
Met	Support	Dura	R.L.: (m) Depth (m)	Geological Unit	Grap	Classification Symbol	-	Moisture Condition	Consistency/ Strength	Weathering/ Cementation	Sam		Water
Г							CALCRETE, cream red brown, Silty						
L			35		l		SAND with gravels (fine-	1			l		
L			135		l		medium)with clay, trace gypsum crystals	+			l		
L			1.0 -		l		- Crystals	1			l		
L			*		l		3	1			l		
L			84		l		3	1			l		
L			235		l		8	1			l		
L			2.0 -	-	_	_		}—	-	_	L		
L			2.4		l		LATERITE, red brown, CLAY with	4			l		
L			234	ı	l		gravels (fine-coarse), medium	1			l		
L			172		l		plasticity	-			l		
L			3.0 -		l			1			l		
L					l			1			l		
L			100		l]			l		
L			15		l		V	+			l		
L			4.0 -		l			1			l		
L			: 115 ::=		l		N a]			l		
L			135		l		9	1			l		
L			5.0 -		l		2	1			l		
L			3.0 -		l		8]			l		
L			34		l		8	4			l		
L			324		l		8	1			l		
L			6.0 -	=]	ļ		<u> </u>	<u> </u>	
L			0.0		l		SAPROLITE, red brown, as low	4			l		
L					l		plasticity CLAY	†			l		
L					l		Supplementary and a second]			l		
L			7.0 -		l			-			l		
L			85	1	l		8	†			l		
L				1	l		9	1			l		
L					l		2	-			l		
ı			8.0 -	-	\vdash			/ 	1	0 0	\vdash	- 1	
ı			73 4 794				SAPROLITE, green yellow grey, as SILT	1					
			ंश्र				3	-					
ı			334				39	†					
ı			9.0 -				3]					
ı			160				9	1					
ı								1					
L			•	L			9	1					

BOREHOLE No.: IWL-BH03

8/05/2021

SHEET 2 OF 2

CLIENT: Bellevue Gold Limited PROJECT: Geotechnical Services

DATE COMPLETED: 8/05/2021

DATE COMMENCED:

LOCA	AT NI	ION:	R.	Be	ellev	ue Gold Project 1-PR-05					
Contra Equip	act	or:		рс	rill	Hole Width: Hole Length:	Easti North	ng:	259 6943		- 51
	T	R.L.: (m) Depth (m)	Geological Unit		Classification Symbol	Material Description	Moisture Condition	Consistency/ Strength		Field Records/Comments	
		11.0- 12.0- 13.0- 15.0- 16.0- 19.0-				Terminated					

BOREHOLE No.: IWL-BH16

8/05/2021

8/05/2021

SHEET 1 OF 2

CLIENT: Bellevue Gold Limited DATE COMMENCED: PROJECT: Geotechnical Services DATE COMPLETED:

LOCATION: Bellevue Gold Project

JOB N					ue Gold Project 1-PR-05							
Contra		То			Hole Width:	Ε	asti	ng:	259			
Equipn	nent:	RC			Hole Length:			ing:	6942	743	Datum: GDA94 Zone	51
Method Support Duration (mins)	Curation (mins) R.L.: (m) Depth (m)	Geological Unit	Graphic Log	Classification Symbol	Material Description	Moisture	Condition	Consistency/ Strength	Weathering/ Cementation	Sample/ Test	Field Records/Comments	Water
	1.0 - 2.0 - 3.0 - 5.0 - 8.0 -				LATERITE, Clayey SAND (fine - coarse) with silt, medium plasticity LATERITE, Clayey SAND (fine - coarse) with gravel (fine - coarse), medium plasticity, red brown, with some cream CALCRETE							

BOREHOLE No.: IWL-BH16 BOREHOLE LOG SHEET 2 OF 2 GEOTECHNICAL AND TAILINGS CLIENT: Bellevue Gold Limited DATE COMMENCED: 8/05/2021 PROJECT: DATE COMPLETED: 8/05/2021 Geotechnical Services LOCATION: Bellevue Gold Project JOB NUMBER: P19-11-PR-05 Contractor: Top drill Hole Width: 259865 Easting: Surface RL: Equipment: RC Hole Length: Northing: 6942743 Datum: GDA94 Zone 51 Material Description Field Records/Comments Duration (mins) Geological Unit Classification Weathering/ Cementation Consistency/ Strength Sample/ Test Graphic Log R.L.: (m) Depth (m) Water 11.0-SAPROLITE, as CLAY, orange brown, medium plasticity 12.0. 13.0 14.0-15.0-16.0-SAPROLITE, yellow brown 17.0-18.0 19.0 Terminated

BOREHOLE No.: IWL-BH15

CLIENT: DATE COMMENCED: Bellevue Gold Limited 8/05/2021 PROJECT: Geotechnical Services DATE COMPLETED: 8/05/2021

LOCATION: Bellevue Gold Project

_						1-PR-05						
		ctor: nent:	R		drill	Hole Width: Hole Length:	East	ing: hing:	259 6942		Surface RL: Datum: GDA94 Zone	- 51
Lqu	Ī	iciit.	IN	Ť		Material Description	INOIT	iling.	0042	140	Field Records/Comments	
Method	Duration (mins)	R.L. (m) Depth (m)	Geological Unit	Graphic Log	Classification Symbol		Moisture	Consistency/ Strength	Weathering/ Cementation	Sample/Test		Water
		1.0				CALCRETE, Silty, sandy (fine - coarse) GRAVEL (fine - coarse), crean to cream red brown, clear white gypsum crystals in final 1.0 m LATERITE, Clayey SAND (fine-coarse) with gravel (fine- coarse), medium plasticity SAPROLITE, yellow brown						

BOREHOLE No.: IWL-BH15

SHEET 2 OF 2

CLIENT: Bellevue Gold Limited
PROJECT: Geotechnical Services

Hole Width:

Hole Length:

...continued

Terminated

Material Description

LOCATION: Bellevue Gold Project

Graphic Log Classification Symbol

JOB NUMBER: P19-11-PR-05

RC

Geological Unit

Top drill

Contractor:

Equipment:

Duration (mins)

R.L.: (m) Depth (m)

11.0-

12.0.

13.0

14.0-

15.0-

16.0

17.0-

18.0

19.0

DATE COMMENCED: 8/05/2021 8/05/2021 DATE COMPLETED: 259765 Surface RL: Easting: Northing: 6942743 Datum: GDA94 Zone 51 Field Records/Comments Weathering/ Cementation Consistency/ Strength Sample/Test Water

CLIENT: Bellevue Gold Limited DATE COMMENCED: 8/05/2021
PROJECT: Geotechnical Services DATE COMPLETED: 8/05/2021

LOCATION: Bellevue Gold Project

JO	DВ	N	JMBE tor:		P		I-PR-05 Hole Width:	Fa	etir	ng:	259	765	Surface RL:	
100			ent:	R		4110	Hole Length:			ing:	6942			51
Method	Support	Duration (mins)	R.L.: (m) Depth (m)	Geological Unit	Graphic Log	Classification Symbol	Material Description	Moisture	Condition	Consistency/ Strength	Weathering/ Cementation	Sample/ Test	Field Records/Comments	Water
			1.0 -	_			CALCRETE, Sandy (fine-coarse) GRAVEL (fine-coarse) with clay, low plasticity, red brown cream	1						
			2.0 -				LATERITE, Sandy (fine - coarse) CLAY with Gravel (fine - coarse), medium plasticity, red brown trace cream	-						
			3.0 -	_			LATERITE, CLAY, high plasticity, red brown	<u>}</u>		-			-	
			4.0											
			5.0	-			SAPROLITE, yellow brown] :						
			6.0											
			7.0 - - - 8.0 -					2 - 1 2 - 1 3 - 1 3 - 1 3 - 1						
			9.0 -					7						

BOREHOLE No.: IWL-BH07

SHEET 2 OF 2

CLIENT: Bellevue Gold Limited PROJECT: Geotechnical Services

LOCATION: Bellevue Gold Project

Graphic Log Classification Symbol

Hole Width:

Hole Length:

...continued

Terminated

JOB NUMBER: P19-11-PR-05

RC

Geological Unit

Contractor: Equipment:

Duration (mins)

11.0-

12.0-

13.0-

14.0-

15.0-

16.0

17.0-

18.0-

19.0

Top drill

DATE COMMENCED: 8/05/2021

old Limited cal Services		E CO				/2021 /2021	
old Project -05							
Hole Width:	Easti		2597		Surface R		
Hole Length:	North	ning:	6942	907	Datum:	GDA94 Zone	51
Material Description	Moisture Condition	Consistency/ Strength	Weathering/ Cementation	Sample/ Test	Field Record	ds/Comments	Water
ntinued							
inated							

CLIENT: Bellevue Gold Limited DATE COMMENCED: 8/05/2021
PROJECT: Geotechnical Services DATE COMPLETED: 8/05/2021

	OCATION: Bellevue Gold Project IOB NUMBER: P19-11-PR-05													
C	onti	rac	tor:	To	ор о	drill	Hole Width:		Easti		2599		Surface RL:	- 54
E	quip	m	ent:	R	Ī		Hole Length: Material Description		North	ning:	6943	390	Datum: GDA94 Zo Field Records/Commen	
Method	Support	Duration (mins)	R.L.: (m) Depth (m)	Geological Unit	Graphic Log	Classification Symbol			Moisture	Consistency/ Strength	Weathering/ Cementation	Sample/ Test		Water
			1.0 -	-			CALCRETE, Sandy (fine-coarse) GRAVEL (fine to coarse), with fines, cream yellow	7					-	
			2.0 -				SAPROLITE, Gravelly (fine - coarse) SAND (fine - coarse) with clay, cream brown grey, medium plasticity, with fragements of BASALT and clear brown gypsum throughout							
			3.0											
			4.0 -	-				7					_	
			6.0 -				SAPROLOTE, CLAY, medium plasticity, red brown grey, with BASALT fragments	7						
			7.0 -											
			8.0 -											
			9.0 -				SAPROLOTE, cream grey	4						

BOREHOLE No.: IWL-BH01 BOREHOLE LOG SHEET 2 OF 2 GEOTECHNICAL AND TAILINGS CLIENT: Bellevue Gold Limited DATE COMMENCED: 8/05/2021 PROJECT: DATE COMPLETED: 8/05/2021 Geotechnical Services LOCATION: Bellevue Gold Project JOB NUMBER: P19-11-PR-05 Easting: Contractor: Top drill Hole Width: 259566 Surface RL: Equipment: RC Hole Length: Northing: 6943390 Datum: GDA94 Zone 51 Field Records/Comments Material Description Duration (mins) Geological Unit Graphic Log Classification Symbol Weathering/ Cementation Sample/Test Consistency/ Strength R.L.: (m) Depth (m) Water ...continued 11.0-12.0. **Terminated** 13.0 14.0-15.0-

16.0

17.0-

18.0

19.0

BOREHOLE No.: IWL-BH02

SHEET 1 OF 2

CLIENT: Bellevue Gold Limited

PROJECT: Geotechnical Services DATE COMMENCED: 8/05/2021

DATE COMPLETED: 8/05/2021

JOE	3 1		ER:	P	19-1	ue Gold Project 1-PR-05			0.50			
		ictor: nent:	R		o drill Hole Width: Hole Length:			Easting: Northing:		565 3291		one 5
Method	Support (mine)	Duration (mins) R.L.: (m) Depth (m)	Geological Unit	Graphic oa	Classification	Material Description	Moisture	Consistency/ Strength	Weathering/ Cementation	Sample/ Test	Field Records/Commen	Mater
		1.0 -				CALCRETE/ cemented lateritic soils, sandy (fine- coarse medium) SILT with gravel, red brown orange cream LATERITE, Sandy CLAY (fine- coarse), medium plasticity, red brown to red						
		3.0				brown grey, with black BASALT fragments and brown and white	2		10 12 12 12 12 12 12 12 12 12 12 12 12 12			
		5.0				medium plasticity, red brown with some green mottlling						
		7.0	-				4		s er			
		8.0 -				LATERITE, CLAY with sand (fine - coarse), medium plasticity, red brown - red brown orange, trace clear gypsum						
		9.0					-					

Bellevue Gold Project

LOCATION:

BOREHOLE No.: IWL-BH02

SHEET 2 OF 2

CLIENT: Bellevue Gold Limited DATE COMMENCED: 8/05/2021
PROJECT: Geotechnical Services DATE COMPLETED: 8/05/2021

JOB NUMBER: P19-11-PR-05	
Contractor: Top drill Hole Width: Easting: 259565	Surface RL:
Equipment: RC Hole Length: Northing: 6943291	Datum: GDA94 Zone 51
Method Support Duration (mins) R.L.: (m) Depth (m) Geological Unit Graphic Log Classification Symbol Moisture Condition Consistency/ Strength Weathering/ Cementation Sample/ Test	eld Records/Comments
SAPROLITE, gravelly (fine - coarse), grey yellow 11.0- 12.0- Terminated 13.0- 14.0- 15.0- 16.0- 17.0- 19.0-	

CLIENT: Bellevue Gold Limited DATE COMMENCED: 8/05/2021
PROJECT: Geotechnical Services DATE COMPLETED: 8/05/2021
LOCATION: Bellevue Gold Project

			TION:	ъ.			ue Gold Project 1-PR-05							
			tor:			rill	Hole Width:	Easti	na:	259	566	Surface RL:		_
			ent:	R			Hole Length:	North		6943				
Method	Support	Ouration (mins)	R.L.: (m) Depth (m)	Geological Unit	Graphic Log	Classification Symbol	Material Description	Moisture	Consistency/ Strength	Weathering/ Cementation	Sample/ Test	Field Records	/Comments	Water
N. C.	15	ים	2.0 -	9	Ö	D &	BASALT, sandy (fine - coarse) GRAVEL (fine - coarse) with clay, medium plasticity, interbedded with some CALCRETE, grey with some red brown cream BASALT, sandy (fine - coarse) GRAVEL (fine - coarse), grey black	× ŏ	0 5	3 0	es .			W
			4.0				9 5 2							
			5.0 -				3 • 3							
			6.0				8 2 3 5							
			7.0	-			Terminated	1		2		-		
			8.0 –				3 3 3 3 3							
			9.0 -				3 4 3 3							
L								1						

BOREHOLE No.: IWL-BH09 **BOREHOLE LOG** SHEET 1 OF 1 GEOTECHNICAL AND TAILINGS CLIENT: Bellevue Gold Limited DATE COMMENCED: 8/05/2021 PROJECT: DATE COMPLETED: 8/05/2021 Geotechnical Services LOCATION: Bellevue Gold Project JOB NUMBER: P19-11-PR-05 Top drill Hole Width: 259565 Contractor: Easting: Surface RL: Equipment: RC Hole Length: Northing: 6942907 Datum: GDA94 Zone 51 Material Description Field Records/Comments Duration (mins) Geological Unit Graphic Log Classification Symbol Weathering/ Cementation Consistency/ Strength Sample/ Test R.L.: (m) Depth (m) Water CALCRETE/LATERITE, with some **BASALT** fragments 1.0 LATERITE, gravelly (fine - coarse) SAND (fine - coarse) with clay, red brown - red brown cream, tending toward CALCRETE in final 1.0 m 2.0 3.0 4.0 BASALT, GRAVEL (fine - coarse) with sand (fine - coarse), grey black 5.0 6.0 Terminated 7.0

8.0

9.0

BOREHOLE No.: IWL-BH06 **BOREHOLE LOG** SHEET 1 OF 1 GEOTECHNICAL AND TAILINGS CLIENT: Bellevue Gold Limited DATE COMMENCED: 8/05/2021 PROJECT: DATE COMPLETED: 8/05/2021 Geotechnical Services LOCATION: Bellevue Gold Project JOB NUMBER: P19-11-PR-05 259465 Top drill Hole Width: Contractor: Easting: Surface RL: Equipment: RC Hole Length: Northing: 6942908 Datum: GDA94 Zone 51 Material Description Field Records/Comments Duration (mins) Geological Unit Graphic Log Classification Symbol Weathering/ Cementation Consistency/ Strength Sample/ Test R.L.: (m) Depth (m) Water BASALT, sandy (fine - coarse) GRAVEL (fine - coarse), grey black, with some cream orange fines 1.0 2.0 BASALT, GRAVEL (fine - coarse), grey black 3.0 4.0 5.0 6.0 Terminated 7.0 8.0 9.0

CLIENT: Bellevue Gold Limited DATE COMMENCED: 8/05/2021
PROJECT: Geotechnical Services DATE COMPLETED: 8/05/2021

LOCATION JOB NUME		rue Gold Project 1-PR-05						
Contractor: Equipment:	Top drill RC	Hole Width: Hole Length:	East	ng: ning:	259 6942		Surface RL: Datum: GDA94 Zone	51
Method Support Duration (mins) R.L.: (m) Depth (m)		Material Description	Moisture	Consistency/ Strength		Sample/ Test	Field Records/Comments	Т
1.0 2.0 3.0 4.0		BASALT, sandy (fine - coarse) GRAVEL (fine - coarse), grey black	20			6		
7.0 8.0 9.0		Terminated						

CLIENT: Bellevue Gold Limited DATE COMMENCED: 8/05/2021 PROJECT: DATE COMPLETED: 8/05/2021 Geotechnical Services

LOCATION: Bellevue Gold Project

JOB NUMBER: P19-11-PR-05 259265 Contractor: Top drill Hole Width: Surface RL: Easting: Equipment: RC Hole Length: Northing: 6942743 Datum: GDA94 Zone 51 Material Description Field Records/Comments Duration (mins) Geological Unit Graphic Log Classification Symbol Weathering/ Cementation Consistency/ Strength Sample/ Test R.L.: (m) Depth (m) Water BASALT, grey black gravel, sand fragments (fine - coarse grained) 1.0 2.0 3.0 4.0 5.0 6.0 Terminated 7.0 8.0 9.0

CLIENT: Bellevue Gold Limited DATE COMMENCED: 8/05/2021
PROJECT: Geotechnical Services DATE COMPLETED: 8/05/2021

LOCATION: Bellevue Gold Project														
				R:			1-PR-05							
C	ont	rac	tor:			drill	Hole Width:		Easti		2593		Surface RL:	
E	Equipment: RC				2_		Hole Length:	_	North	ning:	6942	743	Datum: GDA94 Zone	51
							Material Description						Field Records/Comments	
,	t	on (mins)	R.L.: (m) Depth (m)	jical Unit	c Log	Classification Symbol			e e	itency/	ering/ ntation	Sample/ Test		
Metho	Suppo	Duration	R.L.: (r Depth (SoloeS	Graphi	Classif			Moisture Condition	Consistency/ Strength	Weath	Sampl		Water
							GRAVEL (fine - coarse), red brown	=						
l			15				cream, becoming LATERITE, cemented in final 1.0 m	4						
l			1.0 -					7						
l								1						
l			2.0 -	-				7				_	_	
l			1,4 1,4				LATERITE, silty SAND, low - medium plasticity, red brown	-						
l			3.0 -					4						
l								‡						
l			4.0-					1						
l			4.0				SAPROLITE, pale brown with some	4			ia		The state of the s	
l			35 35				red brown cream, BASALT fragments]						
l			5.0 -	-	H			7			ie e			
l			34 32				BASALT, GRAVEL (fine - coarse), grey black	1						
l			6.0	-		H	X.	7						
							Terminated]						
			7.0 -					1						
l			85 85					4						
l								1						
			8.0 -					7						
			25 34 73]						
			9.0					-						
			164 168					=						
								+						

CLIENT: DATE COMMENCED: 8/05/2021 Bellevue Gold Limited PROJECT: Geotechnical Services DATE COMPLETED: 8/05/2021 LOCATION: Bellevue Gold Project

_							1-PR-05							
			tor: ent:	R		drill	Hole Width: Hole Length:			ng: ning:	2594 6942		Surface RL: Datum: GDA94 Zone	- 51
		7111	Circ.	IN	Ť		Material Description		Jiti	iiig.	0042	740	Field Records/Comments	
Method	Support	Duration (mins)	R.L.: (m) Depth (m)	Geological Unit	Graphic Log	Classification Symbol		Moisture	Condition	Consistency/ Strength	Weathering/ Cementation	Sample/ Test		Water
			1.0				CALCRETE, sandy (fine - coarse) GRAVEL (fine - coarse), red brown cream, becoming LATERITE, cemented in final 2.0 m, with trace clear gypsum SAPROLITE, grey black, with BASALT fragments, GRAVEL (fine - coarse), tending towards BASALT in final 1.0 m. Terminated							

BOREHOLE No.: IWL-BH13

SHEET 1 OF 1

CLIENT: Bellevue Gold Limited DATE COMMENCED: 8/05/2021
PROJECT: Geotechnical Services DATE COMPLETED: 8/05/2021

		tor: ent:	R		trill	Hole Width: Hole Length:	East	ng: ning:	259 6942			ne 5
	nins)	R.L.: (m) Depth (m)	1		Classification Symbol	Material Description		Consistency/ Strength			Field Records/Comment	s
Supp	Dura	R.L.: Dept	0eS	Grap	Clas		Moisture	Cons	Wea	Sam		, W. Co.
		1.0				BASALT, sandy (fine - coarse) GRAVEL (fine - coarse), grey black with some red brown CALCRETE/LATERITE						
		2.0 _	-	4 4			}	-	2 1	H	-	١
		3.0 -				SAPROLITE, grey black, with BASALT fragments, Sandy (fine - coarse) GRAVEL (fine - coarse), tending towards BASALT in final 1.0 m						
		4.0				:	-					
		5.0 -										
		6.0	-				 			L	-	l
		7.0 -				Terminated						
		8.0 –				,]					
		9.0					- - - - -					

BOREHOLE No.: IWL-BH14

SHEET 1 OF 3

CLIENT: Bellevue Gold Limited

PROJECT: Geotechnical Services
LOCATION: Bellevue Gold Project

DATE COMMENCED: 8/05/2021
DATE COMPLETED: 8/05/2021

			ION:	ъ.			ue Gold Project							
			tor:			rill	1-PR-05 Hole Width:							
			ent:	R		41111	Hole Length:	North	ning:	6942	743	Datum:	GDA94 Zon	e 51
Q	ort	on (mins)	R.L. (m) Depth (m)	Geological Unit	Graphic Log	Classification Symbol	Material Description	ire	Consistency/ Strength	Weathering/ Cementation	Sample/ Test	Field Recor	ds/Comment	
Method	Support	Jurati	3.L.: (Jepth	Seolo	Sraph	Symb		Moisture	Consi	Neath	Samp			Water
_	8	ם	1.0 -	9		0 69	LATERITE, sandy (fine - coarse) GRAVEL (fine - coarse), red brown cream, minor grey black BASALT fragments	-	0 69	30	6			>
			2.0 -		Sec. 25.		LATERITE, sandy (fine - coarse),	1				-		
			3.0 -				gravelly (fine - coarse) CLAY, medium plasticity, red brown							
			4.0 -					<u> </u> 						
			5.0					- - - - -						
			6.0	_			LATERITE, CLAY with some sand (fine - coarse), high plasticity, red brown	1				i.		
			7.0] 						
			8.0 -											
			9.0				3							
L								1						

BOREHOLE No.: IWL-BH14

SHEET 2 OF 3

CLIENT: Bellevue Gold Limited PROJ

8/05/2021 DATE COMMENCED:

	LIE						ue Gold Limited			E CO				
100			CT:				chnical Services ue Gold Project		AI	E CC	IVIPL	Ell	ED: 8/05/2021	
							I-PR-05							
_			tor:			frill	Hole Width:	E	asti	ng:	259	365	Surface RL:	
E	quij	om	ent:	R	2_		Hole Length:	N	orth	ning:	6942	743	Datum: GDA94 Zone	51
				ı			Material Description					11	Field Records/Comments	
ı		(\$		#			11							l
ı		(min		5	60	tion				λς.	rig/	Test		l
B	ro To	tion	(E) (E)	ogic	hic.	sifice bol		1	alfor 1	siste	theri	Sample/ Test		 -
Met	Support	Dura	R.L.: (m) Depth (m)	Geological Unit	Grap	Classification Symbol	t e	Ž	Condition	Consistency/ Strength	Wea	Sam		Water
Г			i.	Г			continued	- 1						
ı			2/2					-						l
ı			125 25	l				95 7)						l
ı			11.0-					-						l
ı			107	1				S = 1						l
ı			2.5					-						l
ı			12.0-	1				4						l
ı			82 113					S-4						l
ı			12 12	1				854						l
ı			42.0											l
ı			13.0-					7						l
ı			1					1						l
ı			02 4:5 suppost 011					100						l
ı			14.0-					=						l
ı			3.5 3.5					÷						l
ı			13 5					1						l
ı			15.0-					+						l
ı			34					2						l
ı			324					23						l
			16.0					1						
			88					6 <u>4</u> 84						
]						
			17.0-					1						
ı			17.0					-						l
			25 25					1						
			40.0					-						
1			18.0-					1						
			89					-						
			39 39					1						
1			19.0-					+						
			10					1						
1								-						

DATE COMMENCED:

BOREHOLE No.: IWL-BH14

8/05/2021

SHEET 3 OF 3

CLIENT: Bellevue Gold Limited

PROJECT: Geotechnical Services

		tor:			Irill	Hole Width:		ling:		665		
quip	m	ent:	R	<i>;</i>		Hole Length: Material Description	Nort	hing:	6942	743	Datum: GDA94 2 Field Records/Comme	
Support	Duration (mins)	R.L. (m) Depth (m)	Geological Unit	Graphic Log	Classification Symbol		Moisture	Consistency/ Strength	Weathering/ Cementation	Sample/ Test		Aleka
П						continued	-					
		21.0-										
		22.0-	-			SAPROLITE, yellow brown	1					
		23.0-					1					
		24.0-	-			Terminated	<u> </u>				_	
		25.0-					=					
		26.0					1					
		27.0										
		28.0-										
		29.0					1					

BOREHOLE No.: IWL-BH23

SHEET 1 OF 2

CLIENT: Bellevue Gold Limited
PROJECT: Geotechnical Services

DATE COMMENCED: 8/05/2021
DATE COMPLETED: 8/05/2021

100			CT:				chn <mark>ical</mark> Services	DAT	E CC	MPL	ETE	ED: 8/05/2021		
			ION:				ue Gold Project							
							1-PR-05	F	10000	050	005	0 (- D)		
			tor: ent:	R		drill	Hole Width: Hole Length:	East	ing: ning:	259 6942			94 Zon	0.51
۲	quij	7111	CHL.	IX	Ť	Т		INOIT	mig.	0042	201			
L	П				l		Material Description					Field Records/Cor	nments	5
L	П	(su		Ħ		_								ı
L	П	m)	~ =	S C	60	ation			aucy.	ing/	Tes			ı
bod	port	ation	E F	Geological Unit	phic	ssific		Moisture Condition	siste	athe	Sample/ Test			ē
Mel	Sup	ng	R.L.: (m) Depth (m)	99	ű	Classification Symbol	F	N S	Consistency/ Strength	Weathering/ Cementation	Sar			Water
Г							LATERITE, gravelly (fine - coarse)	-						Г
L	П		2/2		l		SAND (fine - coarse), trace clay, low plasticity	1			l			ı
L	П		125 255		l]			l			ı
L	П		1.0 -		l		:	-			l			ı
L	П		35		l			1			l			ı
L	П		23		l			+			l			ı
L	П		2.0 -	_	L			1			L			ı
L	П		::				LATERITE, gravelly (fine - coarse)	4			l			ı
L	П		13 2 23 2		l		SAND (fine - coarse), trace clay, low	1			l			ı
L	П		172		l		plasticity, trace grey black BASALT fragments	-			l			ı
L	П		3.0 -		l			1			l			ı
L	П				l			1			l			ı
L	П		3.5		l			+			l			ı
L	П		4.0 -	_	L						L	_		ı
L	П		175				SAPROLITE, CLAY, medium plasticity,	4			ĺ			ı
L	П		S#		l		brown	1			l			ı
L	П		See See		l			-			l			ı
L	П		5.0 -		l			1			l			ı
L	П		34		l]			l			ı
L	П		2/2		l			†			l			ı
L	П		6.0	_	L	_		1_	4:		╙	-		ı
L	П				l		SAPROLITE, CLAY, medium plasticity,	4			l			ı
L	П				l		cream brown	1			l			ı
L	П				l			+			l			ı
L	П		7.0 -		l			1			l			ı
L	П		10.5 21 <u>5</u>		l			-			l			ı
L	П		3.5		l			1			l			ı
L	П		8.0 -		l			-			l			ı
L	П): -		l			+			l			ı
ı			27 4 374]			l			
ı			334					+			l			
ı			9.0 -					1			l			
ı			66					+			l			
ı			19					1			l			
L				L						k -				4

BOREHOLE LOG CLIENT: Bellevue Gold Limited PROJECT: Geotechnical Services LOCATION: Bellevue Gold Project JOB NUMBER: P19-11-PR-05 DATE COMMENCED: 8/05/2021 DATE COMPLETED: 8/05/2021

10	OC OR	A I	ION:	R.	Be	ellevi	ue Gold Project 1-PR-05							
			tor:			frill	Hole Width:	Easti	ng:	259	865	Surface RL:		
E	quij	om	ent:	R	2	_	Hole Length:		ning:	6942	291	Datum: GD	A94 Zone	51
Method	Support	Duration (mins)	R.L.: (m) Depth (m)	Geological Unit	Graphic Log	Classification Symbol	Material Description	Moisture Condition	Consistency/ Strength	Weathering/ Cementation	Sample/ Test	Field Records/C	omments	Water
٢				Ť			continued	-	-					
			11.0- 12.0- 13.0- 14.0-				SAPROLITE, grey yellow brown							
			16.0-											
			17.0-				, , , ,							
			19.0				Terminated							

BOREHOLE No.: IWL-BH22

SHEET 1 OF 2

CLIENT: Bellevue Gold Limited
PROJECT: Geotechnical Services

LOCATION: Bellevue Gold Project

DATE COMMENCED: 8/0
DATE COMPLETED: 8/0

8/05/2021 8/05/2021

JC	DВ	N			P	19-1	1-PR-05	1300014	1, 3,140 A	0.55	70-	0	
100			tor: ent:	R		drill	Hole Width: Hole Length:	Easti North		259 6942		Surface RL: Datum: GDA94 Zone	÷ 51
Method	Support	Duration (mins)	R.L. (m) Depth (m)	Geological Unit	Graphic Log	Classification Symbol	Material Description	Moisture Condition	Consistency/ Strength	Weathering/ Cementation	Sample/ Test	Field Records/Comments	Water
			1.0 -				LATERITE, sandy (fine - coarse) GRAVEL (fine - coarse), red brown cream LATERITE, clayey SAND (fine-coarse)	4	0.			TH.	
			2.0 -				with gravel (fine - coarse), red brown cream						
			3.0	-			LATERITE, CLAY, low plasticity, red brown grey	- - - -					
			4.0 -	_									
			6.0				LATERITE, sandy (fine - coarse) CLAY with some gravel (fine - coarse), red brown, with minor black grey BASALT fragments	4					
			7.0 -										
			8.0 -	-			SAPROLITE, gravelly (fine), sandy (fine - coarse) CLAY, grey brown, with minor grey black BASALT fragments	1				_	
			9.0				3	-		8 3			

DATE COMMENCED:

DATE COMPLETED:

BOREHOLE No.: IWL-BH22

8/05/2021

8/05/2021

SHEET 2 OF 2

CLIENT: Bellevue Gold Limited PROJECT: Geotechnical Services

LOCATION: Bellevue Gold Project

		Material Description			Field Recor	ds/Comments
Equipment:	RC	Hole Length:	Northing:	6942291	Datum:	GDA94 Zone
Contractor:	Top drill	Hole Width:	Easting:	259/65	Surface F	RL:
JOB NUMB	ER: P19-11	-PR-05				
The state of the s						

			tor:			rill	Hole Width:	Easti	ng:	259	/65	Surface RL:	
			ent:	R	2	_	Hole Length:	North		6942	291		51
Method	Support	Duration (mins)	R.L.: (m) Depth (m)	Geological Unit	Graphic Log	Classification Symbol	Material Description	Moisture	Consistency/ Strength	Weathering/ Cementation	Sample/ Test	Field Records/Comments	Water
			11.0- 12.0- 13.0- 14.0- 15.0- 16.0- 17.0- 19.0-				Terminated						

CLIENT: Bellevue Gold Limited DATE COMMENCED: 8/05/2021
PROJECT: Geotechnical Services DATE COMPLETED: 8/05/2021

		TION:	ъ.			ue Gold Project 1-PR-05						
		ctor:			drill	Hole Width:						-
100 C 100 C 100 C		nent:	R		rance:	Hole Length:	Nort	ning:	6942	191	Datum: GDA94 Zor	ne 51
Method	ation (mins)	R.L.: (m) Depth (m)	Geological Unit	Graphic Log	Classification Symbol	Material Description	Moisture Condition	Consistency/ Strength	Weathering/ Cementation	Sample/ Test	Field Records/Comment	***
Met	Dare	R.L. Dept	009	Gra	Syr		Mois	Con	Wes	San		Wat
Meth	and	1.0 - 1.0 - 2.0 - 3.0 - 5.0 -	089	Gray	Clas	LATERITE, sandy (fine - coarse) GRAVEL (fine - coarse), red brown cream, with trace grey black BASALT fragments, more so CALCRETE in top 1.0 m LATERITE, sandy (fine - coarse) CLAY with gravel (fine - coarse), medium plasticity, red brown cream LATERITE, low plasticity, red brown, BASALT cobbles at 7.0 - 8.0 m	Mois	Con	Wes	Sam		Water
		9.0										

BOREHOLE No.: IWL-BH26 BOREHOLE LOG SHEET 2 OF 2 GEOTECHNICAL AND TAILINGS CLIENT: Bellevue Gold Limited DATE COMMENCED: 8/05/2021 PROJECT: 8/05/2021 Geotechnical Services DATE COMPLETED: LOCATION: Bellevue Gold Project JOB NUMBER: P19-11-PR-05 Contractor: Top drill Hole Width: Equipment: RC Hole Length: Northing: 6942191 Datum: GDA94 Zone 51 Material Description Field Records/Comments Duration (mins) Geological Unit Graphic Log Classification Symbol Weathering/ Cementation Consistency/ Strength Sample/ Test R.L.: (m) Depth (m) Water SAPROLITE, CLAY, grey yellow, with minor grey black BASALT fragments 11.0-12.0. Terminated 13.0 14.0-15.0-16.0 17.0-18.0 19.0

CLIENT: Bellevue Gold Limited DATE COMMENCED: 8/05/2021
PROJECT: Geotechnical Services DATE COMPLETED: 8/05/2021
LOCATION: Bellevue Gold Project

			INDE	ъ.			ue Gold Project 1-PR-05							
			tor:			rill	Hole Width:	Easti	na:	259	365	Surface RL:		
100			ent:	R		77.00	Hole Length:	North		6942			GDA94 Zone	e 51
P	ı	on (mins)	R.L.: (m) Depth (m)	Geological Unit	Graphic Log	Classification Symbol	Material Description	ion	Consistency/ Strength	Weathering/ Cementation	Sample/ Test	Field Records	/Comments	
etho	Support	uratik	.L.: (r	òojoe	raph	lassif		Moisture	onsis	leath emer	ampl			Water
W	S	Ö	<u>ස් වී</u> - - 1.0 –	ð	Ö	ପ ଜି	LATERITE, clayey GRAVEL (fine - medium) with sand (fine - medium), medium - high plasticity, red brown cream, with minor grey black BASALT fragments, more so CALCRETE in top 1.0 m tending to become more clayey	Σŏ	<u> </u>	S ŏ	Š			8
			2.0 -				LATERITE, clayey GRAVEL (fine -							
			3.0				medium) with sand (fine - medium), medium plasticity, red brown, with minor grey black BASALT fragments							
			4.0				3 15 - -							
			5.0 -	-			SAPROLITE, grey brown, with minor	-				-		
			6.0				grey black BASALT fragments					_		
			7.0 -				Terminated -							
			8.0 -				6 3 - 3 3							
			9.0				3 5 -							

CLIENT: Bellevue Gold Limited DATE COMMENCED: 8/05/2021 PROJECT: Geotechnical Services DATE COMPLETED: 8/05/2021

			tor: ent:	R		rill	Hole Width: Hole Length:	East Nortl	ing. hing:	259 6941		Surface RL: Datum: GDA94 Zone	2 E
		nins)		11		ion	Material Description					Field Records/Comments	Т
DOLLOW	Support	Duration (r	R.L.: (m) Depth (m)	Geological Unit	Graphic Lo	Classification Symbol	,	Moisture Condition	Consistency/ Strength	Weathering/ Cementation	Sample/ Test		
			1.0				LATERITE, gravelly (fine - coarse) SAND (fine - coarse) with clay, red brown cream, medium plasticity, quartz/gypsum fragements in final 1.0 m, more so CALCRETE in top 1.0 m	-					
			2.0 -										
			3.0 -	J			LATERITE, clayey, gravelly (fine -	 		10		<u>Le</u>	
			4.0 -				medium) SAND (fine-coarse), medium plasticity, red brown, with minor grey black BASALT fragments						
			5.0	Į			SAPROLITE, grey, with grey black	1		15 3		_	
			6.0-	J			BASALT fragments	1					
							Terminated	4					
			7.0					1					
			8.0 -					-					
			9.0					-					

CLIENT: Bellevue Gold Limited DATE COMMENCED: 8/05/2021 PROJECT: Geotechnical Services DATE COMPLETED: 8/05/2021

			ION:	ъ.			ue Gold Project						
			JIVIBE			rill	1-PR-05 Hole Width:	East	ud.	259	565	Surface RL:	
			ent:	R)	9.00	Hole Length:		ning:	6941			e 51
		n (mins)	R.L. (m) Depth (m)	Geological Unit	: Log	cation	Material Description	90	ency/ h	ring/ tation	/ Test	Field Records/Comments	5
Method	Support	Duratio	R.L.: (m Depth (r	Geolog	Graphic Log	Classification Symbol		Moisture	Consistency/ Strength	Weathering/ Cementation	Sample/ Test		Water
			1.0 -				BASALT, sandy (fine - coarse) GRAVEL (fine - coarse), grey black						
			2.0 -	-								_	
			3.0 -										
			4.0				93 2 3 3 3						
			5.0 -				= 3 3 2 2 2						
			7.0										
			8.0 –				8 8 - 3 3						
			9.0				-			19			

CLIENT: Bellevue Gold Limited DATE COMMENCED: 8/05/2021
PROJECT: Geotechnical Services DATE COMPLETED: 8/05/2021
LOCATION: Bellevue Gold Project

							ue Gold Project			ъ.	ION:			
RI:	Surface RL:	Surface RI	365	259	ud.	Easti	I-PR-05 Hole Width:	rill			tor:			
GDA94 Zone				6942		North	Hole Length:	7.10		R	ent:			100
		Field Records/Comme	1				Material Description							
			Sample/ Test	Weathering/ Cementation	Consistency/ Strength	Moisture Condition		Classification Symbol	Graphic Log	Geological Unit	R.L.: (m) Depth (m)	Duration (mins)	Support	Method
							BASALT, sandy (fine - coarse) GRAVEL (fine - coarse), grey black				2.0 =			
				0 3					S - 10		4.0			
							Terminated				5.0			
											6.0			
											7.0 -			
						6. 6. 8.					8.0 –			
							3				9.0			
							Terminated				4.0 - 5.0 - 6.0 - 7.0 -			

CLIENT: Bellevue Gold Limited DATE COMMENCED: 8/05/2021
PROJECT: Geotechnical Services DATE COMPLETED: 8/05/2021

LOCATION: JOB NUMBE		ue Gold Project							
Contractor:	Top drill	Hole Width:	Easti	Da.	259	661	Surface RL	*	_
Equipment:	RC	Hole Length:		ning:	6942			GDA94 Zone	51
Method Support Duration (mins) R.L.: (m) Depth (m)	Geological Unit Graphic Log Classification Symbol	Material Description	Moisture	Consistency/ Strength	Weathering/ Cementation	Sample/ Test	Field Record	s/Comments	Vater
1.0 - 2.0 - 3.0 - 5.0 - 7.0 -		CALCRETE/LATERITE, sandy (fine - coarse) GRAVEL (fine - coarse), red brown cream, interbedded with grey black BASALT fragments BASALT, sandy (fine- coarse) GRAVEL (fine - coarse), grey black, interbedded with pale brown clay of high plasticity SAPROLITE, grey black, with BASALT fragments	Moist	Consi	Weatt	Samp			Water
9.0 -		Terminated	1 - - - - - - - - - - - - - - - - - -						

CLIENT: Bellevue Gold Limited DATE COMMENCED: 8/05/2021 PROJECT: Geotechnical Services DATE COMPLETED: 8/05/2021

LOCATION: Bellevue Gold Project JOB NUMBER: P19-11-PR-05 Top drill 259765 Contractor: Hole Width: Easting: Surface RL: Equipment: RC Hole Length: Northing: 6942391 Datum: GDA94 Zone 51 Material Description Field Records/Comments Duration (mins) Geological Unit Graphic Log Classification Symbol Consistency/ Strength Weathering/ Cementation Sample/ Test R.L.: (m) Depth (m) Water CALCRETE, sandy (fine - coarse) GRAVEL (fine - coarse) with clay, low plasticity, cream red brown 1.0 2.0 LATERITE, CLAY, medium - high plasticity, red brown, trace CALCRETE and BASALT fragments, trace organics from 5.0 - 6.0 m 3.0 4.0 5.0 6.0 7.0 SAPROLITE, CLAY, medium - high plasticity, yellow brown, with minor grey black BASALT fragments and gypsum 8.0 9.0

BOREHOLE No.: IWL-BH20

SHEET 2 OF 2

CLIENT: Bellevue Gold Limited

PROJECT: Geotechnical Services LOCATION: Bellevue Gold Project

JOB NUMBER: P19-11-PR-05

DATE COMMENCED: 8/05/2021 DATE COMPLETED: 8/05/2021

259765 Surface RL

C	ontr	ac	tor:	To	ро	rill	Hole Width:	East		259		Surface RL:	
Ed	quip	m	ent:	R			Hole Length:	North	ning:	6942	391		51
Method	Support	Duration (mins)	R.L.: (m) Depth (m)	Geological Unit	Graphic Log	Classification Symbol	Material Description	Moisture Condition	Consistency/ Strength	Weathering/ Cementation	Sample/ Test	Field Records/Comments	Water
							continued	-		8			
			11.0-					1					
l	П		12.0-	_	_	_		1	_		L	_	
			13.0-				SAPROLITE, CLAY, low - medium plasticity, grey brown, with BASALT fragments						
l			0.5 4:5 5:00:04:11					7					
l			14.0-					‡					
			15.0-										
l			16.0-					:4 :4					
			10.0					1					
			17.0-					-					
			- 18.0-	Į.									
			19.0-				Terminated	7					

BOREHOLE No.: IWL-BH19

SHEET 1 OF 2

CLIENT: Bellevue Gold Limited DATE COMMENCED: 8/05/2021
PROJECT: Geotechnical Services DATE COMPLETED: 8/05/2021
LOCATION: Bellevue Gold Project

			TION:	р.			ue Gold Project 1-PR-05						
			tor:			rill	Hole Width:	East	na:	259	365	Surface RL:	
			ent:	R		77.00	Hole Length:	North		6942			Zone 51
		•		1			Material Description					Field Records/Comm	ents
Method	Support	Duration (mins	R.L.: (m) Depth (m)	Geological Unit	Graphic Log	Classification Symbol		Moisture Condition	Consistency/ Strength	Weathering/ Cementation	Sample/Test		Water
			1.0 -				CALCRETE, sandy (fine - coarse) GRAVEL (fine - coarse), cream red brown						
			3.0 -	-			SAPROLITE, CLAY, high plasticity, cream brown purple						
			4.0 -				99 5 5 5 5 7 7 8 7 8						
			6.0	J			LATERITE, CLAY, with sand (fine - coarse) and gravel (fine - coarse), medium - high plasticity, red brown					_	
			7.0 -				- Theulum - mgn prasucity, red brown	- - - -					
			9.0				20 20 20 20 20 20 20 20 20 20 20 20 20 2						

BOREHOLE No.: IWL-BH19

SHEET 2 OF 2

CLIENT: Bellevue Gold Limited DATE COMMENCED: 8/05/2021
PROJECT: Geotechnical Services DATE COMPLETED: 8/05/2021

LOCATION: Bellevue Gold Project

						I-PR-05						9	
Con		ctor:	To RO	p c	trill	Hole Width: Hole Length:			ng: ning:	259 6942		Surface RL: Datum: GDA94 Zone	51
		-1				Material Description		ли	mig.	0042	.001	Field Records/Comments	
Method	Duration (mins	R.L.: (m) Depth (m)	Geological Unit	Graphic Log	Classification Symbol		Moisture	Condition	Consistency/ Strength	Weathering/ Cementation	Sample/ Test		Water
П		13.5				continued	-						
		275 125 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				; ; ;	1						
П		11.0-	÷			SAPROLITE, brown grey	1					-	П
П		25					1						П
П		12.0				, 1	-						П
		12				- 	-						П
		13.0-	_				1					_	П
						SAPROLITE, grey yellow	4						П
						i i	1						П
П		14.0-					-						П
П		25 25				1]						П
		15.0-					-						П
		34 34				3							П
		16.0				:							П
		100					1						П
П		17.0-					-						П
		17.0-					}						П
П						: ;	-						П
		18.0-	=				1					-	
) - (4					†						
		19.0				,							
		164 164				3]						
		•					+			S 3			Ш

CLIENT: Bellevue Gold Limited DATE COMMENCED: 8/05/2021
PROJECT: Geotechnical Services DATE COMPLETED: 8/05/2021

100 m Ct.			ION:				us Cald Project		DAI	L 00	/IVII L		D. 0/03/2021	-13
			ION:	D.			ue Gold Project 1-PR-05							
			tor:			drill	Hole Width:		East	Da.	259	365	Surface RL:	_
10000			ent:	R		41.111	Hole Length:			ning:	6942			51
Ť	Ī			Ť	Ť		100		1,010				Field Records/Comments	
П	١			ı	l		Material Description						Field Records/Comments	l
П	١	(SL		誓	ı	-				2.1				l
Ш	١	Ē		S S	log.	atio				n cy	ing/	Tes		l
B	PO L	tion	E E	ogic	냚	Silic De			ture	siste	ther	ple/		<u>.</u>
Met	Sup	Dure	R.L.: (m) Depth (m)	Geological Unit	Gray	Classification Symbol			Mois	Consistency/ Strength	Wea	Sample/ Test		Water
Н				۲	1		LATERITE, sandy (fine - coarse)	72						
Ш	١		88		l		GRAVEL (fine - coarse) with clay, low	88				l		l
Ш	١		125		l		plasticity, red brown cream, trace white gypsum, minor grey black	15	9			l		l
Ш	١		1.0 -		l		BASALT fragments, interbedded with	87	5			l		l
Ш	١		1.0 -		l		some CALCRETE	-				l		l
Ш	١		93		l			:	0			l		l
			23											1
			2.0 -					•						1
Ш	١		24		l			3	ŝ			l		l
Ш	١		154		l			82	i.			l		l
Ш	١		12		l			12	R I			l		l
Ш	١		3.0 -	=		-	Į.	7		4	-	H		l
Ш	١				l		LATERITE, gravelly (fine - coarse)					l		l
Ш	١				l		SAND (fine - coarse) with clay, low	•				l		l
Ш	١		332 33 5		l		plasticity, red brown	100				l		l
Ш	١		4.0 -	-			1	7				H		l
Ш	١		175		l		SAPROLITE, yellow grey, with grey	Ţ.				l		l
Ш	١		105		l		black BASALT fragments					l		l
Ш	١		25720.50		l				ŝ			l		l
Ш	١		5.0 -		l			***				l		l
Ш	١		5 6		l				ľ			l		l
Ш	١		224		l			2	÷			l		l
Ш	١		- 14		l			82 00	k :			l		l
П			6.0											
			8					-						1
			7.0 -					1						
Ш	١				l			8.5				l		l
Ш	١		8.5		l			97	5			l		l
Ш	١		35		l			() .	C.			l		l
			8.0 -					_						
): -					:10	3					
			89					? .						
			32					1						
			9.0 -					-	Ē					
			1:4					100						
			//2											
									ĺ					
	_1			_		I				I.	1			

BOREHOLE No.: IWL-BH08 BOREHOLE LOG SHEET 2 OF 2 GEOTECHNICAL AND TAILINGS CLIENT: Bellevue Gold Limited DATE COMMENCED: 8/05/2021 PROJECT: 8/05/2021 Geotechnical Services DATE COMPLETED: LOCATION: Bellevue Gold Project JOB NUMBER: P19-11-PR-05 Contractor: Top drill Hole Width: 259665 Easting: Surface RL: Equipment: RC Hole Length: Northing: 6942907 Datum: GDA94 Zone 51 Material Description Field Records/Comments Duration (mins) Geological Unit Graphic Log Classification Symbol Consistency/ Strength Weathering/ Cementation Sample/Test R.L.: (m) Depth (m) Water SAPROLITE, grey, with grey black **BASALT** fragments 11.0-12.0. Terminated 13.0 14.0-15.0-16.0 17.0-18.0 19.0

TEST PIT No.: C-TP01 **EXCAVATION LOG** SHEET 1 OF 1 GEOTECHNICAL AND TAILINGS CLIENT: 21/05/2021 Bellevue Gold Limited DATE COMMENCED: PROJECT: 21/05/2021 Geotechnical Services DATE COMPLETED: LOCATION: Bellevue Gold Project JOB NUMBER: P19-11-PR-08 259093 Contractor: Hole Width: Easting: Surface RL: Hole Length: 6942819 Equipment: Northing: Datum: GDA94 Zone 51 **Material Description** Field Records/Comments **Geological Unit** Duration (mins Classification Symbol Consistency/ Strength Weathering/ Cementation Sample/Test Graphic Log Moisture Water Silty SAND / sandy SILT, fine to medium-grained, low plasticity, redbrown, with organic roots. CALCRETE, medium - coarse grained, 0.5 white-brown to yellow-brown, indistinct fabric, with some dolerite gravels, lowmedium strength, moderately-slightly weathered. 1.0 _ Terminated 1.5 2.0 -2.5 -3.0 -3.5 4.0

TEST PIT No.: C-TP02A **EXCAVATION LOG** SHEET 1 OF 1 GEOTECHNICAL AND TAILINGS CLIENT: 21/05/2021 Bellevue Gold Limited DATE COMMENCED: PROJECT: 21/05/2021 Geotechnical Services DATE COMPLETED: LOCATION: Bellevue Gold Project JOB NUMBER: P19-11-PR-08 Contractor: Hole Width: 259096 Surface RL: Easting: Hole Length: 6942523 GDA94 Zone 51 Equipment: Northing: Datum: **Material Description** Field Records/Comments **Geological Unit** Duration (mins) Classification Symbol Consistency/ Strength Weathering/ Cementation Sample/Test Graphic Log Moisture Sifty SAND / sandy SILT, fine to medium-grained, low plasticity, red7 brown, with organic roots. CALCRETE, cream mottledred brown 0.5 grey, friable localised interbudding with BASALT gravels and cobbles, SW VS, grey black. As soil dry-moist, sandy (finemedium) GRAVEL (fine-coarse grained) with silt, pale brown cream 1.0 -Terminated 1.5 2.0 -2.5 -3.0 -3.5 4.0

TEST PIT No.: C-TP03A **EXCAVATION LOG** SHEET 1 OF 1 GEOTECHNICAL AND TAILINGS CLIENT: 21/05/2021 Bellevue Gold Limited DATE COMMENCED: PROJECT: 21/05/2021 Geotechnical Services DATE COMPLETED: LOCATION: Bellevue Gold Project JOB NUMBER: P19-11-PR-08 259498 Contractor: Hole Width: Easting: Surface RL: Hole Length: 6942204 Equipment: Northing: Datum: GDA94 Zone 51 **Material Description** Field Records/Comments **Geological Unit** Duration (mins) Classification Symbol Consistency/ Strength Weathering/ Cementation Sample/Test Graphic Log Moisture Water Silty SAND / sandy SILT, fine to medium-grained, low plasticity, redbrown, with organic roots. CALCRETE, medium - coarse grained, 0.5 white-brown to yellow-brown, indistinct fabric, with some dolerite gravels, low medium strength, moderately - slightly weathered. 1.0 _ Terminated 1.5 2.0 -2.5 -3.0 -3.5 4.0

TEST PIT No.: C-TP04A **EXCAVATION LOG** SHEET 1 OF 1 GEOTECHNICAL AND TAILINGS CLIENT: 21/05/2021 Bellevue Gold Limited DATE COMMENCED: PROJECT: 21/05/2021 Geotechnical Services DATE COMPLETED: LOCATION: Bellevue Gold Project JOB NUMBER: P19-11-PR-08 Contractor: Hole Width: Easting: 259498 Surface RL: GDA94 Zone 51 Hole Length: 6943199 Equipment: Northing: Datum: **Material Description** Field Records/Comments **Geological Unit** Duration (mins) Classification Symbol Consistency/ Strength Weathering/ Cementation Sample/Test Graphic Log Moisture Water Silty SAND / sandy SILT, fine to medium-grained, low plasticity, redbrown, with organic roots. 0.5 CALCRETE, medium - coarse grained, white-brown to yellow-brown, indistinct fabric, with some dolerite gravels, low medium strength, moderately - slightly 1.0 weathered. Terminated 1.5 2.0 -2.5 -3.0 -3.5 4.0

TEST PIT No.: C-TP05 **EXCAVATION LOG** SHEET 1 OF 1 GEOTECHNICAL AND TAILINGS CLIENT: 21/05/2021 Bellevue Gold Limited DATE COMMENCED: PROJECT: 21/05/2021 Geotechnical Services DATE COMPLETED: LOCATION: Bellevue Gold Project JOB NUMBER: P19-11-PR-08 Contractor: Hole Width: Easting: 259569 Surface RL: Hole Length: 6942995 Equipment: Northing: Datum: GDA94 Zone 51 **Material Description** Field Records/Comments **Geological Unit** Duration (mins) Classification Symbol Consistency/ Strength Weathering/ Cementation Sample/Test Graphic Log Moisture Silty SAND / sandy SILT, fine to medium-grained, low plasticity, red, brown, with organic roots. 0.5 -CALCRETE, medium - coarse grained, white-brown to yellow-brown, indistinct fabric, with some dolerite gravels, low medium strength, moderately - slightly 1.0 _ weathered. Terminated 1.5 2.0 -2.5 -3.0 -3.5 4.0

TEST PIT No.: C-TP06 **EXCAVATION LOG** SHEET 1 OF 1 GEOTECHNICAL AND TAILINGS CLIENT: 21/05/2021 Bellevue Gold Limited DATE COMMENCED: PROJECT: 21/05/2021 Geotechnical Services DATE COMPLETED: LOCATION: Bellevue Gold Project JOB NUMBER: P19-11-PR-08 Contractor: Hole Width: Easting: 259354 Surface RL: Hole Length: 6943093 Equipment: Northing: Datum: GDA94 Zone 51 **Material Description** Field Records/Comments **Geological Unit** Duration (mins) Classification Symbol Consistency/ Strength Weathering/ Cementation Sample/Test Graphic Log Moisture Water Silty SAND / sandy SILT, fine to medium-grained, low plasticity, red7 brown, with organic roots. 0.5 -CALCRETE, medium - coarse grained, white-brown to yellow-brown, indistinct . fabric, with some dolerite gravels, low medium strength, moderately - slightly 1.0 _ weathered. Terminated 1.5 2.0 -2.5 -3.0 -3.5 4.0

TEST PIT No.: C-TP07 **EXCAVATION LOG** SHEET 1 OF 1 GEOTECHNICAL AND TAILINGS CLIENT: 21/05/2021 Bellevue Gold Limited DATE COMMENCED: PROJECT: Geotechnical Services LOCATION: Bellevue Gold Project JOB NUMBER: P19-11-PR-08 Contractor: Hole Width: Easting: 259624 Surface RL: Hole Length: 6942786 GDA94 Zone 51 Equipment: Northing: Datum: **Material Description** Field Records/Comments **Geological Unit** Duration (mins) Classification Symbol Consistency/ Strength Weathering/ Cementation Sample/Test Graphic Log Moisture Water Silty SAND / sandy SILT, fine to medium-grained, low plasticity, red7 brown, with organic roots. 0.5 -CALCRETE, medium - coarse grained, white-brown to yellow-brown, indistinct . fabric, with some dolerite gravels, lowmedium strength, moderately - slightly 1.0 _ weathered. Terminated 1.5 2.0 -2.5 -3.0 -3.5 4.0

TEST PIT No.: C-TP08 **EXCAVATION LOG** SHEET 1 OF 1 GEOTECHNICAL AND TAILINGS CLIENT: 21/05/2021 Bellevue Gold Limited DATE COMMENCED: PROJECT: 21/05/2021 Geotechnical Services DATE COMPLETED: LOCATION: Bellevue Gold Project JOB NUMBER: P19-11-PR-08 259622 Contractor: Hole Width: Easting: Surface RL: Hole Length: 6942532 Datum: GDA94 Zone 51 Equipment: Northing: **Material Description** Field Records/Comments **Geological Unit** Duration (mins) Classification Symbol Consistency/ Strength Weathering/ Cementation Sample/Test Graphic Log Moisture Silty SAND / sandy SILT, fine to medium-grained, low plasticity, red7 brown, with organic roots. 0.5 CALCRETE, medium - coarse grained, white-brown to yellow-brown, indistinct fabric, with some dolerite gravels, low medium strength, moderately - slightly 1.0 weathered. Terminated 1.5 2.0 -2.5 -3.0 -3.5 4.0

8		e (C		carbore (08) 64	Engineering ough Beach Rd, O 44 7988 : Precision Drillin	sborne Park, WA	6017	* 1 4	b Number	E	technic 3H01	al L	.og - Bo	orehole	
Easting Northin	(m) g (m) E l evation :	: 259712,0 : 6943074,1	oo yed	Driller Logge	Supplie		•		Pr Lo	ient oject estion c Commer	: Bellev : TSF G : Bellev	rue Gold SI				
Drilling Melhod	Water	Depth (m)	Soil Origin	Graphic Log	Classification Code	Marorial Describtion		Moisture	Consistency	Samp in a	olue son	Testing		ajue Graph 20 30 4	Rem Fie Records/0	dd .
†			Soil		SP	Soil- SP: Gravelly S. fine to medium plasticity day loose to medium	gravel, with low to r, red brown, moist,	M	L-MD							
		_1	Durierust		ML	Duricrusi- Clayey Si plasticity, red brown, i with fine to medium si to coerse gra	try, stiff to very stiff, zed gravel, with fine	D	SI-VOI							
	:	2		AVA		ROCK-BABALT: very					UDS 1	11,15,12 (N=27)		9		
PO DIAMOND DISILLING		3		A V A A V A A V A A V A A V A A V A A V A A V A A V A A V A A A V A A A V A A A V A A A V A A A V A A V A A A V A A V A A A V A A A V A A A V A A A V A A A A V A A A A V A A A A A V A		pale grey, very low distinctly weath			il i		,					
			Rock	A V A A V A A V A A V A A V A A V A A A V A	BAS				VLS-LS	-	<u>.</u>	7,11,16 (N=27)				
		-4		A V A A V A A V A A V A A V A A V A A A V A								9,19,17 (N=36)				
	vator hoe bucket ral exposure	¥	complete v Water inflo water leve	9 \ I	P	tevel during drilling partial water loss none encountered	Consistency VS Very soft S Soft F Firm St Stiff	Maist D M W	Dry Moist Wet plastic lim	ı	VS vs	en penetromete ans shear mamic	100 E		iconsol cohesion iconsol friction an	glə
exist	ng xcavatio	GW GP GM GC ML MH OL	sifty grave clayey gra inorg sits inorg clay org sits to	ed gravels adod gravels at avel low plastic high plastic	SP SM SC CL CI	well graded sands poorly graded sands silty sands clayey sands Inorg clay low plastic inorg clay high plastic inorg clay high plastic poet of high org soils	VSt Very stiff H Hard Density VL Very loose L Loose MD Medium dense D Dense VD Very dense	U(50)	liquid limit amples bulk disturbed U(63) pu	I sh tube		one trometer	LL PL LS CC CF FH CH CH	liquid limit plastic limit linear shrinks undrained or undrained or falling head a constan hear	nnsole cohesion naole friction and permeability d permeability	l a

Page 1 of 10

CMR californian bearing ratio

1/10 about:blank

VD Very dense

OH org sills high plastic

Pt post of high org soils

8	1	ec	B/358	Scarbo	Engineering rough Beach Rd, O 444 7988		6017				technic 3H01	al Log - Bore	hole
UTM Easting (Northing Ground I Total Dep	(m) : 6 Elevation : N	1 259712.00 1943074,00 lot Surveyed 0,5 m BGL	Dr Lo	II Rig Iler Suppli gged By viewed By te	: JR	ng		Pr Le	ob Number Bent roject ocation oc Commen	: Bellev : TSF G : Bellev	rue Gold Si		
Drilling Mathod	Water	Depth (m)	Soll Origin Graphic Log	Classification Code	Material Description		Moisture	Consistency	Samp in in	siee SQN	Testing	N Value Graph •	Remarks Field Records/Comme
PQ DIAMOND DRILLING —		-6 -7 -8	A V V V V V V V V V V V V V V V V V V V	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ROCK-BASALT very pale grey, very low distinctly weath	to low strength,		VLS-LS		LIDS 2	8.8.33 (N=41)		
NE rigitura	oe bucket al exposure ng xcavation	water Water Water USC Classif GW well GP poor GM silty GC clay ML inor OL org	plete water less er inflow er level fication graded gravels dy graded gravels	: cı sc	texel during drilling partial water loss none encountered well graded sands poorly graded sends silty sands clayey sands inorg clay low plastic inorg clay med plastic inorg clay high plastic peet of high org soils	Consistency VS Very soft S Soft F Firm St Shiff VSt Very stiff H Hard Density VL Very loose L Loose MD Medium dense D Dense VD Very dense	B D U(63)	Dry Moist Wet plastic lim liquid limit mples bulk disturber U(53) pt Water	d ush tube	VS VS	on penatrometer and shear mamik he enetrometer	Laboratory Results UC undrained uncons UF undrained uncons MC moisture content DD dry density LL liquid limit PL plastic limit LS linear shrinkage CC undrained consol FM falling head perm CH constan head per CRR californian bearing	sol friction angle s cohesion o friction angle cability meablity

Page 2 of 10

about:blank 2/10

8	} [e	0	B/355 S		ugh Beach Rd, O	Consultants	6017				otechnic 3H01	cal L	.og	- Bo	reh	ole
UTM Easting Northin Ground Total De	ı (m) ıg (m) I Elevation :	51 : 259712.00 : 6943074.0 Not Surve 40,5 m BG	yed	Logg	Rig or Supplier ed By owed By	: Precision Drillis : JR : 08/01/2025	ng		c s Pr Lo	b Number ient oject sation c Commo	: Bellev : TSF 0 : Bellev	rue Gold ISI rue WA					
Drilling Mathod	Water	Depth (m)	Soll Origin	Graphic Log	Classification Code	Material Describtion		Moisture	Consistency	Sam	ples san	Testing	N V	elue Gri	aph (9)		Remarks Field scords/Commen
PO DIAMOND DRILLING		-11 -12 -13	Rock	A V A A A A A A A A A A A A A A A A A A	BAS	ROCK-BASALT very paje gray, very jow distinctly weath	to low strength,		VLS-LS								
		- 14	Rock		Sapro	ROCK-SAPROLITI grained, pale green, very low to low st weathered	lemination fabric, rength, distinctly		visis			i i					
NE natu	shoe bucket ral exposure ing xcavatio	USC C GW GP GM GC ML	complete v Water inflo water leve lassification well grade poorly gra- sifty grave clayey gra- inorg sifts inorg clay org sifts k	ow ed gravels eded gravels of avel low plastic high plastic	P P P P P P P P P P P P P P P P P P P	evel during drilling partial water loss some encountered well graded sands alty sands layey sands more clay low plastic more clay med plastic more clay high plastic coat of high one soils	Consistency VS Very soft S Soft F Firm St Stiff VSt Very stiff H Hard Density VL Very Joose L Loose MD Medium dense D Dense VD Very dense	B D U(63)	ure Dry Moist Wet plastic limit liquid limit bulk disturbed U(63) pu U(50) pu	l sh tube	VS VI	ating on ponetromete ane shear ynamk one enetrometer	UF MC DD LL PL LS CC FFI CH	undra mois dry d liquid plast linea undra undra falline cons	ained und ained und are confi lensity i limit ic limit r shrinka; ained cor	ponsol f ent ge esole co esole fri permeab	nicilion angle ohssion ction angle slitty

Page 3 of 10

about:blank 3/10

8	1	ec	B/38	5 Scarbo	Engineering rough Beach Rd, O		6017				otechnic 3H01	al Log - Bore	ehole
UTM Easting Northing Ground Total De	(m) : Elevation : l	51 259712.00 6943074,00 Not Surveye 40,5 m BGL	C C L	vill Rig viller Suppl ogged By seviewed By late	: Precision Drillin ler : : JR	ng		CIS Pro Lo	b Number ent oject ostion c Common	: Belle : TSF (1-PR-30 vue Gold 33I vue WA		
Drilling Mathod	Water	Depth (m)	Soll Origin Graphic Log	Classification Gode	Material Describition		Moisture	Comsistency	Samp	(ee SGN	Testing	N Value Graph •	Remarks Field Records/Comme
→ PG DANAUND ORILLING		-16 -17 -18	SAN TO STAN TO	*************************************	ROCK-SAPROLITI grained, pale green, very low to low str weathered	jamination fabric, ength, distinctly		VLS-LS					
NE matura	noe bucket al exposure ng xcavation	USC Class GW W GP po GM Sil GC cl ML in MH in OL or	implete water less ater inflow ater level sification ell graded gravel ordy graded gravel ayey gravel org sits low plastic g alls low plastic g alls low plastic	P N s SW sels SP SIM SC tic Ct ctic Ct	partial water loss none encountered well graded sands poorly graded sands	Consistency VS Very soft S Soft F Firm St Stiff VSt Very stiff H Hard Dentity VL Very Jose L Loose MD Medium dense D Dense VD Very dense	M W PL LL Soil Sa B D U(63)	Dry Moist Wet plastic limit liquid limit	ih tube	VS V	sting en penetromete ane shear lynamic one enetrometer	Laboratory Results UC undrained uncons UF undrained uncons MC moisture content DD dry density LL liquid limit PL plastic limit LS linear shrinkage CC undrained consol FM falling head perm CH constan head per CBR californian bearin	sol friction angle is cohesion is friction angle cability meablity

Page 4 of 10

about:blank 4/10

8 rec				B/355 S	carbor	Engineering ough Beach Rd, O 144 7988		6017			Geotechnical Log - Borehole BH01					
UTM :51 Easting (m) : 259712 Northing (m) : 694307 Ground Elevation : Not Sur Total Depth : 40,5 m i			Drill Rig 712.00 Driller S 3074,00 Logged Surveyed Reviews			upplier : By : JR			Job Number Client Project Location Loc Comment		: P19-11-PR-30 : Bellevue Gold : TSF GSI : Bellevue WA					
Drilling Mathod	Water	Depth (m)	Soll Origin	Graphic Log	Classification Code	Material Describites		Moisture	Consistency	Samp in	Non Sun	Teeting	N Value Graph ®	Field Records/Commen		
Po DIAMOND DRILLING →			Rock		Sapro	ROCK-SAPROLITI grained, pale green, very low to low ste weathered	jamination fabric, rength, distinctly		VLS-LS			30/60mm, 0,0 (N=)				
E natura	oe bucket d exposur g xcavatic	USCC GW GP GM GC ML MH	Complete v Water inflo water level lassification well grade poodly gra sifty grave clayey gra inorg sits	ed gravels ed gravels ed gravels il ivel low plastic high plastic	SW SP SM SC CL Cl	Level during drilling partial water loss none encountered well graded sands poorly graded sands sitty sands clayey sands inorg clay low plastic inorg clay high plastic peet of high org soils	Consistency VS Very soft S Soft F Firm St Stiff VSt Very stiff H Hard Density VL Very Jose L Loose MD Medium dense D Dense VD Very dense	M PL (LL I Soil Sea	Dry Moist Wet plastic lim iquid limit	d sh tube	VS V	ating ion penetrometar rans shear lynamic one enetrometer	Laboratory Results UC undrained uncor UF undrained uncor MC moisture content DD dry density LL liquid limit PL plastic limit LS linear shrinkage CC undrained conso CF undrained conso CF undrained conso CF constan head per CBR californian bearing	sol friction angle so cohesion so friction angle neability some at the cohesion		

Page 5 of 10

about:blank 5/10

Resource Engineering Consultant B/355 Scarborough Beach Rd, Osborne Park, V Phone: (08) 6444 7988									Geotechnical Log - Borehole BH01						
UTM Easting (n Northing (Ground El Total Dept	m) : 65 levation : No	59712.00 943074.00 ot Surveyed U5 m BGL	Drill Rig Driller St Logged I Reviewe Date		upplier : By :JR		g Job Num Client Project Location Loc Com		: Belle : TSF : : Belle	H-PR-30 vue Golid GSII vue WA					
Drilling Method	Water	Depth (m)	Soil Origin	Graphic Log	Clessification Code		Material Description		Weathering V.s	WS Estimated Hs Strength VHS INS	Teeting	RGD% and TCR%	90 Defect Spacing 100 Defect Spacing 1000 (mm)	Defect Description	
		-22													
A PQ		- p		ないがいないに		ROCK- SAPRO pale green, las	ted Coring at 23m DLITE: very fine to fine g mination fabric, very low istinctly weathered, distin	to low				RQD = 62% TCR = 100%		IR, VR, Stained Coating, Heavily fractured Basalt Pale Grey High strength High quarts mineral	
DIAMOND (ROCK)		Water	Rock		Sapro	W4 985	Consistency	Moistu		In Situ Te		Stud 7/196	oratory Results	content in join face,	
EX excevator BH backhoe bucket NE natural exposure EE existing xcavation RP ripper		Complete water less Water inflow water level USC Classification GW well graded gravels GP poorly graded gravels GM silty gravel GC clayey gravel ML inorg silts low plastic MH inorg clay high plastic OL org silts low plastic OH org silts high plastic			P partia N none SW well g SP poorh SM silty s SC claye CL inorg CH inorg	during drilling If water loss encountered praced sands y graded sands sands clay low plastic clay med plastic clay high plastic of high org soils	VS Very soft S Soft F Firm St Stiff VSt Very stiff H Hard Density VL Very loose L Loose MD Medium dense D Dense VD Very dense	plastic limit		PP pen penetrometer VS vane shear dynamic cone penetrometer		UC undrained unconsol cohesion UF undrained unconsol friction angle MC moisture content DD dry density LL liquid limit PL plastic limit LS linear shrinkage CC undrained consols roction angle CF undrained consols friction angle FH falling head permeability CRR californian bearing ratio			

Page 6 of 10

about:blank 6/10

8	1'6	ec	, 1	3/355 Sca	rborougi	n Beach Rd, O	Consultants sborne Park, WA,	6017			otechi 3H01	nical	Log - E	Bore	ehole
UTM Easting (n Northing (Ground El Total Dept	m) :6 levation:N	1 59712.00 943074,00 lot Surveyed 0,5 m BGL		Orill Rig Driller Sc Logged I Reviewe Date	applier 3y	988 : Precision Drillin : : : JR : : : 08/01/2025	ng		Job Numi Officent Project Location Loc Com	er : P19-1 : Bellev : TSF 0 : Bellev	1-PR-30 vue Gold				
Drilling Method	Water	Depth (m)	Soil Origin	Graphic Log	Classification Code		Material Description		Weathering 1.8	WS Estimated His Strength VHS EHS	Teeting	RGD% and TCR%	30 100 Defect Spacing 300 (men)	000	Defect Description
*		+5	Rock		Sapro	pole green, lar strength, di ROCK- SAPRO medium strength	DLITE: very fine to fine g mination fabric, very low stinctly weathered, distin DLITE: fine grained, pale r, distinctly weathered, in	to low not. green, ndistinct,) <u>-</u>			RQD - 73% TO = 1009	R		J. 50*. Planar,Undulating SO, CT, <1 mm
						weathered hispacing 30 to 5	4.3 highly fractured mod igh strength baselt pelle 0 mm spacing joints 0 en quartz mineral content,	gree vr				RQD= 70% TC = 100%	R		L-Planar, Undulating Rough, Smooth, STN, CP, Moderately-elight weathered, Basal Joint spacing 50n = 150mm 25,5–25, and 33,0–33,3 Ne medical JT (80) nunning middle of core. 31–32 Extremely weathered Basalt very low strength, crumiles under finger-some portical socrass of the community of the community of the community of the community series
PQ MAROND PROCK)			Rock		Sapro				DW			RQD = 50% TC = 1009	R		
		29										ROD = 58.679 TOR = 100%			
nethod x excava H beckho is natural e existing p ripper	e bucket	USC Class GW wei GP poor GM eith GC class ML ino MH ino OL org	ter level	riess ravels plastic in plastic instit	P partis N none SW well SP poor SM sity SC claye CL inorg CH inorg CH inorg	during drilling all water loss encountered graded sands by graded sands sands by sands clay low plastic clay med plastic clay high plastic of high org soils	Consistency VS Very soft S Soft F Firm St Stiff VSt Very stiff H Hard Density VL Very Joose L Loose MD Medium dense D Dense VD Very dense	M PL LL Soil Sail B D U(63)	Dry Moist Wet plastic limit iquid limit	VS V	eting on penetror ane shear ynam's one enetrometer	meter u	F undrained MC moisture D dry densi L liquid limi L plastic lin S linear shr C undrained	d unconductority it inkage d consol d consol ad perm	is conssion is friction angle reability rmeability

Page 7 of 10

about:blank 7/10

8	1'6	ec	,		rborough	Beach Rd, O	Consultants	6017			techr 3H01	nica	al Lo	og - Bor	ehole
UTM Easting (n Northing (Ground El Total Dept	m) :6 evation:N	1 59712.00 943074,00 ot Surveyed 0,5 m BGL	d	Drill Rig Driller Sc Logged I Reviewe Date	By d By	: Precision Drilli : : JR : : 08/01/2025	ng		Job Numb Client Project Location Loc Comm	: Bellev : TSF G : Bellev	ue Gold SI				
Drilling Method	Water	Depth (m)	Soil Origin	Graphic Log	Classification Code		Material Description		Weathering V.s	MS Estimated Hs Strength WHS EHE	Testing	DONE and Topic	KGD% and ICK%	300 Defect Spacing 300 (mm) 1000	Defect Description
A	16 16 18					medium atrength moist, 23,6 to 2 weathered to spacing 30 to 50	DLITE: fine grained, pale, t, distinctly weathered, iz 4.3 highly fractured mod- sign strength baselt pale; 0 mm spacing joints 0 do n quartz mineral content.	idistinct, lerately grey igree vr				26,6	R=		
PQ KANOND ROCK)		- 32 -	Rock		Sapro				DW						
		-33										46,6 TC8	D = 67% R = 0%		J, 30°, PL, RO, S OF,
		- -	Rock	A V A	BAS		i: fine grained, grey, high moderately to fresh weat		MW-F			62.6 TO	ID = 67% R = 0%		
Method IX exceve Method IX exceve Method IX exceve IX exceve IX packho IX matural IX exitting IX ripper	e bucket exposure	USC Class GW WE GP po GM silt GC clas ML inc MH inc	mplete water inflow ater level sification all graded growl by gravel are level gravel are level gravel grav	ravels I gravels plastic h plastic lastic	P partial N none SW well g SP poorh SM eithy s SC claye CL inorg CH inorg CH inorg	during drilling I water loss encountered praced sands y praced sands ands y sands clay low plastic clay med plastic clay high plastic of high org soils	Consistency VS Very soit S Soft F Firm St Shiff VSt Very stiff H Hard Density VL Very Joose L Loose MD Medium dense D Dense VD Very dense	M W PL LL Soil So B	Dry Moist Wet plastic limit liquid limit	VS VI	en penetron ane shear mamik me enetrometer	neter	UC UF MC DD LL PL CC CF FH CH	undrained uncor undrained uncor undrained uncor moisture content dry density liquid limit plastic limit linear shrinkage undrained conso undrained conso falling head peri constan head per californian bearing	nsol friction angle t seconssion seconssion neability armeability

Page 8 of 10

about:blank 8/10

8	1'6	ec	Е		borougl	h Beach Rd, O	Consultants Sborne Park, WA,	6017		Ĭ,		techr 8H01	nical L	.og - Bor	ehole
UTM Easting (n Northing (Ground El Total Dept	m) :6: levation : N	59712.00 943074,00 ot Surveyed 0,5 m BGL		Crill Rig Driller Sug Logged B Reviewed Date	y	: Precision Drilli : : JR : : 08/01/2025	ng		Job Nu Client Project Locatio Loc Cor	n	: TSF G	ue Gold SI			
Drilling Method	Water	Depth (m)	Soil Origin	Graphic Log	Classification Code		Material Description		Weathering Visa	us Estimated	NAS Strength NAS	Teating	RQD% and TCR%	30 Defect Spacing 300 (mm)	Defect Description
A		98		A V A A V A A V A A V A A V A A V A A A V A A A V A			T: fine grained, grey, high moderately to fresh weat						RQD = 62.67% TCR = 100%		J. Planar, Irregula RO, Veneer, Stain OP, J. 507 Planar, Undulating RO, STN,
PQ		- 37		A V A A A A A A A A A A A A A A A A A A									ROD = 90,67% TCR = 100%		J, 30°, Planar, Undulating RO, STN,
(ANIOND ROCK)		- 36	Rock		BAS				MVV-F				RQD = 87.33% TCR = 100%		J. 30°, PL. Rough,Smooth, Stained, Clean, OJ. 50°, PL. Rough,Smooth, O OP,
		39		A V A A A A A A A A A A A A A A A A A A									RQD = 100% TCR = 100%		
Method OX axcava SH beckho SE natural SE existing	e bucket	GM silty GC days ML inorg MH inorg OL org a	r inflow r level cation	A V A	P partis N none SW well sity sity sity inorgon	during drilling all water loss encountered graded sands by graded sands sands by sands clay low plastic clay how plastic clay high plastic clay high plastic of high org soils	Consistency VS Very soft S Soft F Firm St Shiff VSt Very stiff H Hard Density VL Very Joose L Loose MD Medium dense D Dense VD Very dense	M Pt LL Soil Sail B D U(63)	Dry Moist Wet plassic limit liquid limit	F 1	/S VE dy	ting on penatron ine shear mamic ne netrometer	100mm 77756	moisture conter dry density liquid limit plastic limit linear shrinkage undrained cons undrained cons falling head per constan head p	nsol friction angle t ole cohesion ole friction angle meability ermeability

Page 9 of 10

about:blank 9/10

03/202	3, 10,11
8	rec
UTM	: 51

Resource Engineering Consultants

B/355 Scarborough Beach Rd, Osborne Park, WA, 6017

Phone: (08) 6444 7988

Geotechnical Log - Borehole

Drill Rig Precision Drilling Job Number : P19-11-PR-30 Easting (m) - 259712 00 **Driller Supplier** Client : Bellevue Gold Northing (m) : 6943074.00 Logged By Project TSF GSI : JR Ground Elevation : Not Surveyed : Bellevue WA : 08/01/2025 Total Depth : 40,5 m BGL Date Loc Comment : Testing fect Spacing (mm) Code Material Description and TCR% Î Soil Origin Graphie SPT RGD% 9000 2 3 2 2 2 2 AVA ROCK-BASALT: fine grained, grey, high to very high strength, moderately to fresh weathered. RQD = AVA 100% TCR = Rock A V A MVW AVA 100% BH01 Terminate at 40.5m Method Water Moisture in Situ Testing Laboratory Results EX excevator VS Dry UC undrained unconsol cohesion complete water less ▼ Level during drilling Very soft pen penetrometer partial water loss Soft Moist ➤ Water inflow undrained unconsol friction angle BH backhoe bucket VS vane shear water level none encountered Firm Wet moisture content NE natural exposure dynamic Stiff plastic limit 5t dry density cone penetrometer USC Classification EE existing xcavation VSt Very stiff u liquid Imit liquid limit GW well graded gravels SW well graded sands H Hard plastic limit poorly graded sands Soil Samples poorly graded gravels linear shrinkage Density GM sitty gravel SM silty sands B bulk CC undrained console cohesion GC dayey grave SC clayey sands VL Very loose undrained console friction angle CF inorg sits low plastic CL inorg clay low plastic U(63) U(63) push tube falling head permeability MD Medium dense MH inorg day high plastic c) inorg clay med plastic U(50) U(50) push tube org sits low plastic CH inorg clay high plastic Dense CH constan head permeability W5 water OH org sills high plastic Pt post of high org soils VD Very dense californian bearing ratio

Page 10 of 10

10/10 about:blank

8	11ec		C	B/355 S	carbon	Engineering ough Beach Rd, O 44 7988		6017				otechni 3H02	cal L	og - E	Borel	nole
Northing	(m) : (m) : Elevation :		yad yad	Logg	Rig or Supplie od By owed By	: Precision Drillia r : : MK : JB : 08/12/2024	ng		Pr Lo	20020000000	: Bellev : TSF G : Bellev nt : On to	rue Golid SSI rue WA p of ex access	s road			
Drilling Method	Water	Depth (m)	Soll Origin	Graphic Log	Classification Code	Material Describtion		Moisture	Consistency	Sam	pice SGN	Testing		lue Graph		Remarka Field Records/Comments
*		-1	Fa		cı-cı	Fill Gravelly CLAY CL plasticity, red brown, sized gravel, inorgani laterite fill material. C.4 washed or	stiff, fine to medium c, moist, top of roed, c m spout and 0,5 m	M	34							
- (1)OS) CINOWALL D.d.			Fill			Fill GRAVEL grey, de fine to coarse sized.		D	D-VD			17.7.6 (N=13)				
	10.00	-4	Duricrust		sc	Duricrust- SC: Clayer to medium grained, lo brown, very dense, di is basalt, calcrete, di white cream interbed and 200 to 300 mm s dunioust, fragments o finget, quartz fragm occurring, portion be extremely weathered soil properties, fine trace day, dry, low to	w plasticity clay, red unicrust parent rock is to medium grain, ded in 50 mm thick pacing in red brown annot be broken by ents occasionally tween 5.4 to 5.5 is duricrust, some has medium sity sand medium plastic, stiff	D	VD	-	-	6.16.27 (N=43)				
BH beck!	EX excavator BH beckhoe bucket NE natural exposure EE existing xcavation	USC C GW GP GM GC ML	complete v Water inflo water level lessification well grade poodly gra sifty grave clayey gra inorg sits	od gravels id gravels id gravels il ivel low plastic high plastic	P N SP SM SC CL CI	Level during drilling partial water loss none encountered well graded sands poorly graded sands ally sands clayey sands long clay low plastic inorg clay high plastic inorg clay high plastic poet of high org soils	Consistency VS Very soft S Soft F Firm St Stiff VSt Very stiff H Hard Density VL Very loose L Loose MD Medium dense D Dense VD Very dense	Moint D M W PL LL Soil S B D U(63) U(50) WS	Dry Maist Wet plestic lim liquid limit amples bulk disturber U(63) pu	d ush tube	VS V	en penetromet ans shear ynamic one enetrometer	er UC UF MC DD LL PL LS CC CF FH CH	dry densit liquid limit plastic lim linear shri undrained	I unconso I unconso content ly it it inkage I console	cohesion friction angle sbilty eablity

Page 1 of 11

about:blank 1/11

8	1	e	C	B/355 S	carbor	Engineering ough Beach Rd, C 144 7988		6017				otechnic 3H02	cal Log	- Bore	hole
UTM Easting Northing Ground Total De	(m) : ; (m) : Elevation :	51 J 259607.2 6942935, Not Surv 45,8 m Bi	64 eyed	Logg	Rig or Supplie ed By owed By	: Precision Drilli : MK : JB : 08/12/2024	ng		3 3	Job Number Client Project Location Loc Commo	: Bellev : TSF 0	rue Gold ISI	road		
Drilling Method	Water	Depth (m)	Soil Grigin	Graphic Log	Classification Code	Material Describition		Moisture	Consistency	Sam La.	olee SGN	Testing	N Value G	maph (9)	Remarks Field Records/Comment
- Po DIAMOND (SOIL)		- - - - - - -	Durierust		sc	Duricrust-SC: Clayer to medium grained, jo brown, very dense, di to baselic, calcrete, fir white cream interbed and 200 to 300 mm s duricrust, fragments c finget, quartz fragm accurring, portion be extremely weathered and properties, fine trace clay, dry, tow to	w planticity clay, red unicrust perent rock to the claim grain, locd in 50 mm thick pacing in red brown cannot be broken by tents occasionally threen 5.4 to 5.6 is duricrust, some has medium sity sand medium plastic, saff	D	VD			23,27/110mm (N=>50) 16,32 (N=>50)			
			Durlerust		DUR	Duricrust DUR: pe duricrust parent re cemer	ock basalt, highly								
	afe the factor	9	Rock		Sapro	Extremely weathers medium plasticity, pa fine to medium graine occurring hard sa transitional 150 mm weathered, med	de green, stiff, with d sand, occasionally prolite/duricrust length, distinctively	м	51			15,21,20 (N=41)			UDS tube buckles at the bottom due hard ground
NE matur	noe bucket al exposure ng xcavation	USC: GW GP GM GC ML MH	Water inflo water level Classification well grade poorly gra- sifty grave dayey gra- inorg sits	weter less a ed gravels ed gravels el low plastic high plastic two plastic two plastic two plastic explastic	SW SP SM SC CL CI CH Pt	Level during drilling partial water loss none encountered well graded sands poorly graded sands silty sands clayey sands inorg clay low plastic inorg clay med plastic inorg clay high plastic poot of high org soils	Consistency VS Very soft S Soft F Firm St Stiff VSt Very stiff H Hard Density VL Very loose L Loose MD Medium dense D Dense VD Very dense	Moist D M W PL LL Soil S B D U(60) U(50) WS	Dry Moist Wet plastic li liquid lin amples bulk disturb U(63)	it	VS V	ating on penetromete ane shear ynamic one enetrometer	MC moi DD dry LL liqu PL plan LS line CC und CF und FH falli CH com	rained uncons rained uncons sture content density id limit stic limit ar shrinkage rained consol	s conssion o friction angle sability

Page 2 of 11

about:blank 2/11

Northing (m) : 694 Ground Elevation : Not	e	C	B/355 S	carbon	Engineering ough Beach Rd, 0 44 7988						technio 3H02	cal Lo	og - Bor	ehole	
Easting Northin	y (m) ng (m) i Elevation :	: 259607.2 : 6942935,	64 ryed	Logg	Rig r Supplie ed By rwed By	: Precision Drilli r : MK : JB : 08/12/2024	ng		1	lob Number Bent Project .ocation .oc Commo	: Bellev : TSF G : Bellev	ue Gold Si	road		
Drilling Mathod	Water	Depth (m)	Soil Grigin	Graphic Log	Classification Gode	Material Concretion		Moisture	Consistency	Sam Ld. 90	elee sgn	Testing		ue Graph (9)	Remarks Field Records/Comment
A						Extremely weathere modum pleaticity, pi fine to medium greine occurring hard sa transitional 150 mm weathered, me	elle green, stiff, with d sand, occasionally prolite/duricrust length, distinctively					9,11,15 (N=26)			
		—11 -	Rock		Sapro			M	St	(=	VS 2x80				Vans Shear 2 x 80 kPa
CIOS) ONC	PQ DKMOND (GOIL)	-12									3	8,16,18 (N=34)			
PQ DIAM		13				ROCK- SAPROLIT grained, pale green medium strength, moist/dry, band of	and yellow, low to highly weathered, iron staining outer				VS 2x70	re			
		14	Rock		Sapro	surface of the core in defects can't be ide breaks durin	ntified as the core	M+D	L6-M6	;	VS 2x114 & VS res	12,9,9 (N=18)			
BH back		>	r complete v Water infle water leve	w	¥ P N	Level during drilling partial water loss none encountered	Consistency VS Very soft S Soft F Firm St Stiff	Moist D M W	ure Dry Moist Wet	mit	VS VS	on penetrometo une shear mamik	ur UF MC	moisture conte	onsol friction angle
EE exist	(1-17-17) (1-17-17) (1-17-17)	GP GM GC ML MH OL	poorly grave sitty grave clayey gra inorg sitts	ed gravels al avel low plastic high plastic ow plastic	5C Cl Cl	well graded sands poorly graded sands silty sands clayey sands inorg clay low plastic inorg clay med plastic inorg clay high plastic poet of high org soils	VSt Very stiff H Hard Density VL Very Joose L Loose MD Medium dense D Dense VD Very dense	ц	liquid lim simples bulk disturbe U(63) p	ed oush tube		ne netrometer	PL LS CC CF FH CH	dry density liquid limit plastic limit linear shrinkagi undrained cons undrained cons falling head per constan head p californian bear	ols cohesion relefiction angle rmeability

Page 3 of 11

about:blank 3/11

03/202	5, 16:13							TS	F GSI -	BH02						
8	ľ	ec		B/355 S	carbor	Engineering ough Beach Rd, C 44 7988						technic H02	al Lo	g - Bo	oreh	ole
UTM Easting Northing Ground Total De	(m) : (m) : Elevation : l	1 J 259607.22 5942935,64 Vot Survey 15,8 m BGL	ed	Logg	Rig r Supplie ed By rwed By	: Precision Drilli r : : MK : JB : 08/12/2024	ing		ca Pr Lo	b Number ient oject cation c Commo	: Bellevi : TSF G: : Bellevi	ue Gold Si	road			
Drilling Mathod	Water	Depth (m)	Soil Origin	Graphic Log	Classification Code	Market and Lines	Tracectar beautiful	Moisture	Consistency	Sam b b	pies Sgn	Testing		e Graph 🐡	io 50	Remarks Field Records/Comme
→ Pa DIAMOND (SOIL)		- 16 - 17	Rock		Sapro	ROCK- SAPROLIT grained, pale green medium strength, moist/dry, band of surface of the core in defects can't be ide breaks durin	and yellow, low to highly weathered, fron staining outer some greas, natural entified as the core	м-ю	LS-MS		450 recovered 130 at bottom UDS, rest caught from 8PT outer cut dropped	8,12,20 (N=32)				UDS tube recovered 450r sample which 130mm at the bottom is undisturbed material, above 130mm caught 15PT outer column failed to recover from drilling
				<u>0.4</u>		Commenced Coris	ng at 17.3m				6					
E natur	oe bucket d exposure ng xcavation	USC Cla GW V		w d gravels ded gravels	P N SW SP	Level during drilling partial water loss none encountered well graded sands poorly graded sands sity sands	Consistency VS Very soft S Soft F Firm St Stiff VSt Very stiff H Hard Density	Moist D M W Ft U Soil S	ure Dry Moist Wet plastic limi liquid limit samples bulk		VS VS	n penetromete ne shear nem:c	UC UF MC DD LL PL	tory Results undrained un moisture cor dry density liquid limit plastic limit linear shrinks	nconsol stant	cohesion friction angle

Page 4 of 11

FH falling head permeability

CII constan head permeability

CBR californian bearing ratio

CF undrained console friction angle

about:blank 4/11

disturbed

U(63) U(63) push tube

U(50) U(50) push tube

WS water

VL Very Joose

D Dense

VD Very dense

MD Medium dense

SC cjayey sands

CL Inorg clay low plastic

c) inorg clay med plastic

CII inorg clay high plastic

Pt peat of high org soils

GC clayey grave)

ML inorg siks low plastic

MH inorg day high plastic

OL org sits low plastic

OH org sills high plastic

8	1'6	ec	8	√355 Sc	rce Engineering arborough Beach Rd, 98) 6444 7988		017		Geote BH		Log - Bor	ehole
UTM Easting (m Northing (Ground El Total Dept	(m) : 6: levation : No	. J 59607.22 942935,64 ot Surveyed 5,8 m BGL	i	Drill Rig Driller S Logged Reviews Date	iupplier : By :MK	illing		Job Number Client Project Location Loc Comment	: P15-11-PF : Bellevue (: TSF GSI : Bellevue (Gold		
Drilling Method	Water	Depth (m)	Soll Origin	Graphic Log	sabon tottoriteesson	Material Description	Weathering	V.18 LS Estimated HS Strength W46	RGD% and TGR%	Defect Graphic	90 Defect Spacing 90 (mm) 900 (mm)	Defect Description
		— 16 — 17		Page 1	Commenced Co	SECTION OF STREET						P. 30°, Planer, Undulating, Rough, Smooth, Voneor Costing, Cooting, White plastic
Pa DIAMOND (ROCK)		— 16 — 19	Rock	>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	greined, pele green y high strength, highly slightly weathered be with some brea 17,4 to 17,5 slight strength occasionally occurri moderately weatherer 30.25 - 30.55 highly basalt, at 31,85m, 25m at 32,0m, 10m 32.4 - 37.0 pele gn 37.0 - 38.0 pele 34.9 - 38.4 quart fragments at high q gravel size, angula medium sand grai 38.4 - 38.85 core to 39.45 - 39.75 slightly vary h 39.95 - 40.15 highly vary h	TIE: very fine to medium to yellow and grey, medium to to moderately weathered, aselt occurring occasionally king into fine gravels, thy weathered very high gift baselt, ing fregmented beselt unit, of the district of the properties of medium to high strength, to moderately weathered high strength, min thick quartz band een to pale yellow colour yellow to cream colour coccurring frequently in unantity, medium to coarse ir, some crush into fine to a under finger pressure, se due to rock jamming in tube.	HWEMW					clay pale green, 45° PL, Rough, Smooth, Veneer, Coating, coating M-H plastic clay pale green, P. 45° PL, SC, Veneer, Coating, C,
Method EX excevat BH backhor NE natural EE existing RP ripper	e bucket exposure	USC Classifi GW well GP poor GM silty GC claye ML inorg MH inorg	r inflow r level cation graded gravel gravel ey gravel y sits low pl dits low pl	avels gravels plastic plastic estic	bevel during drilling p partial water loss n none encountered SW well graded sands SP poorly graded sands SM silty sands CC inorg clay low plastic CH inorg clay high plastic Pt peat of high org soils	MD Medium dense	Soil Sample B bul D dis- U(63) U(6	t limit filmit s k k lurbed (3) push tube	VS vans dynan	ahear N sx D rometer U C C C	moisture center of dry density L liquid limit L plastic limit S linear shrinkage C undrained cons	nsol friction angle of cohesion of friction angle meability

Page 5 of 11

about:blank 5/11

8	ľ	ec	ı	3/355	Scarbo	Engineering (rough Beach Rd, O		017		Ge	eotechni BH02	cal L	₋og - Bor	ehole
UTM Easting (n Northing (Ground El Total Copt	(m) : 6: levation : No	i J 59607.22 942935,64 ot Surveyed 5,8 m BGL	į.	Dril Log	l Rig ler Suppli ged By riowed By	: Precision Drillin : : MK : JB : 08/12/2024	9		Job Number Client Project Location Loc Commer	: Bel : TSF : Bel	htt-PR-30 levue Gold GSI levue WA top of ex acces	s road		
Drilling Method	Water	Depth (m)	Soil Origin	Graphic Log	Classification Gode		Material Lescription	Vesthering	LS Estimated NS Estimated HS Strength vide	13	ROD% and TCR%	Defect Graphic	30 Defect Spacing 300 (mm) 3000	Defect Description
PQ DIAMOND (ROCK)		21 22	Rock	というこうこう かんかい かんかい	Sapro	grained, pale groun yell high strongth, highly to slightly weathered base with some breaking accessionally occurring moderately weathered to baselt, higher at 31.05 m, 25 mm, 25 mm, 23.4 - 37.0 pale gree 37.0 = 38.0 pale yell 34.9 - 38.4 quartz of fragments at high quart gravel size, angular, a medium sand grains is 38.4 - 38.85 core loss to 39.95 - 49.15 slightly were yell 39.95 - 49.15 highly to	wery fine to medium to maderately weathered, it occurring occasionally ig into fine gravels, weathered very high in basels. If the property high in basels was the property high in basels was the property high in basels was the property high in basels was the property high in thick quartz band thick quartz band thick quartz band thick quartz band thick quartz band thick quartz band thick quartz band thick quartz band thick quartz band thick quartz band thick quartz band thick quartz band thick quartz band thick quartz band to pay endium to coarse come crush into fine to under finger pressure, due to rock jamming in be easthered basels, high to in atrength in a strength in a strength in a trength.	:нw-мw-)	ш				J. 75°, PL, SO, Veneer, Coating, coating M-H plastic clay pale green,
Wethod	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	23		というというというというという			Consistency	Moisture		In Situ	Teating	- Justine	orstory Results	J. IR. Rough, Smooth, Veneer, Coating, Coating M-H plastic clay pals green, J. R. Rough, Smooth, Veneer, Coating, Coating M-H plastic clay pale green, J. 70° Planar, Undulating, Rough, Smooth, Veneer, Coating, Coating M-H plastic clay pale green, J. 70° Planar, Undulating, Veneer, Coating, Coating M-H plastic Clay pale green, J. 70° Planar, Undulating, Veneer, Coating, Coating M-H plastic Res. Res. Coating, Coating M-H plastic Res. Coating, Coating M-H plastic
EX excever BH backho NE natural EE existing	e bucket exposure	USC Classification with the control of the control	r inflow r level	ravels I gravels plastic In plastic lestic	SM SC CL	bevel during drilling partial water loss none encountered well graded sands poorly graded sands silty sands clayey sands inorg clay low plastic inorg clay low plastic inorg clay high plastic poot of high org soils	VS Very soft s Soft F Firm St Stiff VSt Very stiff H Hard Density VL Very Joose L Loose MD Medium dense D Dense VD Very dense	LL liquid Soil Sample B but D dis U(68) U(8	ic limit limit k kumbed 3) push tube	PP VS DCP	pen penetrome vane shear dynamic cone penetrometer	UC UF MC DD LL PL LS CC CF FH CH CBF	undrained uncor moisture centent dry density liquid limit plastic limit linear shrinkage undrained conso undrained conso falling head port constan head pe	asol friction angle seconssion se friction angle meability rmeability

Page 6 of 11

about:blank 6/11

8	1	ec	, 1	B/355	Scarbo	Engineering rough Beach Rd, O 444 7988	Consultants sborne Park, WA, 6	017		Geote		Log - Bor	ehole
UTM Easting (n Northing (Ground El Total Dept	m) : 2 (m) ; 6 levation : N	1 J 259607.22 3942935,64 lot Surveyed 5,8 m BGL	N.	Log	er Suppli ged By iowed By	Precision Drilling : MK : JB : 08/12/2024	9		Job Number Officent Project Location Loc Common	: Bellevue : TSF GSI : Bellevue	Gold		
Drilling Method	Water	Depth (m)	Soil Origin	Graphic Log	Classification Code		Material Deserration	Westhering	Ls Entimated WS Entimated HS Strength	RQD% and TGR%	Defect Graphic	30 Defect Spacing 300 (mm)	Defect Description
PQ DJANOND (ROCK)			Rock	マンドにはないというというにはないというというというというというにはないというと	Sapro	grained, pale green yell high strength, highly to slightly weathered base with some breakir 17.4 to 17.5 slightly strengt occasionally occurring moderately weathered 30.25 - 30.55 highly to baset, higher at 31.85m, 25mm at 32.0m, 10mm 32.4 - 37.0 pale gree 37.0 = 38.0 pale ye 34.5 - 38.4 quartz of fragments at high quart gravel size, angular, medium sand grains 38.4 - 38.85 core loss 39.45 - 39.75 slightly worth highly to 39.95 - 40.15 highly to 39.95 - 40.15 highly to	every fine to medium toward grey, medium to moderately weathered, it occurring occasionally ig into fine gravels, weathered very high in baselt, interpretate baselt unit, medium to high strength, moderately weathered in strength, thick quartz band in to pale yellow colour locurring frequently in nitity, medium to coarsecome crush into fine to under finger pressure, due to rock jamming in be astength moderately weathered to high strength.	HWEMW					J. UN, Rough, Smooth, Veneer, Coaling, J. 20°, PL, Rough, Smooth, STN, dark grey/black stain, J. 20°, PL, Rough, Smooth, STN, dark grey/black stain, J. 50°, UN, RO, STN, dark grey/black stain, J. 60°, PL, Smooth, Rough, VN, MH plastic day, pale green and black, J. 40° Uncidating, Irregular 80, CT, MH plast clay, pale green, J. 45°, PL, SO, Veneer, Coating, iron stained and M- plestic day, pale green,
Method EX excever BH backho NE natural EE existing RP ripper	e bucket exposure	USC Class GW wei GP poor GM eith GC clas ML ino MH ino	DE 20	ravels I gravels plastic In plastic lestic	SM SC CL	Level during drilling partial water loss none encountered well graded sands poorly graded sands silty sands clayer sands inorg clay low plastic inorg clay med plastic inorg clay high plastic peat of high org soils	Consistency VS Very soft S Soft F Firm St Stiff VSt Very stiff H Hard Density VL Very Joose L Loose MD Medium dense D Dense VD Very dense	Soil Sample B bit D dis U(60) U(50) U(50)	ic limit d limit s	VS vans dynar pcp cone	shear MC trometer LL pL cc FH	undrained unco- moisture conten- dry density liquid limit plastic limit linear shrinkage undrained cons- undrained cons- folling head per-	green, nsol cohesion nsol friction angle it ole cohesion ole friction angle meability

Page 7 of 11

about:blank 7/11

8	116	ec	ı	B/355 S	Scarbo	Engineering (rough Beach Rd, O		6017		Geote		Log - Bore	ehole
UTM Easting (n Northing (Ground El Total Dept	m) :6 evation:N	1 J 59607.22 942935,64 lot Surveyed 5,8 m BGL	ũ.	Logg	er Suppli jed By cwed By	Precision Drilling : MK : JB : 08/12/2024	9		Job Number Client Project Location Loc Commen	: Bellevue G : TSF GSI : Bellevue V	iold	à.	
Drilling Method	Water	Depth (m)	Soil Origin	Graphic Log	Classification Code		marena Description	Weathering	V.S LS Estimated MS Estimated HS Strength VHS Strength	RQD% and TCR%	Defect Graphic	90 100 Defect Spacing 300 (mm) 3000	Defect Description
PQ DIANOND (HOCK)		31 32 33	Rock	マントに いくさい かいこく さいかい さいさい かいさい さいき かいこう かいさい さいき かいさい	Sapro	grained, paje green yell high strength, highly to slightly weathered base with some breaking to coasionally occurring moderately weathered to baselt, higher the strength occasionally occurring moderately weathered to baselt, higher the strength of the st	very fine to medium ow and grey, modum to moderately weathered, it occurring occasionally g into fine gravels, weathered very high hissalt, fregmented basalt unit, medium to high strength, moderately weathered historight, weathered historight, weathered historight would be seen to be a strength, the strength of the strength of the strength of the safety of the safety weathered basalt, high to a strength moderately weathered to high strength.	HW-MW:					—3, 20°, PL, Rough,Smooth, Veneer, Coating,
Method EX excava BH backho NE natural EE existing RP ripper	e bucket exposure	USC Classifi GW well GP poor GM silty GC clay ML inorg MH inorg OL org	er inflow er level	ravels i gravels plastic h plastic lastic	SM SC CL	Level during drilling partial water loss none encountered well graded sands poorly graded sands sity sands clayey sands inorg clay low plastic inorg clay high plastic poet of high org soils	Consistency VS Very soft S Soft F Firm St Stiff VSt Very stiff H Hard Density VL Very Joose L Loose MD Medium dense D Dense VD Very dense	Soil Sample B but D dis U(63) U(6	ic limit s k turbed 33) push tube 60) push tube	PP pen pe VS vane 8 dynam DCP sone	hear	Laboratory Results UC undrained uncor UF undrained uncor MC moisture content DD dry density LL liquid limit PL plastic limit Ilnear shrinkage CC undrained conso CF undrained conso CFI daing head per CH constan head per CBR californian bearing	isol friction angle s cohesion for friction angle meability rmeability

Page 8 of 11

8/11 about:blank

8	16	ec		B/355	Scarbo	Engineering rough Beach Rd, O 444 7988		017		Geote BH		Log - Bore	ehole
UTM Easting (m Northing (r Ground Ele Total Depti	n) :6 evation:N	i J 59607.22 942935,64 ot Surveyed 5,8 m BGL		Drii	ll Rig ller Suppli gged By viewed By	: MK	ng		Job Number Client Project Location Loc Commen	: Bellevue (: TSF GSI : Bellevue V	Sold		
Drilling Method	Water	Depth (m)	Soil Origin	Graphic Log	Classification Code		Material Description	Wasthering	V.S LS Extimated MS Extimated HS Strength VHS	RQD% and TCR%	Defect Graphic	200 Defect Sparcing 300 (mm)	Defect Description
PG DEAMOND (FOCK)			Rock	というというというできているともいうともできられているというできていると	Sapro	grained, pele green yell high strength, highly to slightly weathered base with some breakir 17.4 to 17.5 slightly strengt occasionally occurring moderately weathered 30.25 - 30.55 highly to baset, highly to baset, highly to baset, highly to baset, and the strength of th	Every fine to medium to moderately weathered, all occurring occasionally in into time gravels. If expended besalt unit, medium to high strength, incoderately weathered this trength, incoderately weathered this trength, incoderately weathered this trength, incoderately weathered this trength, income country frequently in mitty, medium to coarse some crush into fine to under finger pressure, due to rock jamming in the reathered basalt, high to his trength in moderately weathered to high strength.	HW-MW		RQD = 21,33% TCR = 100%			J, 70°, PL, Rough, Smooth, Veneer, Veneer, Coati, Jank calcite and clay, 20°, PL, Rough, Smooth, Veneer, Goeting, C, 1mm calcite,
Method EX excavat BH backhoo NE natural e EE existing RP ripper	bucket exposure	USC Classifi GW well GP poor GM sifty GC clay ML inorg	r inflew r level ication graded g fy graded gravel ey gravel g site low g clay hig sits low p	pavels i gravel plastic in plastic	SM SC CL CI CII	partial water loss none encountered well graded sands poorly graded sands sitty sands clayey sands inorg clay low plastic inorg clay low plastic inorg clay med plastic	Consistency VS Very soft S Soft F Firm St Stiff VSt Very stiff H Hard Density VL Very loose L Loose MD Medium dense D Dense VD Very dense	LL liqui Soil Sample B but D dis U(63) U(it it limit i limit s k turbed ii) push tube iii) push tube	VS vane : dynam pone	enatrometer L shear x C cometer L C C C	aboratory Results OC undrained uncon For undrained uncon MC moisture content OD dry density Liquid limit District limit Linear shrinkage undrained consol falling head perm constan head per calfornian bearing	sol friction angle is conssion is friction angle reability rmeability

Page 9 of 11

about:blank 9/11

UTM Easting (n Northing (:5 m) :2 m) :6 levation : N	1 J 259807.22 3942935,64 lot Surveyed 5,8 m BGL		Dri Dri Lo	ll Rig Her Suppli gged By viewed By	: MK	ng		Job Number Client Project Location Loc Commen	P19-11-PR- : Bellevue G : TSF GSI : Bellevue W t : On top of e	30 olid		
Drilling Method	Water	Depth (m)	Soil Origin	Graphic Log	Classification Code		Material Description	Weathering	LS LS MS Extimated MS Strength NHS Strength	RQD% and TCR96	Defect Graphic	to Defect Spacing 200 (mm)	Defect Description
PQ DIMANIONIO (ROCK)		-41 -42 -43	Rock		BAS	grained, pale green yell high strength, highly to alightly weathered beas with some breeluin 17.4 to 17.5 signify occasionally occurring moderately weathered 130.25 - 30.65 highly to basell, high at 31.85m, 25mm at 32.0m, 10mm 32.4 - 37.0 pale gree 37.0 - 38.0 pale yell 34.9 - 38.4 quart o fragments at high quality at 130.45 core loss at 130.45 core loss 130.45 - 39.75 silightly weather 130.45 core loss 130.45 core los 13	very fine to medium ow and grey, medium to moderately weathered, it occurring occasionally grinto fine gravels, weathered very high n basels. Iregmented baselt unit, medium to high strength, moderately weathered in strength and the pele yellow colour low to cream colour occurring frequently medium to coarsecome crush into fine to under finger pressure, due to rock jamming in be reachered baselt, high to a strength moderately weathered to high strength, medium do from the strength medium of the strength medium of the strength and strength and strength and strength and strength and strength and strength and strength and strength and strength and strength and strength at the strength and strength and strength and strength at the strength and strength and strength at the strength and strength at the strength and strength and strength at the strength and strength at the	SW-F		RQD = 21,33% TCR = 100% RQD = 82% TCR = 100% RQD = 89,33% TCR = 100%			Planar Undulating Rough Very Roug Verser Coating, calcite. J. UN, RO, Vencer Stained, calcite, LJ, 30°, UN, RO, Vencer Stained, U, 55°, PL, Rough, Smooth, C pale green day,
Wethod X exceve 3H backho NE natural E existing Pripper	e bucket exposure	water Wa	er level	ravels I gravel plastic I plastic lastic	SM SC CL	partial water loss none encountered well graded sands poorly graded sands	Consistency VS Very soft S Soft F Firm St Stiff VSt Very stiff H Hard Density VL Very loose L Loose MD Medium dense D Dense VD Very dense	Soil Sample B bul D dist U(63) U(6	ic limit limit k kumbed 3) push tube	In Situ Testing PP pen per VS vane al dynamx pcp penetro	netrometer UC phear meter LL pc cc cr fill fil	undrained unco moisture conter dry density liquid limit plastic limit linear strinkage undrained cons undrained cons falling head per	nsol friction angle to be conssion of friction angle meability ermeability

Page 10 of 11

about:blank 10/11

Resource Engineering Consultants

B/355 Scarborough Beach Rd, Osborne Park, WA, 6017

Phone: (08) 6444 7988

Geotechnical Log - Borehole BH02

Drill Rig Precision Drilling P19-11-PR-30 Job Number Easting (m) - 259807 22 **Driller Supplier** Client : Bellevue Gold Northing (m) : 6942935.64 Logged By : MK Project TSF GSI Ground Elevation : Not Surveyed Reviewed By : JB : Bellevue WA Total Depth : 45,8 m BGL Date : 08/12/2024 Loc Comment : On top of ex access road Defect Spacing (mm) TCRS Graphic Î Soil Origin Pug Graphic ROD% 용 3 3 5 5 5 5 ٧ . ROCK-BASALT: very fine grained, grey to dark grey, very high to extremely high strength, v slightly to fresh weathered, remarkable quartz veins observed at 41,65m and 44,6m at 50 to 70 RQD = 100% PQ w degrees. Rock BAS SW-F TCR = (ROCK) v 100% v * V BH02 Terminate at 45.8m Method Water Moisture in Situ Testing Laboratory Results VS Dry UC undrained unconsol cohesion EX excevator complete water less ▼ Level during drilling Very soft pen penetrometer partial water loss Soft Moist ➤ Water inflow undrained unconsol friction angle BH backhoe bucket VS vane shear none encountered Firm Wet water level moisture content NE natural exposure dynamic Stiff plastic limit 5t dry density USC Classification EE existing xcavation VSt Very stiff u liquid **I**mit penetrometer liquid limit GW well graded gravels SW well graded sands H Hard plastic limit poorly graded sands Soil Samples poorly graded gravels linear shrinkage Density GM sitty gravel SM silty sands B bulk CC undrained console cohesion GC dayey grave SC clayey sands VL Very loose undrained console friction angle CF inorg sits low plastic inorg clay low plastic U(63) U(63) push tube falling head permeability MH inorg day high plastic c) inorg clay med plastic MO Medium dense U(50) U(50) push tube org sits low plastic CH inorg clay high plastic Dense CH constan head permeability W5 water OH org sills high plastic Pt post of high org soils VD Very dense californian bearing ratio

Page 11 of 11

about:blank 11/11

07/ TSF GSI - BH03

/03/202 5, 16	:17
81	ec
UTM	£
Easting (m)	: 0.00
Northing (m)	: 0.00
Ground Elevation	on : Not Surveyed
Total Cont.	100 m 001

Resource Engineering Consultants

B/355 Scarborough Beach Rd, Osborne Park, WA, 6017

Phone: (08) 6444 7988

Geotechnical Log - Borehole **BH03**

Drill Rig : Precision Drilling Job Number : P19-11-PR-30 Driller Supplier : Bellevue Gold Logged By : Muhammadh Khalid Project : TSF GSI Reviewed By Location : Bellevue WA : 14/12/2024 Loe Comment : : 39 m BGL Code Melhod Ê Moisture Classification N Volue Graph @ Water Field Graphic Drilling N Records/Comments SPT JDS SPT Boll Material 20 30 40 50 Fill Gravelly SAND SW red brown, dense, fine to coarse grained, fine to medium sized gravel, with low plasticity sit, trace medium plasticity day, moist to dry. SW M-D Fill GRAVEL GP: grey, dense, coarse sized, rock fill, likely boulder. PO DIAMOND (SOLL) -1 GP Laboratory Results EX excavator complete water less Very soft Dry pen penetrometer undrained unconsol cohesion Y Level during drilling ➤ Water inflow partial water loss Soft Maist undrained unconsol friction angle BH backhoe bucket Firm none encountered water level moisture content NE natural exposure dynamic SHIF PL plastic limit DD dry density DCP EE existing xcavation VSt Very stiff u liquid limit penetrometer liquid limit ш well graded gravels well graded sands Hard plastic limit RP ripper poorly graded gravels GP SF poorly graded sands Soil Samples linear shrinkage sity gravel SM silty sands undrained console cohesion GC dayey gravel clayey sands VI. Very loose CF undrained console friction angle α ML inorg sits low plastic loorg clay low plastic Loose U(63) U(63) push tube inorg clay high plastic inorg clay med plastic FH falling head permeability U(50) U(50) push tube CH inorg clay high plastic constan head permeability OL org sits low plestic D Dense WS OH org sills high plastic Pt post of high org soils CBR californian bearing ratio VD Very dense

Page 1 of 12

about:blank 1/12

8	M :	e			carboro		Consultants sborne Park, WA,	6017				techni 3H03	ical Log - Bore	hole
Northing	(m) : Bevation : f	0,00	ed	Logge	Supplier	Precision Drilling Muhammadh King	70		ca Pr Lo	b Number ent oject cation c Commo	: Bellev : TSF G : Bellev	rue Gold Sil rue WA		
Drilling Mathod	Water	Depth (m)	Soll Origin	Graphic Log	Classification Gode	Material Description		Moisture	Consistency	Sam La 9	ples egn	Testing	N Value Graph 0 10 20 30 40 5	Remarks Field Records/Comme
→ PQ DKMOND (SOIL)		-3	Durierust		ML	Duricrust- Clayey Si plasticity, red brown, o with fine to medium in fine to coarse grain during ha	ary, stiff to very stiff, sized gravel, trace et sand, breaking inding.	N	SI-VSI			3,3,2 (N=6)		
E natura	oe bucket d exposure ng xcavation	USC CL GW V GP G GM 1 GC G ML 1	sifty gravel dayey grav norg sifts i	i gravels led gravels vel ow plastic righ plastic v plastic	P F F N F SW SP F C C C C C C C C C C C C C C C C C C	evel during drilling partial water loss none encountered well graded sands worly graded sands lity sands gayey sands norg clay low plastic norg clay med plastic norg clay high plastic sect of high org soils	Consistency VS Very soft S Soft F Firm St Stiff VSt Very stiff H Hard Density VL Very loose L Loose MD Medium dense D Dense VD Very dense	B D U(63)	buse Dry Moist Wet plastic limit liquid limit busk disturbes U(63) pu Water	l sh tube	VS VS	iting on penetromei ane shear mamic one enetrometer	Laboratory Results UC undrained uncons UF undrained uncons MC moisture content DD dry density LL liquid limit PL plastic limit LS linear shrinkage CC undrained consol FM falling head perm CH constan head per CRR californian bearing	ol friction angle s cohesion o friction angle sability meability

Page 2 of 12

about:blank 2/12

8					arbore	Engineering ough Beach Rd, O 44 7988						otechni 3H03	cal Log - Bor	ehole
	(m) : Elevation : f	0,00	red	Drill Ri Driller Logger Review Date	Supplie d By	: Precision Drillion : : Muhammadh K : : 14/12/2024	171		Pi Li	ob Number lient roject ocation oc Common	: Bellev : TSF 0	rue Gold ISI		
Drilling Mathod	Water	Depth (m)	Soll Origin	Graphic Log	Classification Code	Market and Control of		Moisture	Consistency	Samp	NDS SON	Teeting	N Value Graph ©	Remarks Field Records/Comme
PQ DIKMOND (SOIL)			APROLITI		снен	Saprofite-CLAY medi- pate green and red br stiff to very stiff, break	rown mot¶ed, moist,	M	SI-VSI			5,7,9 (N=16)		
E natura	oe bucket al exposure ng xeavation	USC CLA GW V GP F GM S GC C ML II	complete was Water inflow water level assification well graded poodly grade interesting clayer gravel dayey graw interesting clay his org all a low org all a low org all a low org all a low	gravels ed gravels el w plastic igh plastic plastic	SW SP SM SC CL Cl	Lexel during drilling partial water loss none encountered well graded sands poorly graded sands silty sands cjayey sands inorg clay low plastic inorg clay ned plastic inorg clay high plastic poet of high org soils	Consistency VS Very soft S Soft F Firm St Stiff VSt Very stiff H Hard Density VL Very loose L Loose MD Medium dense D Dense VD Very dense	B D U(63)	Dry Moist Wet plastic limit liquid limit mples bulk disturbe U(53) pt Water	d ush tube	VS V	an penatromet ane shear ynamic one enetrometer		nsol friction angle t Secondaries Secondar

Page 3 of 12

about:blank 3/12

8	1	90	3		arboro	Engineering ough Beach Rd, O 44 7988						otechni 3H03	cal Log - Bore	ehole
UTM Easting (Northing Ground I Total Dep	(m) : 0 Elevation : N	L00 L00 ot Survey 9 m BGL	red	Drill R Driller Logge Review Date	Supplie d By	: Precision Drillin : : Muhammadh K : : 14/12/2024	373		, ,	lob Number Bent Project .ocation .oc Commo	: Bellev : TSF 0	rue Gold ISI		
Drilling Mathod	Water	Depth (m)	Soil Origin	Graphic Log	Classification Code	Material Ceserbiton		Moisture	Consistency	Sam a. so	oles San	Testing	N Value Graph •	Remarks Field Records/Comme
•	-					Saprofite-CLAY, medi pole green and red bi stiff to very stiff, break	rown motifed, moist,					4,6,9 (N=15)		
Po DIAMOND (SOIL)		-7. 3	APROLITI		снен			. BM	si-vsi					
*											3	2.3.5 (N=8)		
E natura	oe bucket d exposure ng xcavation	USC CL GW 1 GP 1 GM 1 GC 0 ML 1	silty gravel dayey gra inorg silts i	d gravels ded gravels 	P N SW SP SM SC CL Cl	texel during drilling partial water loss none encountered well graded sands poorly graded sands silty sands clayey sands inorg clay low plastic inorg clay med plastic inorg clay high plastic poor of high org soils	Consistency VS Very soft S Soft F Firm St Stiff VSt Very stiff H Hard Density VL Very loose L Loose MD Medium dense D Dense VD Very dense	B D U(63)	bure Dry Moist Wet plastic lin liquid lim emples bulk disturbe (U(53) p water	ed ush tube	VS V	ating on penetromei ane shear ynamk one enetrometer	Laboratory Results UC undrained uncon UF undrained uncon MC moisture content DD dry density LL liquid limit PL plastic limit LS linear shrinkage CC undrained consol CF undrained consol FH falling head perm CH constan head per CBR californian bearing	sol friction angle is conssion to friction angle reability rmeability

Page 4 of 12

about:blank 4/12

8	ľ	e			carbon	Engineering ough Beach Rd, O 44 7988		6017				otechni 3H03	cal Log - Bo	rehole
JTM Lasting (Northing Ground I Total Dep	(m) : Elevation :	0.00	yed	Logge	Supplie	: Precision Drilling : : : Muhammadh K : : 14/12/2024	97.6		CI Pr Lo	b Number lient roject position oc Commer	: Bellev : TSF G	rue Gold ISI		
Drilling Mathod	Water	Depth (m)	Soll Origin	Graphic Log	Classification Code	Market and a second a second and	Moisture	Consistency	Samp in in	egn Sgn	Teeting	N Value Graph •	Remarks Field Records/Comm	
PO DIAMOND (SOIL)		Saproliti Saproliti CHCH Saproliti CHCH		Sagrofite- CLAY, medi pale green and red br stiff to very stiff, break	own motsed, motst, ing during handling.	W	si-vsi			6,8,6 (N=14)				
E natura	oe bucket al exposure ng xcavation	USC CI GW GP GM GC ML	complete we Water inflow water level lassification well graded poorly graded sithy gravel clayey gravel inorg siks ke inorg day h	gravels ed gravels el w plastic	P N SW SP SM SC CL	texel during drilling partial water loss none encountered well graded sands poorly preded sands silty sands clayey sands inorg clay low plastic inorg clay low plastic inorg clay med plastic	Consistency VS Very soft S Soft F Firm St Stiff VSt Very stiff H Hard Density VL Very loose L Loose MD Medium dense	Moist D M W PL LL Soil S	Dry Moist Wet plastic limit iquid limit amples bulk disturber	d	VS VI	an penatromet ane shear ynamic ane enetrometer	MC moisture cont DD dry density LL liquid limit PL plastic limit LS linear shrinka CC undrained con	ge sols conssion sols friction angle

Page 5 of 12

about:blank 5/12

8	ľ	ec	,		rborough	Beach Rd, O	Consultants sborne Park, WA,	6017			otechn 3H03	ical L	.og - Boreh	ole
UTM Easting (n Northing (Ground El Total Dept	(m) : 0, Jevation : No	.00	d .	Drill Rig Driller Sc Logged I Reviewe Date	applier By d By	: Precision Drillin : : Muhammadh K : : 14/12/2024	76		Job Numb Client Project Location Loc Comm	: Bellev : TSF 0 : Bellev				
Drilling Method	Water	Depth (m)	Soil Origin	Graphic Log	Classification Code		Material Description		Weatherling Vs.8	HS Estimated HS Shrength A-8 Shrength EHS	Teeting	RQD% and TCR%	20 00 0 (mm) (mm) 2000 (mm)	Defect Description
	-													
		-7												
	-													
		a												
PQ AMOND			Rock	575	Sapro	ROCK-SAPRO	ed Coring at 9.7m OLITE: very fine to fine greater to year		HW					
(ROCK) Method X excava H beckho E natural		USC Class GW was GP po GM silt GC class ML income	mplete wate ater inflow ater level	ravels gravels plastic	Extend p partial p partial p partial p partial p porth, swell g SP pooth, sitty s SC clayer ct. inorg	during drilling I water loss encountered graded sands y graded sends	consistency VS Very soft S Soft F Firm St Stiff VSt Very stiff H Hard Dentity VL Very loose L Loose MD Medium dense	Moista D M W Pt. LL Soil Sa B	re Dry Moist Wet plastic limit liquid limit	VS V	sting on ponetrome and shear ynamic one enetrometer	Aug 70786	undrained unconsol	friction angle

Page 6 of 12

about:blank 6/12

8	16	ec	ı		rboroug	h Beach Rd, O	Consultants	6017	_		otechni 3H03	cal L	₋og - Borel	hole
UTM Easting (m Northing (Ground El Total Dept	m) : 0, evation : No		Ę.	Drill Rig Driller Se Logged I Reviewe Date	Эу	Precision Drilling: Muhammadh K	97.9		Job Number Client Project Location Loc Comm	: Belle : TSF (1-PR-30 vue Gold 3SI vue WA			
Drilling Method	Water	Depth (m)	Soil Origin	Graphic Log	Classification Code		Material Description		*	NS Cestimateod Hs Strength VHS EHS	Teating	RQD% and TCR%	too Defect Spacing 300 (mm)	Defect Description
		-11.				paje green and highly weather similar to from occurring along quartz dens	DLITE: very fine to fine gryollow brown, very jow steel, 10mm red brown be staining throughout, joint opartz very (2mm) turnin se zone 22.16-22.23m a reaking into quartz fragm fine grave).	trength, nding noted g black, nd	> 3	2 5 5 W	8,12,8 (N=20) 7,8,10 (N=16)			
PG MANOND PROCKS		-16	Rock		Sapre				HW		8,11,17 (N=28)			
Method IX excevat IM beckhoo IX natural IX existing IX ripper	e bucket exposure	Water Water USC Classification GW well GP poor GM sifty GC clay ML inon MH inon	r level fication graded gravel gravel gravel g site low g day high	plastic lestic	P parti N none SW well SP poor SM sity SC clayer CL inorg CH inorg	during drilling all water loss encountered graded sands by graded sands sands sands get law loss parties of the plastic of high ong soils	Consistency VS Very soft S Soft F Firm St Stiff VSt Very stiff H Hard Density VL Very Bose L Loose MD Medium dense D Dense VD Very dense	M A W V PL p LL ii Soil Sam B D U(60)	Ory Noist Vet Aastic limit quid limit	VS V	sting ion ponetromet and shear ynamic one enetrometer	sud 7/1/98	undrained unconso moisture content dry density liquid limit plastic limit linear shrinkage undrained consols undrained consols falling head perme- constan head perme-	ohesion cohesion friction angle ability meablity

Page 7 of 12

about:blank 7/12

8	16	ec	,		rborou	gh Beach Rd, O	Consultants Isborne Park, WA,	6017			otechn BH03	ical l	∟og - Bo	rehole
UTM Easting (n Northing (Ground El Total Dept	m) : 0 levation : N	.00 ,00 ot Surveyed 9 m BGL	Е	Drill Rig Driller Se Logged I Reviewe Date	Ву	Precision Drills : : Muhammadh K : : 14/12/2024	17.		Job Numbe Client Project Location Loc Comm	: Belle : TSF (1-PR-30 vue Gold 3SI vue WA			
Drilling Method	Water	Depth (m)	Soil Origin	Graphic Log	Clessification Code		Material Description		\$	WS Estimated Hs Strength WHS EHB	Teeting	RGD% and TCR%	100 Defect Spacing 300 (mm)	Defect Description
PQ DMMOND (ROCK)			Rock		Sapro	paje green and highly weathe similar to iron occurring along quartz den 22.95-23.67m b	DLITE: very fine to fine gryollow brown, very fow sined, 10mm red brown be staining throughout, joint quarts vein (2mm) turning service 22.64-22.23m a reaking into quarts fragm fine grave).	trength, nding noted g black, nd	HW		9,16,20 (N=36) 9,16,19 (N=35)			J. 80*, PL, SO, CT, pale green day,
Method EX axcava: BH backho NE natural EE existing RP ripper	e bucket exposure	➤ Wat ▼ wat USC Class GW wel	er level	ravels	P pa N no	rel during drilling rial water loss ne encountered il graded sands only graded sands	Consistency VS Very soft S Soft F Firm St Stiff VSt Very stiff H Hard	M 1	Dry Moist Wet plastic limit iquid limit	VS V	6,13,15 (N=28) sting on penatrome rans shear lynam x one enetrometer	Hud 7078	undrained und moisture cont	J. 65* Planer Undulating, Smooth, Rough, CT, pale green clay, consol cohesion consol friction angle
271.0		GM sifty GC clar ML inc MH inc OL org	y gravel yey gravel rg sits low rg clay hig sits low p	plastic h plastic lastic	SM silt SC cja cu inc ci inc cii inc	y sands yey sands ing clay low plastic ing clay med plastic ing clay high plastic at of high org soils	Density VL Very Jose L Loose MD Medium dense D Dense VD Very dense	B D U(63)	bulk disturbed U(53) push tube U(50) push tube water			LS CC CF FH CH CM	undrained cor falling head p	esola cohesion esola friction angle ermeability permeability

Page 8 of 12

about:blank 8/12

8	1'6	90	,		rborougi	h Beach Rd, C	Consultants Osborne Park, WA,	6017		Ge	otechn BH03	ical L	.og - Bor	ehole
UTM Easting (Northing Ground E Total Dep	(m) : 0 Sevation : N	L 00	d	Drill Rig Driller Su Logged E Reviewed Date	Эу	: Precision Drilli : : Muhammedh P : : 14/12/2024	1974 -		Job Numb Client Project Location Loc Comm	: Bell : TSF : Bell	-11-PR-30 levue Gold GSII levue WA			
Drilling Method	Water	Depth (m)	Soil Origin	Graphic Log	Classification Code		Material Description		Weathering 1.8	WS Estimated Hs Strength W-6	Testing	RQD% and TCR%	300 Defect Spacing 300 (mm) 1000	Defect Description
PQ MANIOND (ROCK)		—22 —22	Rock		Зарго	paje green and highly weather similar to tron occurring along quartz der	DLITE: very fine to fine gryollow brown, very few streed, 10mm red brown be staining throughout, joint quartz wein (2mm) turnin sez zone 22.16-22.23m areaking into quartz fragm fine gravel.	trength, nding noted g black, nd	HW		9,17,23 (N=40)			— J. 60°, PL. Smooth, Rough, C pale green day, — J. 40°, PL, SO, C' pale green day to wax.
	5	— 24 —	Rook		QZ	cream and y strength, distir some crumbles	IZ fine to coarse grained allow mottled, low to med citly weathered, quartz in under finger pressure inte adium size gravels;	dium dense,	DW		19,23,24 (N=47)			
		Water CO CO CO CO CO CO CO CO CO C	SAPROLITE Implete wete ater inflow ater level sification all graded growth gravel ayey gravel grave	ravels I gravels plastic h plastic lastic	P partis N none SW well s SP poorl SM silty s SC claye CL inorg CH inorg	Saprolite- G during drilling all water loss encountered graded sands by graded sands sands by sands clay low plastic clay med plastic clay high plastic of high org soils	ravelly CLAY, medium to Consistency VS Very soft S Soft F Firm St Shiff VSt Very stiff H Hard Density VL Very Bose L Loose MD Medium dense D Dense Vory dense	Moistu D M I W Y Pt I L Soil Sea	re Ory Moist Met Slastic limit iquid limit	in Situi PP VS DCP	Testing pen penetrome varie shear dynamic cone penetrometer	Aug 7/198	undrained unco moisture conter dry density liquid limit plastic limit linear shrinkage undrained cons undrained cons falling head per constan head p	nsol friction angle t ops cohesion obs friction angle meability

Page 9 of 12

about:blank 9/12

8	16	90	, 1		borough	Beach Rd, O	Consultants sborne Park, WA,	6017			otechr BH03	nical L	og - Bore	ehole
UTM Easting Northing Ground Total De	(m) : 0, Elevation : N	,00		Drill Rig Driller Su Logged B Reviewed Date	pplier ly i By	: Precision Drilli : : Muhammadh K : : 14/12/2024	978 		Job Numi Client Project Location Loc Com	: Bell : TSF : Bell	-11-PR-30 evue Gold GSI evue WA			
Drilling Method	Water	Depth (m)	Soil Origin	Graphic Log	Okssification Code		Material Description		Weathering	Estimated Strength	Testing	RQD% and TCR%	Defect Spacing (mm)	Defect Description
	WATER INFLOW- 24.9 - 27.8 m likely water strike/water table	28	SAPROLITI		сьсн	plasticity, pale sized gravel, o into gravel (for clay (can be m	revelly CLAY, medium to green and yellow, stiff, mumbles under finger pre visteright rock properties outsit, possibly ground with tike around this profile.	edium ssure s) and	× 9	94 4 5	8,12,24 (N=36)		000	
PQ MANONI ROCK)			Rock		BAS	formand grey, to moderately quartz vains a	very fine grained, palle; medium to high strength weathered, iron staining and joints with coating of a and pale green clay,	, highly and	HWMW		22, 28,0 (N=>50)			—70°, PL, SO, CT, dark gray and pal green day,
	WATER INFLOW- 28.6-29.0 m likely water	29	SAPROLIT		снсн	green and yellow during drilling,	, medium to high plastici w, very stiff, material was possibly ground water or strike, WLT: very fine grained: g	hed out water						
	strike/water table		Rock	V A W	BAS		strength, highly to made ed joints weathered to of pale green.		HWHW			RQD = 0% TCR = 100%		
			Rock	A V A	BAS	green to yellow	T: very fine to fine graine brown, low to medium st rered, transitioning to say	rength,	DW					
iE natur	noe bucket al exposure ng xcavation	USC Class GW W GP po- GM si GC cl ML in MH in	omplete water later inflow safer level saffication rell graded graded lity gravel layey gravel layey gravel layey gravel grade low prigging alla low prigging all low pr	ravels gravels plastic n plastic	P partia N none SW well g SP poorly SM silty s SC clayer CL inorg	during drilling I water loss encountered raded sands y graded sends ands y sands clay low plastic clay med plastic clay high plastic	Consistency VS Very soft S Soft F Firm St Stiff VSt Very stiff H Hard Dentity VL Very Jose L Loose MD Medium dense D Dense	Moistr D M W PL LL Soil Se B D U(69) U(50) WS	Dry Moist Wet plastic limit liquid limit	in Situ i PP VS DCP	pen penetron vane shear dynamic cone penetrometer	DD	undrained uncon undrained uncon undrained uncon moisture content dry density liquid limit plastic limit linear shrinkage undrained consol undrained consol falling head permonstan head head permonstan head head permonstan head head permonstan head head he	sol friction angle is conssion is friction angle scability

Page 10 of 12

about:blank 10/12

03/2025	, 16:17					TS	F GSI - BH	103				
8	1'6	ec	B/355 \$		igh Beach Rd, O	Consultants sborne Park, WA, 6017		G	BH03	ical L	.og - Bore	ehole
UTM Easting (m Northing (Ground Ell Total Dept	m) : Q, evation : No		Logg	er Supplier jed By swed By	: Precision Drilli : Muhammadh K : 14/12/2024	72 	Client Projec Locati	t : E at : 1	P19-11-PR-30 Bellevue Gold TSF GSI Bellevue WA			
Drilling Method	Water	Depth (m)	Soil Origin Graphle Log	Clessification Code		Material Description	Weathering	7.8 L8 Estimated Hs Strength	Teeting	RQD% and TCR%	20 Defect Spacing 300 (mm) 3000	Defect Description
A .	-	R	Comp. mark	950	green to yellow	T: very fine to fine grained, pale brown, low to medium strength, sered, transitioning to saprolite.						
		_31	V A	AT BAS	and yellow bro highly to mode into infi8/coating	T very fine to fine grained, grey own, medium to high strength, rately weathered, veins turning day closed joints, yellow brown and pale green.	HWANW			RQD = 0% TCR = 100%		
PQ DIAMONO (ROCK)		- 32	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		very high sti weathered, is hammer blow, i cream (cossich, stain, multiple v at	Per very fine grained, grey, high to rength, moderately to dignity reaks at Closed joints with firm olints pale green and yellow and risolantely veneer, clay and Iron elins turning into joints occurring 30–50mm spacing.				RQD = 10% TCR = 100%		Planar, Undulating, Rough, Smooth, Coating Veneer, Committee, Committee, Venes turning to join orientations Ces, 40 80 pells green day, kajoinite in some,
		-34	V A V A V A V A V A V A V A V A V A V A				MW-SW			RQD = 40% TCR = 100%		
			1000 - 100	AN AN						46,67% TOR = 100%		
Method EX excevati BH backhou NE natural EE existing RP ripper	s bucket exposure	GM sifty gra GC clayey g ML inorg si	flow rel los ded gravells reded gravels vel	P po N no SW w SP pr SM si SC ci CL in	evel during drilling artial water loss one encountered all graded sands borby graded sands by sands ayey sands org clay low plastic org clay low plastic	Density B VL Very Bose D	Dry Moist Wet plastic limit liquid limit semples bulk disturbed U(63) push t	PP VS DCF	pen penetrom vane shear dynam x cone penetrometer	1757E	undrained uncon undrained uncon moisture content dry density liquid limit plastic limit linear shrinkage undrained conso undrained conso falling head porm	sol friction angle s cohesion s friction angle

Page 11 of 12

CII constan head permeability

CBR californian bearing ratio

about:blank 11/12

U(50) U(50) push tube

WS water

D Dense

VD Very dense

MH inorg day high plastic CI inorg day med plastic

CII inorg clay high plastic

Pt peat of high org soils

OL org all a low pleatic

OH arg sills high plastic

Resource Engineering Consultants

B/355 Scarborough Beach Rd, Osborne Park, WA, 6017

Phone: (08) 6444 7988

Geotechnical Log - Borehole BH03

Precision Drilling P19-11-PR-30 Easting (m) - 0.00 **Driller Supplier** Client : Bellevue Gold Northing (m) : 0.00 Logged By : Muhammadh Khalid Project TSF GSI : Bellevue WA Ground Elevation: Not Surveyed Total Depth : 39 m BGL Date : 14/12/2024 Loc Comment : Testing Material Description TCR% Shrength Î (mm Classification and Drilling SPT Boil Graph RGD% Defect De. 2 2 2 2 2 2 2 V A 45 ROCK-BASALT: very fine grained, grey, high to very high strength, moderately to slightly ۵ V ered, breaks at closed joints with firm v ۵ 25 hammer blow, joints pale green and yellow and v Δ M cream (possibly kaolinite) vencer, clay and iron RQD v stain, multiple veins turning into joints occurring 45,67% Δ Rock BAS MW-SW at 30-50mm spacing. ν Δ 10 100% ٨ V M ٧ 4 Δ v 45 Planar, Undulating, RO, Venser, Stainad C, <1mm thick veins turning to joint, orientations 0-5, 20, 40, VN - pele green clay, SN - Iron stain, Δ ROCK- BASALT: very fine grained, grey, high to very high strength, moderately to slightly weathered, breaks at closed joints with firm v ٨ 4 v 4 25 hemmer blow, joints pale green and yellow veneer, clay and from stain, fewer veins, solid Δ V 47 v core fresh. Δ 40 ۵ v 45 v 4 86,67% v 4 27 100% Δ v AN - 37 ۵ V 43 (ROCK) Δ v Rock BAS MWSW Δ V A v Δ A Δ V ٧ 4 40 ٨ v 47 V Δ v 4 20 ۵ v AV 407 RQD * Δ v 40 100% v ۵ d 100% ROCK- BASALT, very fine grained, grey, very Λ υ B high to extremely high strength, slightly to fresh weathered, closed joints, stained pale yellow. v ۵ v A 203 solid core fresh and extremely high strength, only breaks at closed joints/veins with firm Rock BAS SWE ٨ v 45 hammer blow. A V A 12 BH03 Terminate at 39m Method Water Maisture in Situ Testing Laboratory Results complete water less Dry undrained unconsol cohesion EX excevator ✓ Level during drilling VS. Very soft D pen penetrometer UC partial water loss Moist ➤ Water inflow undrained unconsol friction angle BH backhoe bucket vs vane shear none encountered Firm Wet water level moisture content NE natural exposure dynamic 36# plastic limit 5t Pt. dry density USC Classification u liquid **I**mit EE existing xcavation Very stiff penetrometer liquid limit GW well graded gravels SW well graded sands Hard plastic limit Soil Samples poorly graded gravels poorly graded sands 15 linear shrinkage GM sitty gravel SM sitty sands Density B bulk CC undrained console cohesion GC dayey grave SC clayey sands VL Very loose CF undrained console friction angle inorg siks low plastic inorg clay low plastic U(63) push tube falling head permeability FH MH inorg day high plastic CI inorg clay med plastic MO Medium dense u(50) U(50) push tube org sits low plastic CH inorg clay high plastic Dense CH constan head permeability W5 water OH org sills high plastic peat of high org soils VD Very dense californian bearing ratio

Page 12 of 12

about:blank 12/12

UTM : 51J Easting (m) : 259761.82 Northing (m) : 6941939,43				Resource Engineering Consultants B/355 Scarborough Beach Rd, Osborne Park, WA, 6017 Phone: (08) 6444 7988								technic 3H-04	al Log - Bore	ehole
Easting Northing	(m) : g (m) : Elevation :	259761,82 6941939,43	K.	Logge	Supplie	: Precision Drillin r : : JR : : 10/01/2025	10		CIII Pro Lo	b Number ent oject cation c Commo	: TSF G : Bellev	ue Gold Si		
Drilling Method	Water	Depth (m)	Soll Origin	Graphic Log	Classification Gode	Material Description		Moisture	Consistency	Sam a s	pice SGD	Testing	N Value Graph •	Remarks Field Records/Comments
PQ DIAMOND DRILLING —		-1 -2 -3	F#		GP	Fill GRAVEL GP: gn			D					
NE natur	hoe bucket ral exposure ing xcavation	USC Cle GW W GP P GM 8 GC d ML ir MH ir	illy gravel Jayey grav norg sits k	d gravells led gravels vel ow plastic righ plastic v plastic	SC CL CI	Level during drilling partial water loss none encountered well graded sends poorly graded sends afty sands clayey sands inorg clay low plastic inorg clay high plastic inorg clay high plastic post of high org soils	Consistency VS Very soft S Soft F Firm St Stiff VSt Very stiff H Hard Dendty VL Very loose L Loose MD Medium dense D Dense VD Very dense	M W PL LL Soil Sa B D U(63)	ure Dry Moist Wet plastic limit liquid limit bulk disturbed U(63) pur U(50) pus	sh tube	VS VE	iting en penetrometer ins shear mansk inc enetrometer	Leboratory Results UC undrained uncon UF undrained uncon MC moisture content DD dry density LI liquid limit PL plastic limit IS linear shrinkage CC undrained conso CF undrained conso FH foling head per CH constan head per CM californian bearing	sol friction angle consistent for consistent for friction angle meability meability

Page 1 of 12

about:blank 1/12

UTM Easting (r Northing Total Dep	ľ	ec		B/355 S	carbon		Consultants sborne Park, WA,	6017				technic	al Log - Bore	ehole
Easting Northing Ground	(m) ; (m) Elevation :	51J : 259761.62 : 6941939.43 470.90 (m) 54 m BGL		Phone: (08) 6444 7988 Drill Rig : Precision Drilling Driller Supplier : Logged By : JR Reviewed By : Date : 10/01/2025					Job Number Client Project Location Loc Comme		: Bellevue Gold : TSF GSI : Bellevue WA ont :			
Drilling Mathod	Water	Depth (m)	Soll Origin	Graphic Log	Classification Code	Material Description		Moisture	Consistency	Samp In In	es san	Testing	N Value Graph •	Remarks Field Records/Comme
DAMOND DRILLING			Fill		GP	Fill GRAVEL GP: gr			D					
E natur	oo bucket al exposure ng xcavatio	Water USC Cla W v GP p GM S GC C ML li MH ii	complete we water level essification well graded coorly grade clayey grawel clayey graw more sits lower sits l	gravels ed gravels el w plastic igh plastic plastic	SW SP SM SC CL CI	Level during drilling partial water loss none encountered well graded sands poorly graded sands sity sands clays sands lnorg clay low plastic inorg clay high plastic poot of high org soils	Consistency VS Very soft S Soft F Firm St Stiff VSt Very stiff H Hard Density VL Very Jose L Losse MD Medium dense D Dense VD Very dense	5 oil 5 o B D U(63)	Dry Moist Wet plastic limit liquid limit bulk disturbed U(63) pusi Water	h fube	VS VS dy	on pensirometer ans shear mamic one enetrometer	Laboratory Results UC undrained uncon UF undrained uncon MC moisture content DD dry density LL liquid limit PL plastic limit LS linear shrinkage CC undrained consol FH falling head perm CH constant head per CBR californian bearing	sol friction angle is conssion to friction angle reability rmeability

Page 2 of 12

about:blank 2/12

8	UTM : 51J Easting (m) : 259761.82 Northing (m) : 6941939,43 Ground Elevation : 470,90 (m)				carbor		Consultants sborne Park, WA,	6017				technic H-04	al Log - Bor	eho le
Northing	(m) :: g (m) :: Elevation : 4	259761.82 5941939,43	ř.	Logge	Supplie	: Precision Drilli : : JR : : 10/01/2025	rg		Job No Olient Project Locati Loc Co	t on	: Bellevue Gold : TSF GSI n : Bellevue WA nment :			
Drilling Mathod	Water	Depth (m)	Soll Grigin	Graphie Log	Classification Code	Fill GRAVEL GP: gr		Moisture	Comsistency	Samp	Nos Sun	Teeting	N Value Graph (9)	Remarks Field Records/Commen
		-11				sized, wasts on								
DIAMOND DRILLING		- 12	F#		GP				D					
0r.		-13 -14												
NE rigitur	hoe bucket al exposure ng xcavation	USC CIE GW W GP P GM S GC CI ML Ir MH III	omplete well vater inflow vater level ssaff cation vell graded oodly graded layey gravel layey gravel rorg safts lov rorg safts low rorg safts low rorg safts low rorg safts low rorg safts low	gravels ed gravels el w plastic igh plastic plastic	P N SW SP SM SC CL Cl	tevel during drilling partial water loss none encountered well graded sands poorly graded sands sitty sands clayey sands inorg clay low plastic inorg clay high plastic inorg clay high plastic post of high org soils	Consistency VS Very soft S Soft F Firm St Shiff VSt Very stiff H Hard Dentity VL Very loose L Loose MD Medium dense D Dense VD Very dense	M W PL LL Soil Sa B D U(63)	Dry Moist Wet plastic limit liquid limit		VS VS	n penetromete ne shear nemic		nsol friction angle t ols cohesion ols friction angle meability armeability

Page 3 of 12

about:blank 3/12

8	UTM : 51.J Easting (m) : 259761.82 Northing (m) : 6941939,43 Ground Elevation : 470,90 (m)			Resource Engineering Consultants B/355 Scarborough Beach Rd, Osborne Park, WA, 6017 Phone: (08) 6444 7988								technic 3H-04	al Log - Bore	ehole
Northin	(m) g (m) Elevation	: 259761.82 : 6941939,4	3	Logge	r Supplie	: JR : : 10/01/2025		CIE Pro Lo	b Number ent bject cation c Comme	: Bellev : TSF G : Bellev	ue Gold Si			
Drilling Mathod	Water	Depth (m)	Soll Origin	Graphic Log	Classification Gode	Material Describtion		Moisture	Consistency	Sam	spice SGN	Testing	N Value Graph (9)	Remarks Field Records/Comments
1		-16				Fili GRAVEL GP: gr sized, wests on								
— PQ DIAMOND DRILLING		-17	Fill		GP				D					
		18 19												
	vator hoe bucket	>	complete w Water inflo	w	P	Commenced Corin tevel during drilling partial water loss none encountered	Consistency VS Very soft S Soft F Firm	Meist D M W	Dry Moist Wet		VS VE	ting on penatrometer ine shear	Laboratory Results UC undrained uncon UF undrained uncon MC moisture content	sol friction angle
	ing xcavati	GP GM GC ML MH	sifty grave clayey gra inorg sifts inorg clay org sifts lo	d gravels ded gravels I well low plastic high plastic	SP SM SC CL CI CI	well graded sands poorly graded sands silty sands clayey sands inorg clay low plastic inorg clay med plastic inorg clay high plastic peat of high org soils	St. Stiff VSt Very stiff H Hard Density VL Very Jose L Loose MD Medium dense D Dense VD Very dense	B D U(63)	plastic limit liquid limit imples bulk disturbed U(63) pur U(50) pur water	sh tube	DCP CO	ne enetrometer	DD dry density LL liquid limit PL plastic limit LS linear shrinkage CC undrained conso CF undrained conso Fill falling head perm CH constan head per CBR californian bearing	lo friction angle neability rmeability

Page 4 of 12

about:blank 4/12

8	ľ	20			arborou	gh Beach Rd, O	Consultants sborne Park, WA, 6	017			technic H-04	al L	og - Boreh	ole
ITM lasting (m) forthing (m) Fround Elev lotal Depth	: 69 ation : 47	9761.82 41939,43		Drill Ri Driller Logge Review Date	Supplier i By	Precision Drillir : : JR : : 10/01/2025	19		Job Number Client Project Location Loc Comme	: Bellevo : TSF GS : Bellevo	e Gold			
Drilling Method	Weter	Depth (m)	Soil Origin	Graphic Log	Classification Code		Material Description	Weathering	A.B. Estimated HS Estimated HS Strangth	Teating	Samples L d so	RQD% and TCR%	300 Defect Spacing 300 (mm)	Defact Description
	-													
		-16												
	-													
	-	-17												
	33 <u>4</u> 23	-18												
	-													
		-18												
OND	953 253		Rock	C.C.	ARG		oring at 19.8m d, rock- Gravelly to claye, plastic, pale green, stiff to				:5			
od		Water		- 15	10	ACCIDITATION OF THE PARTY OF TH	Consistency	Moisture	1 1 1 1 1	In Situ Test	ing	Labor	sutory Results	5. USONI 277
eckhoe b		386 750	mplete we later inflow		Comment of the Comment	vel during drilling rtial water loss	VS Very self. 5 Soft	D Dry M Mois	st	12260	n penetrometer	UC UF	undrained unconsol of	
natural ex		7	ater level		N no	ne encountered	F Firm St Stiff	w Wet	6c limit	dy	ne shear namk	MC	moisture content	
existing x	cavation	1000	sification ell graded	gravels	5W w	il graded sands	VSt Very stiff	1300 HUSSE	d Smit	DCP cor	ne netrometer	IT DD	dry density liquid limit	
ripper		GP po	oodly grad	graves ed gravels	SP po	orly graded sands	H Hard	Soil Sample				PL 15	plastic limit	
			lly gravel ayey grav	4		ty sands eyey sands	Density VL Very Joose	B but D dis	lk turbed			CC	linear shrinkage undrained console co	hesion
		ML in	org sits k	w plastic	ct. Inc	org clay low plastic	L Loose	200 0000	53) push tube			CF	undrained consolo fri	
		20,747,193	ong calay h ng an∎a kow	igh plastic plastic		org clay med plastic org clay high plastic	MD Medium dense D Dense	NO. 91. 35	50) push tube			CH	falling head permeab constan head permea	
		A STATE	g sills hig			at of high org soils	VD Very dense	WS WE	ter			CBR	californian bearing ra	

Page 5 of 12

5/12 about:blank

TSF GSI - BH-04 07/03/2025, 16:26

81	ec		e Engineering orough Beach Rd, O 6444 7988		117			echnie I-04	cal L	og - Bore	hole
Easting (m) : Northing (m) : Ground Elevation :	51J 259761.82 6941939.43 470.90 (m) 54 m BGL	Orill Rig Driller Supp Logged By Reviewed E Date	: JR	ng		Job Number Client Project Location Loc Common		Gold WA			
Drilling Method	Depth (m)	Graphic Log	Classification Code	Material Description	Weathering	LS Estimated NS Estimated HS Strongth	Testing	Samples L d Ø	RGD% and TCR%	30 100 Defect Spacing 200 (mm) 1000	Defect Description
Pa MMOND ROCK)		AND THE PROPERTY OF THE PROPER	very stiff, fine to m	plantic, pallo green, at if to endium sized gravel, fine, ned sand.	×w				RQD = 51% TCR = 84.67%		90°, UN, VR, Opan, Glosed, fracture before two defects,
							12,16,26 (N=44)		RQD = 86% TCR = 100%		
ethod (excavator 1 backhoe bucket E natural exposure existing scavation ripper	GW well grader GP poodly grader GM silty grader GC ctayey g	low P N on on ded gravels S1 reded gravels S1 vol S1	well graded sands poorly graded sands silty sands c cjayey sands	VS Very soft S Soft F Firm St Stiff VSt Very stiff H Hard Density VL Very loose	LL liquid Soil Sample B bul D dis	at Bic limit d limit s	VS vans dynar cone	shear	as 7/098**	undrained uncons undrained uncons undrained uncons moisture content dry density liquid limit plastic limit linear shrinkage undrained console undrained console	ol friction angle

Page 6 of 12

FH falling head permeability

CII constan head permeability

CBR californian bearing ratio

about:blank 6/12

MD Medium dense

D Dense

VD Very dense

MH inorg day high plastic CI inorg day med plastic

CII inorg clay high plastic

Pt peat of high org soils

OL org sits low pleatic

OH arg sills high plastic

U(50) U(50) push tube

WS water

8	ľ	ec	,		arborou	igh Beach Rd, O	Consultants Isborne Park, WA, 6	017			echni I-04	cal Lo	og - Bore	hole
Easting (n Northing (Ground El Total Dept	n) (m) levation :	51J : 259761.82 : 6941939,43 470,90 (m) 54 m BGL		Drill Ri Driller : Logged Review Date	Supplier i By	: Precision Drillin : : JR : : 10/01/2025	ng		Job Number Client Project Location Loc Commo	: Bellevue : TSF GSI : Bellevue '	Gold WA			
Drilling Method	Water	Depth (m)	Soil Origin	Graphic Log	Classification Code		Material Description	Weathering	LS Estimated HS Strangth Ants	Teating Lds	Samples L d	RGD% and TCR%	30 1100 Defect Spacing 200 (mm) 3000	Defect Description
2 00		L-1		ないが、		to sandy SILT, non- very stiff, fine to m	d, rock- Gravelly to claye, plastic, pale green, at if to edium sized gravel, fine ned sand.					RQD = 76% TCR = 100%		
		- 26								13,14,16 (N=30)				
												RQD = 60% TCR = 100%		
PQ DIAMOND		-n -	Rock		ARG			ww		12.18,18 (N=36)				
(ROCK)												RQD = 60% TCR = 88%		
		- 28								8,11,11 (N=22)				
			Rock	A V & A V &	BAS	grained, khaki with high strength, distin dry, thin bands moderately weath 26.9, red brown	ery fine to fine to medium i pale brown, medium to citly weathered, indistinct, (~3 cm) of slightly to sered baset at 25.6 and in discoloration bends bughout,	DW				RQD = 83.12% TCR = 100%		80* Curved, Undulating, Rough, Smooth, VN, Clased, Open, Infile
Method EX excava BH backho NE natural EE existing	e bucket exposure	USC Class GW win GP po GM sih GC class ML into	sification all graded only grad by gravel ayey grav org sits k	gravels ed gravels	P ps N no SP pc SM sil SC c); ct in	vel during drilling urtial water loss one encountered all graded sands only graded sands by sands ayey sands org clay low plastic org clay low plastic	Consistency VS Very soft S Soft F Firm St Shiff VSt Very stiff H Hard Density VL Very Joose L Loose MD Medium dense	LL liqui Soil Sample B bu D dis U(63) U(dic limit d limit es	VS vans dynan	shear	or UC UF MC DD LL PL LS CC CF	undrained uncons undrained uncons undrained uncons moisture content dry density liquid limit plastic limit linear shrinkage undrained consoli- undrained consoli- falling head permi	ol friction angle s conssion of riction angle

Page 7 of 12

CBR californian bearing ratio

about:blank 7/12

WS water

VD Very dense

OH org sills high plastic

Pt peat of high org soils

81	'ec			arborou	igh Beach Rd, C	Consultants Osborne Park, WA, 6	017			echnic I-04	cal Lo	og - Bore	hole
UTM Easting (m) Northing (m) Ground Elevat Total Depth	: 51J : 259761.82 : 6941939,43 ion : 470,90 (m) : 54 m BGL		Drill Ri Driller Logged Review Date	Supplier d By	: Precision Drill : : JR : : 10/01/2025	ing		Job Number Client Project Location Loc Commen	: P19-11-Pi : Bellevue : TSF GSI : Bellevue t :	Gold			
Drilling Method	Depth (m)	Soil Origin	Graphic Log	Classification Code		Material Description	Weathering	LS Estimated NS Estimated HS Strongth And	Testing	Samples Ld 9	RGD% and TCR%	30 100 Defect Spacing 300 (mm)	Defect Description
1	-		A V A A A V A A V A A V A A V A A V A		grained, khaki withigh strength, distinctly, thin bands moderately weat 26.9, red brow	very fine to fine to medium in paje brown, medium to notly weathered, indistinct, s (~3 cm) of slightly to hered baselt at 26.6 and wn discoloration bends		53545	16.32,18 (N=50) Refusal			8 9 8 9 8	
	—91 —91		A V & A V &		an	roughout.					RQD = 84,52% TCR = 100%		
2		Rock	A V & A V &	BAS			DW		(N=Q) Refusel	11	RQD = 75,33% TCR = 100%		
MAMOND (ROCK)	-13		A V & A V &						20 (N=40) Refusal				
	-		A V & A V &								RQD = 82,96%		
-	35	Rock	A V A A V A A V A A V A A V A A V A A V A A V A A A V A	BAS	khaki and grey.	very fine to fine grained, high strength, highly to athered, indistinct, dry,	HWMW			ř	RQD = 46% TCR = 100%		90°, Undulating Curve Smooth, Polished, Veneer, Coating, Closed, Open, Infill
Method EX excavator BH backhoe but NE natural expo	sure USC Clas	omplete wo later inflov ater level saffication ell grade:	oter less	P pa	vel during drilling rtial water loss one encountered ell graded sands	Consistency VS Very soft S Soft F Firm St Stiff VSt Very stiff H Hard		t ic limit	VS vans dynar pop	shear	UF MC DD	undrained uncons undrained uncons undrained uncons moisture content dry density liquid limit	

Page 8 of 12

LS | Inear shrinkage

CC undrained console cohesion

FH falling head permeability

CII constan head permeability

CBR californian bearing ratio

CF undrained console friction angle

about:blank 8/12

Soil Samples

WS water

bulk

disturbed

U(63) U(63) push tube

U(50) U(50) push tube

В

VL Very joose

MD Medium dense

L Loose

n Dense

VD Very dense

Density

SP poorly graded sands

CL Inorg clay low plastic

c) inorg clay med plastic

CH inorg clay high plastic

Pt peat of high org soils

SM silty sands

SC cjayey sands

GP poorly graded gravels

Mt. Inorg siks low plastic

MH inorg day high plastic

OL org all a low pleatic

OH org sills high plastic

GM sifty gravel

GC dayey grave

03/2025, 16:26					TSF GS	SI - BH-04					
810	ec		ngineering Con igh Beach Rd, Osborn 17988		017			echnic	cal L	og - Borel	ole
Easting (m) : Northing (m) : Ground Elevation : 4	51J 259761.82 6941939,43 470,90 (m) 54 m BGL	Drill Rig Driller Supplier Logged By Reviewed By Date	Precision Drilling : : JR : : 10/01/2025			Job Number Client Project Location Loc Commen		Gold			
Drilling Method	Depth (m) Soll Origin	Graphic Log	Material Description		Weathering	V.B LS Extimated MS Extimated HS Strongth VMS	Testing Ld9	Samples L d	RQD% and TCR%	300 Defect Spacing 300 (mm)	Defect Description
		A V A A V A	ROCK- BASALT very fine knoki and grey, high str moderately weathered,	ength, highly to					RQD = 46% TCR = 100%		
8		A V A A A V A A V A A V A A V A A A V A							RQD = 69,33% TCR = 100%		
AMOND ROCK)	- Rock	A V A A A V A A V A A V A A V A A A V A			HW-MVV				RQD = 89.33% TCR = 100%		
	aa	V V							RQD = 52% TCR = 100%		
Method X excavator Hi backhoe bucket E natural exposure E existing xcavation P ripper	GW well grade GP poorly grade GM silty grave GC clayey gr	ow P p N n and gravells SW w ded gravels SP p SI SI SI Livel SC ci low plastic CL in	vel during drilling VS prital water loss S prie encountered F St VSt will graded sands H Vs porty preded sands ty sands Densi payey sands VL org clay low plastic L	Very soft Soft Firm Stiff Very stiff Hard	LL liquid Soil Samples B bull D dist U(63) U(6	c limit Smit	vs vane dyna- nce sone	penetromete shear mx	UF MC DD	story Results undrained unconsol undrained unconsol undrained unconsol moisture content dry density liquid limit plastic limit linear shrinkage undrained console if falling head permea	friction angle tohesion riction angle

Page 9 of 12

CH constan head permeability

CBR californian bearing ratio

about:blank 9/12

U(50) U(50) push tube

WS water

D Dense

VD Very dense

CH inorg clay high plastic

Pt peat of high org soils

OL org sits low plastic

OH arg sills high plastic

//03/2025, 16:26	i	Resource E	ngineering Consultants	TSF GSI - BH	110000	eotechni	callo	a - Rore	hole
81	ec		gh Beach Rd, Osborne Park, WA,	6017	3	BH-04	Jai Lu	- DOIG	
Easting (m) : Northing (m) : Ground Elevation :	51J 259761.82 6941939,43 470,90 (m) 54 m BGL	Drill Rig Driller Supplier Logged By Reviewed By Date	Precision Drilling : : JR : : 10/01/2025	Cilient Projec Locati	: :Be ct :TS ion :Be omment :	9-11-PR-30 Hevue Gold F GSI Hevue WA			
Drilling Method	Depth (m) Soil Origin	Graphic Log Classification Code	Material Description	*	Ats Strongth	Samples	RQD% and TCR%	30 100 Defect Spacing 1000 (mm)	Defect Description
A	- Rock	Δ V Δ' Δ V Δ' Δ V Δ' Δ V Δ' Δ V Δ' Δ V Δ' Δ V Δ'	ROCK- BASALT very fine to fire grained, khaki and grey, high strength, highly to moderately weathered, indistinct, dry.				RQD = 52% TCR = 100%		
20	-41 (A V & A A A A A A A A A A A A A A A A A	ROCK- BASALT: fine to medium to coarse grained, grey, medium to high strength, high weathered, indistinct, wet, heavily fracture throughout, observed changing water return at 41 m depth,	ılı,			RQD = 22.67% TCR = 100%		—45°, UN. Rough Smooth, VN, OP,
PQ DIAMOND (ROCK)	42	A V A A A V A A V A A V A A V A A A A V A A A A V A A A A V A A A A V A A A A V A		HW			RQD = 0% TCR = 80%		
		A V A A A A A V A A V A A A V A A A A A	ROCK-BASALT very fine to fine grained, blue gray, high strength, moderately weathered, indistinct, moist.	MW			ROD = 99.33% TCR = 100%		90°, UN, Smooth,Polished, Venser,Coating,Sta Clased,Open,
Method EX excevator BH backhoe bucket NE natural exposure EE existing xeavation RP ripper	GW well grade GP poorly grave GC clayey grave GC clayey grave ML inorg sits	N no In N n	Consistency V5 Very soft V6 Very soft V6 Very soft V7 Very soft V7 Very soft V7 Very soft V8 Very siff V8 Very siff V8 Very siff V8 Very siff V9 Very siff V9 Very siff V9 Very sond V9 Very sond V9 Very sond V9 Very sond V1 Very son V9 Very son V9 Very son V1 Very son V9 Very son V1 Very son V8 Very son V8 Very siff V8 Very s	Moisture D Dry M Moist W Wet Pt plassic limit U liquid limit Soil Samples B bulk D disturbed U(63) U(53) push to	PP VS DCP	pen penetromet vane shear dynamic cone penetrometer	UF OF	tory Results undrained uncons undrained uncons undrained uncons undrained content dry density liquid limit plastic limit linear shrinkage undrained console undrained console folling head perme constan head perme	ol friction angle cohesion friction angle

Page 10 of 12

CBR californian bearing ratio

about:blank 10/12

WS water

VD Very dense

OH org sills high plastic

Pt peat of high org soils

8	rec
UTM	:51J

Resource Engineering Consultants

B/355 Scarborough Beach Rd, Osborne Park, WA, 6017

Phone: (08) 6444 7988

Geotechnical Log - Borehole BH-04

P19-11-PR-30 Drill Rig Precision Drilling Easting (m) - 259761 82 **Driller Supplier** Client : Bellevue Gold Northing (m) : 6941939.43 Logged By Project TSF GSI : JR Ground Elevation: 470,90 (m) Reviewed By Location : Bellevue WA Total Depth : 54 m BGL Date : 10/01/2025 Loc Comment : Testing Samples Spacing ICR% Estimated Strongth SEN. E Soil Origin and Water Depth SPT SPT RGD14 8 9 8 9 8 223322 ROCK-BASALT very fine to fine grained, v A blue grey, high strength, moderately A V v Α 27 W Δ M Δ V v Δ ROD -Δ v 80% ٨ v TCR -100% Δ v D ۵ v v A ٨ v BAS MW Δ v ۵ v v Δ v Δ M ۵ U Δ V -47 ۵ v 4 v ROD = v 24% Δ TCR = v 100% v Δ DIAMOND -90°; Curved Undulating Polished Smooth, Coating Vencer, Clased,Open, Δ ROCK-BASALT very fine to fine grained, dark grey, very high strength, slightly weathered, indistinct, glassy texture, dry. ۵ v v A Δ v v Δ 45°, Planer Curved Polished, Slickensid CT, Closed Open, fractured area, BAS SW Δ v 20 ۵ v v Δ Δ v 11 Δ U ROCK-BASALT very fine to fine grained, dark grey, extremely high strength, tresh weathered, indistinct, glassy texture, dry. ۵ v RQD = 72,67% AV B TCR = ۵ v 94% v Δ 27 A v v ۵ BAS F v Δ M Δ v v Δ Δ v 11 ROD -90% v 4 27 TCR = v 4 100% Water Maisture in Situ Testing Laboratory Results VS Dry undrained unconsol cohesion EX excavator complete water less ✓ Level during drilling Very soft pen penetrometer UC partial water loss Moist ➤ Water inflow undrained unconsol friction angle BH backhoe bucket vs vane shear none encountered Firm Wet water level moisture content NE natural exposure dynamic 36# plastic limit 5t Pt. dry density USC Classification u liquid Imit EE existing xcavation Very stiff penetrometer liquid limit GW well graded gravels SW well graded sands Hard plastic limit Soil Samples poorly graded gravels poorly graded sands 15 linear shrinkage GM sitty gravel SM sitty sands Density B bulk CC undrained console cohesion GC dayey grave SC clayey sands VL Very loose CF undrained console friction angle inorg siks low plastic inorg clay low plastic U(63) push tube FH falling head permeability MH inorg day high plastic CI inorg clay med plastic MO Medium dense u(50) U(50) push tube org sits low plastic CH inorg clay high plastic Dense CH constan head permeability W5 water OH org sills high plastic peat of high org soils VD Very dense californian bearing ratio

Page 11 of 12

about:blank 11/12

1			
1	114	0	Po
X		U	6

Resource Engineering Consultants

B/355 Scarborough Beach Rd, Osborne Park, WA, 6017

Phone: (08) 6444 7988

Geotechnical Log - Borehole

Drill Rig Precision Drilling P19-11-PR-30 Job Number Easting (m) - 259761 82 **Driller Supplier** Client : Bellevue Gold Northing (m) : 6941939.43 Logged By Project TSF GSI : JR Ground Elevation : 470,90 (m) Reviewed By Location : Bellevue WA Total Depth : 54 m BGL Date : 10/01/2025 Loc Comment : Testing Samples ct Spacing (mm) TCR% Estimated Strongth SEN. Ê Soil Origin bna Water Depth SPT SPT RODM 8 00 00 00 医医毒素素 AV ROCK-BASALT very fine to fine grained, dark grey, extremely high strength, fresh A V veathered, indistinct, glassy texture, dry. v A 27 V Δ RQD -Δ V TOR v Δ 100% Δ v ٨ v Δ v d Δ V A v Δ v Δ v ۵ v Δ v v Δ Al 86,67% TCR = ٨ U 100% Δ V F MAMONE -52 Rock ۵ v BAS 4 v v Δ Δ v v Δ 10 Δ v v ۵ Δ U 23 ۵ v AV 10 AV RQD = v 4 91,33% v ۵ 100% Δ v v Δ ۵ U AVA A W 21 AV BH-04 Terminated at 54m Method Water Maisture in Situ Testing Laboratory Results VS Dry undrained unconsol cohesion EX excavator complete water less ✓ Level during drilling Very soft pen penetrometer UC partial water loss Moist ➤ Water inflow undrained unconsol friction angle BH backhoe bucket VS vane shear none encountered Firm Wet water level moisture content NE natural exposure dynamic 36# plastic limit 5t dry density USC Classification EE existing xcavation u liquid Imit Very stiff penetrometer liquid limit GW well graded gravels SW well graded sands Hard plastic limit poorly graded gravels poorly graded sands linear shrinkage Density GM sifty gravel SM sitty sands B bulk CC undrained console cohesion GC dayey grave SC cjayey sands VL Very loose CF undrained console friction angle inorg siks low plastic inorg clay low plastic U(63) push tube falling head permeability MH inorg day high plastic CI inorg clay med plastic MO Medium dense U(50) U(50) push tube org sits low plastic CH inorg clay high plastic Dense CH constan head permeability WS water OH org sills high plastic peat of high org soils VD Very dense californian bearing ratio

Page 12 of 12

about:blank 12/12

8	1	e	3	Resource Engineering Consultants B/355 Scarborough Beach Rd, Osborne Park, WA, 6017 Phone: (08) 6444 7988								technic 3H-05	cal Log - Bore	ehole
UTM Easting Northing Ground Total De	(m) ; (m) Ellevation :	51J : 259618,61 : 6941931,73 : 484.5 (m) : 31,5 m BGG		Logge	Suppli	: Precision Drillin er : : JR : : 30/01/2025	U		Clier Proje Loca	ect	: TSF G	rue Gold SI		
Drilling Melhod	Water	Depth (m)	Soil Origin	Graphic Log	Classification Code	Matorial Description		Moisture	Consistency	Samp h h	elee SQD	Testing	N Value Graph ®	Remarks Field Records/Commen
◆ DO DIAMOND DRILLING —			F#		GP	Fill GRAVEL GP: gr			D					
NE natur	noe bucket all exposure ng xcavatio	USC CIG	poorly grave alty grave dayey gra norg sits norg clay org sits to	w d gravells dod gravels level low plastic high plastic	SW SF SM SC CL CH PI	tevel during drilling partial water loss none encountered well graded sands poorly graded sands sity sands clayey sands long clay low plastic inorg clay med plastic inorg clay high plastic post of high org soils	Consistency VS Very soit: S Soit F Firm St Otiff VSt Very stiff H Hard Dendity VL Very loose L Loose MD Medium dense D Dense VD Very dense	M W PL	Dry Moist Wet plastic limit liquid limit		VS vi	en penetromete ans shear ynamik one enetrometer	Laboratory Results IV undrained uncon IVF undrained uncon MC moisture content DD dry density LL liquid limit PL plastic limit LS linear shrinkage CC undrained conso FH foling head porn CH constan head per CBR californian bearing	sol motion angle le cohesion le friction angle neability rmeability

Page 1 of 6

about:blank

8	1	ec	B/355 Se	Resource Engineering Consultants B/355 Scarborough Beach Rd, Osborne Park, WA, 6017 Phone: (08) 6444 7988					G	Geotechnic BH-05	cal Log - Borel	hole
UTM Easting Northing Ground Total De	(m) : 6 Elevation : 4	259618.61 3941931 . 73	Drill R Driller Logge Review Date	Supplier d By	: Precision Drillin : : JR :	9	Job Numb Client Project Location Loc Comm	3.1 3.1 3.4	P19-11-PR-30 Bellevue Gold TSF GSI Bellevue WA			
Drilling Mathod	Water	Depth (m) Soll Origin	Graphic Log	Classification Gode	Material Description		Moisture	Consistency	mples	Testing	N Value Graph (*)	Remarks Field Records/Commen
→ PQ DIAMOND DRILLING —		-6 -7 F#		GP	ili GRAVEL GP: gri			D				
NE matura	noe bucket al exposure ng xcavation	GM silty gra GC clayey o ML inorg sil MH inorg cla	flow vol lion ded gravells raded gravels vol pravel ts low plastic low plastic low plastic	P partie N none SW well a SP poor SM silty SC claye CL inorg CH inorg	during drilling all water loss encountered graded sands by graded sands sands by sands clay low plastic clay med plastic clay med plastic clay high plastic of high ong soils	Consistency VS Very soft S Soft F Firm St Stiff VSt Very stiff H Hand Density VL Very Joose L Loose MD Medium dense D Dense VD Very dense	M A W y PL p LL ii Soil Sam B D U(63) U(50)	ory toist Vet Hastic limit quid limit	in S PP VS DCI	vane shear dynamic	Laboratory Results FUC undrained unconse WC undrained unconse MC moisture content DD dry density LL liquid limit PL plastic limit LS linear shrinkage CC undrained console CF undrained console FM falling head perme CM constan head perm CBR californian bearing	ohasion friction angle cohasion friction angle ability

Page 2 of 6

about:blank 2/6

8 rec			B/355 S	Resource Engineering Consultants B/355 Scarborough Beach Rd, Osborne Park, WA, 6017 Phone: (08) 6444 7988							technic 3H-05	al Log - Bore	hole	
UTM Easting Northing Ground Total De	(m) ; (m) Ellevation	: 51J : 259618.6 : 6941931, : 484.6 (m) : 31.5 m 80	73	Logge	Supplie	: Precision Drilling: : JR : 30/01/2025	9		Job Nurr Client Project Location Loc Com					
Drilling Mathod	Water	Depth (m)	Soll Origin	Graphic Log	Classification Code	Material Description		Moisture	Comsistency	iampi	lee Sun	Teeting	N Value Grach •	Remarks Field Records/Comme
PO DIAMOND DRILLING		-11 -12 -13	Fill		GP	Fill GRAVEL GP. gr sized, wests an			D					
E natur	noe bucket al exposur ng xcavatic	USC C GW GP GM GC ML MH	Complete v Water inflo water leve Classification well grade poorly gra sifty grave qlayey gra inorg sits	ed gravels ed gravels ed gravels ed gravels li li low plastic high plastic	P N SP SM SC CL Cl	Commenced Cori Level during drilling partial water loss none encountered well graded sands poorly graded sands sitty sands clayey sands inorg clay low plastic inorg clay ned plastic inorg clay high plastic poot of high org soils	Consistency VS Very soft S Soft F Firm St Stiff VSt Very stiff H Hard Density VL Very Joose L Loose MD Medium dense D Dense VD Very dense	M PL (LL I Soil Sea	Ory Moist Met Slastic limit iquid limit	1	VS VS dy	on penetrometer une shear nem x	Laboratory Results UC undrained uncom WC moisture content DD dry density LL liquid limit PL plastic limit LS linear shrinkage CC undrained consol FH falling head perm CH constan head per CBR californian bearin	sol friction angle s cohesion o friction angle cability meablity

Page 3 of 6

about:blank 3/6

TSF GSI - BH-05

	03/2025	, 16:28					TS
Phone: (08) 6444 7988 UTM :51J	0	1144	~ ^		Resourc	e Er	ngineering Consultants
Easting (m) : 259618.61 Driller Supplier : Northing (m) : 6941931,73 Logged By : JR Ground Elevation : 494.6 (m) Reviewed By : Total Depth : 31,5 m BGL Date : 30/01/2025 Pour Supplier : 30/01/2025 Total Depth : 31,5 m BGL Date : 30/01/2025 Commenced Coring at 15m Commenced Coring at 15m A V A R ROCK- BASALT: very fine to fine to medium coarse grained, dark gray, high strength, high strength, indistinct, most heavily fractured throughout.	R	16	70				1
Northing (m) : 8941931,73 Legged By : JR Ground Ellevation : 484.5 (m) Reviewed By : Total Depth : 31,5 m BGL Date : 30/01/2025 Potential Depth : 31,5 m BGL Date : 30/01/2025 Potential Depth : 31,5 m BGL Date : 30/01/2025 Potential Depth : 31,5 m BGL Date : 30/01/2025 Commenced Coring at 15 m	MTU	: 51	n		Drill Rig		: Precision Drilling
Ground Elevation: 484.6 (m) Total Depth: 31,5 m BGL Date: 30/01/2025 Date: 30/01/2025 Commenced Coring at 15m Commenced Coring at 15m A V AT Coarse grained, dark gray, high strength, high strength, most heavily fractured implication; most h	Easting (m	1) :2	59618.61		Driller Sup	plier	14
Total Depth : 31,5 m BGL Date : 30/01/2025 Pour land Pour lan							27W
Commenced Coring at 15m A V AT A V A			12000			Ву	-
Commenced Coring at 15m A V A ROCK-BASALT: vary fine to fine to medium coarse grained, dark gray, high strength, high to moderately weathered, indistinct, moist heavily fractured imoughout.	Total Dept	n :31	Lo m BGL		Date		: 30/01/2025
Commenced Coring at 15m A V A ROCK-BASALT: vary fine to fine to medium coarse grained, dark gray, high strength, high to moderately weathered, indistinct, moist heavily fractured imoughout.	Method	ater	th (m)	Origin	lie Log	stion Code	Seaription
A V A ROCK-BASALT: very fine to fine to medium A V A coarse grained, dark gray, high strangth, high to moderately weathered, indistinct, moist heavily fractured throughout.	Drilling	- NA	Dep	lios	Grap	Obssifica	Material E
heavily fractured throughout.	1				A V M		ROCK- BASALT: very fine to fine to medium to coarse grained, dark grey, high strength, highly
Δ Ψ Δ					188 - 5 - 5 - 5 - 6		

Geotechnical Log - Borehole BH-05

0.		ı	Phone: (08	6444 7	988						BH-05				
Easting (m) : Northing (m) : Ground Elevation :	51.J 259618.61 6941931.73 484.5 (m) 31.5 m BGL		Orill Rig Driller Su Logged E Reviewed Date	ly	Precision Drillis	19		Clien Proje Loss	ct	: Bel : TSI : Bel	11-PR-30 llevue Gold F GSI llevue WA				
Drilling Method	Depth (m)	Soil Origin	Graphic Log	Clessification Code		Material Description		Weathering		Hes Strength	Teeting	RODS and TORS			Defect Description
			A V A A A A A A A A A A A A A A A A A A		ROCK- BASAL coarse grained, to moderate	ted Coring at 15m T: very fine to fine to mediate gray, high strength; weathered, indistinct, in fractured throughout.	, highly					RQ(18% = 66,0	TCR		45°, UN. Rough, Smooth, Cl Open, Closed, fracture between to defects,
På DIAMOND (ROCK)		Rock		BSLT			⊕.	HIVENIVO:				RQ0 8,6) TCF 100	/% ? =		
												RQI 66% = 10	TCR		
Method EX axcavator BH backhoe bucket	381 0506	riplete wete ter inflow	A V A A V A A V A A V A A V A A V A A A V A	Acres (1) Acres (1)	during drilling	Consistency VS Very soft S Soft	Moisture D Dry M Moi			PP	Testing pen penetron	RQI 0% 1 = 53,:	CR 33% Labora UC	story Results undrained uncor	nsol cohesion nsol friction angle
NE natural exposure EE existing xcavation RP ripper	GW we GP por GM silt GC cla ML inc OL org	DE 50	gravels plastic plastic estic	SW well s SP poorli SM silty s SC claye CL inorg CI inorg	encountered graded sands y graded sands sands y sands clay low plastic clay med plastic clay high plastic of high org soils	F Firm St Stiff VSt Very stiff H Hard Density VL Very Bose L Losse MD Medium dense D Dense VD Very dense	Soil Sampl B bs D di U(63) U U(50) U	stic limit aid limit		DCP	vans shear dynamic sone penetrometer	No. out	MC DD LL PL LS CC FH CH	moisture content dry density liquid limit plastic limit linear shrinkage undrained conso falling head per constan head per californian beari	ge conssion de friction angle neability rmeability

Page 4 of 6

about:blank 4/6

8	1'6	ec	, 1		borough	Beach Rd, O	Consultants	6017			otechr BH-05	nical L	.og - Bore	ehole
UTM Easting (m Northing (Ground El Total Dopt	m) : 69 evation : 48	59618.61 041931,73		Drill Rig Driller Su Logged B Reviewed Date	pplier ly	: Precision Drillin : : JR : : 30/01/2025	rg		Job Numb Client Project Location Loc Comm	: Belle : TSF : Belle	:11-PR-30 evue Gold GSI evue WA			
Drilling Method	Water	Depth (m)	Soil Origin	Graphic Log	Classification Code		Material Description		Weathering Westhering	WS Estimated Hs Strength	Testing	RGD% and TCR%	20 100 Defect Spacing 300 (mm) 3000	Defect Description
1		- 22				grained, dark g moderately to	k.T. fine to medium to co prey, high to vary high air slightly weathered, indis vily fractured throughout	ength, kinct,	À 1			RQD = 44,67% TCR = 100%	6	50°, Curved, Undulating, Rough, Smooth, VN, Closed, Open, Infilled,
		-23	Rock	A V A A A A A A A A A A A A A A A A A A	BSLT				MASW			RQD = 0% TCR = 100%		
PQ DIAMOND (ROCK)		_24 		A V A A A A A A A A A A A A A A A A A A								RQD = 21,67% TCR = 100%		
			Rock	A V A' A	BSLT	grey, extremely	T. very fine to fine graine high strength, fresh wea kd. glassy texture, dry.		·F			RQD = 43,33% TCR = 100%		90". Undulating Curved, PO. Coating Vencer, Closed, Open Infilled,
Method EX excavat BH backhor NE natural EE existing RP ripper	e bucket exposure	water water	er level	A V AV	P partia N none SW well s SP poort SM silty s SC claye CL inorg CH inorg	during drilling il water loss encountered graded sands y graded sands sands y sands clay low plastic clay med plastic clay high plastic of high org soils	Consistency VS Very soft S Soft F Film St Stiff VSt Very stiff H Hard Density VL Very loose L Loose MD Medium dense D Dense VD Very dense	M W PL	Dry Moist Wet plastic limit liquid limit	VS	pen penetron yane shear dynamic cone penetrometer	UC UF MC DD LL PL IS CC CF FH CH	orstory Results undrained uncon undrained uncon	sol friction angle to conssion to friction angle reability rmeability

Page 5 of 6

about:blank 5/6

8	1	ec			rborough	Beach Rd, O	Consultants sborne Park, WA,	6017			Ge	eotechr BH-05	nical L	.og - Bore	hole
UTM Easting (n Northing (Ground El Total Copt	(m) : 6 levation : 4	259618.61 3941931,73		Drill Rig Driller St Logged I Reviewe Date	Эу	: Precision Drilli : : JR : : 30/01/2025	9		Cilio Pro Loc		: Bel : TSI : Bel	n-11-PR-30 Hevue Gold F GSI Hevue WA			
Drilling Method	Water	Depth (m)	Soil Origin	Graphic Log	Clessification Code		Material Description		Weathering	V.8 L3 Estimated	s Strength	Teeting	RQD% and TCR%	to Defect Spacing (mm)	Defect Description
A		-		A V AT A V AT A V AT A V AT		grey, extremely	E very fine to fine graine high strongth, fresh wes ict, glassy texture, dry.			\$ 3 8	25		RQD = 74% TCR = 100%	8	
PQ GNOMAIC (X2OS)			Rock	A V A A A A A A A A A A A A A A A A A A					F				RQD = 78,67% TCR + 100%		
		-30		A V A A A A A A A A A A A A A A A A A A								l	RQD = 40,67% TCR = 93,33%		
						BH-05 Ter	minated at 31.5m								
Method EX exceve BH backho NE natural EE existing RP ripper	e bucket exposure	Water Water	er level	avels gravels plastic plastic lastic	P partia N none SW well s SP poort SM sity s SC claye CL inorg CH inorg	during drilling I water loss encountered praced sands or graded sands ands or graded sands clay low plastic clay low plastic clay high plastic of high parts of	Consistency VS Very soft S Soft F Firm St Stiff VSt Very stiff H Hard Density VL Very Jose L Loose MD Medium dense D Dense VD Very dense	M Pt 1 LL I Soil Sea	Dry Moist Wet plastic limit liquid limit		in Situ pp VS DCP	Testing pen penetrom vane shear dynamic cone penetrometer	(Blue 7/7/8)	oratory Results undrained uncons undrained uncons moisture content dry density liquid limit plastic limit linear shrinkage undrained consol un	sol friction angle s cohesion s friction angle sability

Page 6 of 6

CBR californian bearing ratio

about:blank 6/6

VD Very dense

OH org sills high plastic

8	1	e	C	B/355 Se	carbo	Engineering rough Beach Rd, O 444 7988			technic 3H06	cal L	og -	Bore	hole			
UTM Easting Northin Ground Total De	(m) g (m) i E l evation :	51 : 260235,66 : 6940355,1 : 465,86 (m : 40,3 m BG	B5)	Logge	Suppli	: er : : Joshus Blake : : 10/01/2025	e Project : Location : Loc Comment :					I-PR-30 rue Gold SI rue WA				
Drilling Melhod	Water	Depth (m)	Soll Origin	Graphic Log	Classification Code	Material Description		Moisture	Consistency	Sam	pice	Testing	N VI	ajue Grap	h ®	Remarks Field Records/Comment
♣ bg plawonb (SOL)			Fill		GP	Fit GRAVEL GP: gn sized, waste em	ry, dense, coarse		D				0. 10.	20 3	0 40 5	
NE natur	hoe bucket ral exposure ing xcavatio	USC C GW GP GM GC ML MH	complete v Water inflo water leve lessification well grade poorly gra- sifty grave dayey gra- tinorg sits inorg day org sits is	ed gravels ded gravels ded gravels de level low plastic	P N SF SM SC CL CH PI	Level during drilling partial water loss none encountered well graded sends poorly graded sends sitty sends clayey sends long clay low plastic inorg clay high plastic post of high org soils	Consistency VS Very soft S Soft F Firm St Stiff VSt Very stiff II Hard Dendity VL Very loose L Loose MD Medium dense D Dense VD Very dense	M W PL	Dry Maist Wet plastic limit liquid limit	h tube	VS vs	iting en penetromete ans shear marsix one enetrometer	PL UC UF MC DB LL PL LS CC CF FH CH	undrair moistu dry der liquid li plastic linear s undrair undrair folling i constan	ned uncons ne content neity mit limit shrinkage ned consol	meab i ty

Page 1 of 10

about:blank 1/10

8	1	ec	B/355 S	Resource Engineering Consultants B/355 Scarborough Beach Rd, Osborne Park, WA, 6017 Phone: (08) 6444 7988							techni H06	cal Log - Bore	ehole
UTM Easting Northing Ground Total De	(m) :	260235.68 6940355,85	Logge	Supplier	: : Joshua Blake : : 10/01/2025		Job Num Client Project Location Loc Com		: Bellev : TSF G:	ue Gold SI			
Drilling Mathod	Water	Depth (m)	Soll Origin Graphic Log	Clessification Code	Material Description		Moisture	Consistency	iample	ee san	Testing	N Value Graph •	Remarks Field Records/Commer
PQ DIAMOND (SOIL)		-6 -7 -8 -9	FILE	GP	Fill GRAVEL GP: gr			D					
E natur	noe bucket al exposure ng xcavation	USC Classifi GW well GP poor GM silty GC day ML inorg MH inorg	r level	P parti N none SW well SP poor SM silty SC clay CL inone CH inone	during drilling of water loss errountered graded sands sands sands graded jow plastic gray low plastic gray	Consistency VS Very soft S Soft F Firm St Stiff VSt Very stiff H Hard Density VL Very Joose L Loose MD Medium dense D Dense VD Very dense	M ! W ! PL ; LL ! Soil Ser B D U(69)	Ory Moist Met Slastic limit iquid limit		/S VS dy DCP CO	ting in penetrometo ne shear neme ne ne netrometer	Laboratory Results OF Undrained uncon UF undrained uncon MC moisture content DD dry density LL liquid limit PL plastic limit LS linear shrinkage CC undrained consol FH folling head perm CH constan head per CBR californian bearing	sol friction angle is conssion to friction angle reability rmeability

Page 2 of 10

about:blank 2/10

8	1	e	C	B/355 S	carbor	Engineering ough Beach Rd, O 44 7988		6017				otechni 3H06	cal Log - Bore	hole
UTM Easting Northing Ground Total De	(m) ; (m) Elevation	: 51 : 260235.60 : 6940355,1 : 465.86 (m : 40,3 m 80	35)	Logg	Rig or Supplie ed By owed By	: Joshua Blake : 10/01/2025			P	ob Number lient roject ocation oc Commo	: Bellev : TSF 0	rue Gold ISI		
Drilling Method	Water	Depth (m)	Soll Origin	Graphic Log	Classification Code	Market In Constitution		Moisture	Consistency	Sam;	e GO	Teating	N Value Graph (*)	Remarks Field Records/Comment
→ PQ DIAMOND (SOIL)		-11 -12 -13	Fil		GP	Fill GRAVEL GP: gr sized, wests on			D					
	01	-14	Durierust			Duriorust-SILT, low pi yellow, moist, stiff to coarse grained san grainel, presence of p increases with depth, dep	very stiff, with fine to d, trace fine sized vale yellow material to 50-50 at ~20,5 m	Moist	SI-VSI		fin Sittu Te		Laboratory Results	
EX excev BH backh	Tethod X excavator H backhoe bucket E natural exposure E existing xcavation P ripper		water inflow water level		P N SP SM SC CL Cl	texel during drilling partial water loss none encountered well graded sands poorly graded sands sity sands clays sands linorg clay low plastic inorg clay high plastic poot of high org soils	VS Very soft S Soft F Firm St Stiff VSt Very stiff H Hard Density VL Very loose L Loose MD Medium dense D Dense VD Very dense	D M W PL LL Soil S B D	Dry Moist Wet plastic lin liquid limit emples bulk disturbe U(63) pt Water	d ush tube	PP P VS V dd	en penetromet ane shear ynamic one enetrometer	:	cohesion friction angle ability leak i ty

Page 3 of 10

about:blank 3/10

8 rec			C	Resource Engineering Consultants B/355 Scarborough Beach Rd, Osborne Park, WA, 6017 Phone: (08) 6444 7988							Geotechnical Log - Borehole BH06				
UTM : 51 Easting (m) : 260235.68 Northing (m) : 6940355,85 Ground Elevation : 465,86 (m) Total Depth : 40,3 m BGL		5	Drill Rig : Driller Supplier : Logged By : Joshua Blake Reviewed By : Date : 10/01/2025				Job Number Client Project Location Loc Common		: P19-11-PR-30 : Bellevue Gold : TSF GSI : Bellevue WA						
Drilling Mathod	Water	Depth (m)	Soll Origin	Graphic Log	Classification Code	Material Description		Moisture	Consistency	Samp	olee San	Testing	N Value Graph •	Remarks Field Records/Comme	
		-16				Duricrust-SET, low playellow, moist, set to w coarse grained sam gravel, presence of p increases with depth, dept	ery stiff, with fine to i, trace fine sized ale yellow material to 50-50 at ~20,5 m								
		-17									ě	5.6.8 (N=14)			
DIAMOND (SOIL)			Durierust					w	61-VSt		01				
24		_18										6,7,7 (N=14)			
		- 19								02					
											7	4,5,5 (N=10)			
SH backhoe bucket NE natural exposure Experiment of the proper Expe		¥	■ complete weter less			P partial water loss 5 Soft N none encountered F Firm St. Stiff			Dry Moist Wet plastic lit liquid lim	Dry Moist Wet plastic limit		ting on penatrometo and Shear mamic me enetrometer	Laboratory Results UC undrained unconsol coheston UF undrained unconsol friction angle MC moisture content DD dry density		
		GW well graded gravels SW well graded sands GP poorly graded gravels SP poorly graded sands GM eithy gravel SM sitty sands GC clayey gravel SC clayey sands ML inorg sits low plastic CL inorg clay low plastic MH inorg clay high plastic CI inorg clay med plastic			H Hard Density VL Very loose L Loose	Very stiff			penetrometer		LL liquid limit PL plastic limit LS linear shrinkage CC undrained console tobsalon CF undrained console friction angle FH falling head permeability CH constan head permeability CBS californian bearing ratio				

Page 4 of 10

about:blank 4/10

8	1	e	Resource Engineering Consultants B/355 Scarborough Beach Rd, Osborne Park, WA, 6017 Phone: (08) 6444 7988								Geotechnical Log - Borehole BH06					
UTM Easting Northing Ground Total De	(m) ; (m) Ellevation	: 51 : 260235.6 : 6940355, : 465.86 (m : 40,3 m 80	85 I)	Logg	Rig r Supplie ed By rwed By	: Joshua Blake : 10/01/2025			CII Pr Lo	b Number ient oject osation o Comma	: Bellev : TSF G : Bellev	rue Gold SII rue WA				
Drilling Mathod	Water	Depth (m)	Soil Origin	Graphic Log	Classification Code	Material Cescription		Moisture	Consistency	Sam La	pies SGn	Testing	N Value 0 10 20	Graph (9)	Field Records/Comments	
•		21	Duneruet 22		Durierust-SET, low plasti yallow, moist, stiff to very coarse grained sand, it gravel, presence of pale increases with depth, to it depth,		ery stiff, with fine to d, trace fine sized sale yellow material to 50-50 at ~20.5 m	fine to sized saterial		a⊩vsi		4.5.6 (N=11)	•			
- La DIAMAND (SOIL)		- 22 			CI CI	Saprolite- Sity CLAY, medium plasticity, pele green yellow, moist stiff to very stiff, with fine to medium grained sand, approximately 0.5 to 1m of transitional yellowish material between duriorust and presumed laterite.		W	SI-VSI		04	9,11,20 (N=31)				
¥		- 24				Commenced Corin	g at 24.4m					11,29,23 (N=>50)	000000000000000000000000000000000000000			
NE natur	noe bucket al exposur ng xcavatir	USC OF GW GP GM GC ML MH	Water inflo water level Classification well grade poodly gra sifty grave dayey gra inorg sits	w d gravels ded gravels l wel low plastic high plastic w plastic	P N SW SP SM SC CL Cl	Level during drilling partial water loss none encountered well graded sands poorly graded sends silty sands clayey sands linorg clay low plastic inorg clay high plastic inorg clay high plastic peet of high org soils	Consistency VS Very soft S Soft F Firm St Stiff VSt Very stiff H Hard Density VL Very loss L Loose MD Medium dense D Dense VD Very dense	B D U(63)	ure Dry Moist Wet plastic lim liquid limit amples bulk disturber U(53) pu water	f sh tube	VS VI	an penetromete ane shear ynamic ane enetrometer	OF UC U OF U MC n DD d LL li PL p LS li CC U CF U TH fc	ndrained unco noisture contei ny density quid limit lastic limit near shrinkagi ndrained cone	e sols cohesion sols friction angle rmeability permeability	

Page 5 of 10

about:blank 5/10

8	ľ	90	, E	3/355 Sca		n Beach Rd, O	Consultants sborne Park, WA,	6017			otechn BH06	ical L	.og - Bor	ehole
UTM : 51 Drill Rig : Easting (m) : 260235.68 Driller Supplier : Northing (m) : 6940355,85 Logged By : Joshus Blake Ground Elevation : 465.66 (m) Reviewed By : Total Depth : 40,3 m BGL Date : 10/01/2025						Job Number : P19=11=PR-30 Client : Bellevue Gold Project : TSF GSI Location : Bellevue WA Loc Comment :								
Drilling Method	Water	Depth (m)	Soil Origin	Graphic Log	Classification Code		Material Description		Weathering	MS Estimated HS Strength W46 Strength	Teeting	RQD% and TCR%	90 Defect Spacing (mm)	Defect Description
		-n												
		-												
		- 25												
PQ DIAMOND (ROCK)		24	Rock	A V A A V A A V A	N BAS	ROCK- BASALT medium strength moist, thin moderately was	ed Coring at 24.4m very fine to fine grained, i. distinctly weethered, in bends (~3 cm) of slightly athered basalt at 26,6 an accloration bands throug	distinct to d 26.9.	DW					_J, UN, VR, VN, C, fracture between two defects,
	oe bucket d exposure g xcavation	USC Class GW was GP po GM silt GC clas MH inco	00 00	avels gravels plastic plastic estic	Expension of the control of the cont	during drilling all water loss encountered graded sands by graded sands sands by sands clay low plastic clay med plastic clay high plastic of high org soils	Consistency VS Very soft S Soft F Firm St Stiff VSt Very stiff H Hard Density VL Very Joose L Loose MD Medium dense D Dense VD Very dense	M PL I	Dry Moist Wet plastic limit iquid limit	VS V	sting ion penatrome rans shear fynam x one conetrometer	UC UF MC DD LL SC CC FFH CH	undrained uncor	isol friction angle is so cohesion so friction angle meability rmeability

Page 6 of 10

about:blank 6/10

8	ľ	ec	E		borough	Beach Rd, O	Consultants	6017		Geotechnical Log - Borehole BH06				
UTM Easting (n Northing (Ground El Total Dept	m) :(levation : 4	260235.68 6940355 , 85		Drill Rig Driller Su Logged B Reviewed Date	pplier Y By	: : Joshus Blake : : 10/01/2025			Job Numb Client Project Location Loc Comm	: TSF 0	vue Gold SII vue WA			
Drilling Method	Water	Depth (m)	Soil Origin	Graphic Log	Classification Code		Material Description		×	MS Estimated HS Strength WHS EHE	Teeting	RGD% and TCR%	30 Defect Spacing (900 (mm)	Defect Description
PQ MANOND (ROCK)			Rock		BAS	medium strength moist, thin moderately wes	very fire to fine grained, in distinctly weathered, in bands (-3 cm) of slightly sthreed based at 2.6.6 and cooleration bands through	distinct, to d 26,9,	DW					
			Rock	V A VA	BAS	and grey, mediu	f: very fine to fine grainer m strongth, distinctly was it, darker discolouration.	sthered,	DW			10		
Method EX excevator BH backhoe bucket NE natural exposure EE existing xeavation RP ripper		Water Water Water inflow P Water level N Covation Water level N Water			P partia N none SW well g SP poorly SM silty s SC claye CL inorg	al water loss Soft M M M M M M M M M M M M M M M M M M M		Dry Moist Wet plastic limit iquid limit	VS V	ating on penatroma and shear ynamic one enetrometer	oter UC UF MC DD LL PL LS CC CF FH CH	undrained unor moisture conto dry density liquid limit plastic limit linear shrinkag undrained cont	ensol friction angle int sole cohesion sole friction angle rmeability	

Page 7 of 10

about:blank 7/10

8	116	20	S				Consultants	6017				ical l	_og - Bor	ehole
UTM Easting (m Northing (r Ground Els Total Dopti	m) :6 evation:4	940355,85		Phone: (08 Drill Rig Driller Sup Logged B Reviewed Date) 6444 7 oplier y				Job Numbe Client Project Location Loc Comm	: P19-11- : Bellevo : TSF GS : Bellevo	e Gold			
Drilling Method	Water	Depth (m)	Soil Origin	Graphic Log	Classification Code		Material Description		Weathering	NS Estimated Hs Strength VHS EHS	Teeting	RGD% and TCR%	30 Defect Spacing 300 (mm)	Defect Description
Pa DMANIOND (ROCK)			Rock		BAS	and grey, mediu indistinct, mois	Every fine to fine graines in strength, distinctly was to derker discolouration, colide bands as previous	sthered, similar	.DAY					J. 45° PL. VR. ST C. 1000m spacing joints.
Method EX excevat BH backhoo NE natural EE existing RP ripper	bucket exposure	water water USC Classif GW well GP poor GM silty GC clay ML innor OL org	er level	avels gravels plastic plastic estic	p partis N hone SW well (SP poor) SM silty: SC claye CL inorg CH inorg	during drilling if water loss encountered graded sands by graded sands sands clay low plastic clay med plastic clay high plastic of high org soils	Consistency VS Very soft S Soft F Firm St Stiff VSt Very stiff H Hard Density VL Very Jose L Loose L Loose D Dense VD Very dense	M A W V PL p LL li Soil Sam B D U(60)	ory toist Vet lastic limit quid limit	VS VSI dyr	n penetrome ne shear nem:c	UC UF MC DD IL IS CC CF FH CH	undrained uncor moisture centers dry density liquid limit plastic limit linear shrinkage undrained censu undrained censu falling head per	nsol friction angle t ole cohesion ole friction angle meability

Page 8 of 10

about:blank 8/10

03/2025, 16	29			TS	F GSI - BH	106		
81	'ec		borough	gineering Consultants Beach Rd, Osborne Park, WA, 6017 988			otechni 3H06	ical Log - Borehole
UTM Easting (m) Northing (m) Ground Elevatio Total Depth	: 51 : 260235.68 : 6940355,85 n : 465.86 (m) : 40,3 m BGL	Drill Rig Driller Su Logged E Reviewed Date	pplier ly i By	: : Joshus Bleke : : 10/01/2025	Client Projec Locati	Job Number : P15-11-PR-30 Client : Bellevue Gold Project : TSF GSI Location : Bellevue WA Loc Comment :		
Drilling Method	Depth (m)	Soil Origin Graphic Log	Clessification Code	Material Description	Weathering	LS Estimated HS Strength VNB	Testing	RGD% and TCR% so Defect Spacing som Defect Description
		A V A A A A A A A A A A A A A A A A A A	BAS	ROCK- BASALT: very fine to fine grained, khaki and gray, medium strength, distinctly wasthered, indistinct, moist, darker discolouration, similar red brown oxide bands as previous.	DW			
PQ MOND COCK)	- 37	V A W. V A W. V A W. V A W. V A W. V A W. V A W. V A W. V A W. V A W. V A W. V A W. V A W.		ROCK- BASALT fine grained, blue grey with pale brown, high strength, moderately weathered, indistinct, moist, heavily fractured throughout, rock component appears slightly to moderately weathered, sandy day infilis between fractures, extremely weathered between 35.3 to 35.7 m.				
Ç.		20 V A 20 V A 20 V A 20 V A 20 V A 20 V A 20 V A 20 V A 20 V A 20 V A 20 V A 20 V A 20 V A 20 V A 20 V A 20 V A 20 V A 20 V A 20 V A	BAS		MW			
sthod axcavator I backhoe buck	water le	flow	P partia	Consistency Moist during drilling V5 Very soft D I water loss S Soft M encountered F Firm W St Stiff Pt	are Dry Moist Wet plassic limit	VS V	en penetromet ane shear	UF undrained unconsol friction angle MC moisture content
E existing xcava	GW well go GP poorly GM sity go GC clayey ML inorg s	ded gravels reded gravels vel gravel ts low plastic	SP poorly SM sitty s SC clayer CL inorg	v graded sands v graded sands v graded sands ands v graded sands v Dentity v sands v L Very loose clay low plastic L Loose U(63)	liquid limit mples bulk disturbed U(63) push to	ube	one enetrometer	DD dry density LL liquid limit PL plastic limit LS linear shrinkage CC undrained console cohesion CF undrained console friction angle FM falling head permeability

Page 9 of 10

CH constan head permeability

CBR californian bearing ratio

about:blank 9/10

U(50) U(50) push tube

WS water

D Dense

VD Very dense

CH inorg clay high plastic

Pt peat of high org soils

OL org sits low plastic

OH arg sills high plastic

10	14	1	1
CX			L
		-	

Resource Engineering Consultants

B/355 Scarborough Beach Rd, Osborne Park, WA, 6017

Phone: (08) 6444 7988

Geotechnical Log - Borehole **BH06**

Drill Rig Job Number : P19-11-PR-30 Easting (m) : 260235.68 **Driller Supplier** Client : Bellevue Gold Northing (m) : 6940355.85 Logged By : Joshua Blake Project TSF GSI : Bellevue WA Ground Elevation : 465,86 (m) : 10/01/2025 Total Depth : 40,3 m BGL Date Loc Comment : Testing Material Description Defect Description and TCR% Î Soil Origin Chasification SPT Graph RGD% 3 3 3 4 5 3 AVA PO DIAMOND (POCK) ROCK- BASALT: fine grained, blue grey with pale brown, high strength, moderately weathered, indistinct, moist, heavily fractur Rock A V A BAS MW v BAS SW-F throughout, rock component appears slightly to moderately weathered, sandy day infills between fractures, extremely weathered between 35.3 to 35.7 m. . ROCE: 1565 Reministrate at 40 fine grey, very high to extremely high strength, sightly to fresh weathered, indistinct, moist, Method Water Maisture in Situ Testing Laboratory Results VS Dry UC undrained unconsol cohesion EX excavator complete water less ▼ Level during drilling Very soft pen penetrometer partial water loss Soft Moist ➤ Water inflow undrained unconsol friction angle BH backhoe bucket VS vane shear none encountered Firm Wet water level moisture content NE natural exposure dynamic Stiff plastic limit 5t dry density USC Classification EE existing xcavation u liquid Imit Very stiff penetrometer liquid limit GW well graded gravels SW well graded sands H Hard plastic limit Soil Samples poorly graded gravels poorly graded sands linear shrinkage Density GM sitty gravel SM silty sands B bulk CC undrained console cohesion GC dayey grave SC clayey sands VL Very loose CF undrained console friction angle inorg sits low plastic inorg clay low plastic U(63) U(63) push tube falling head permeability MH inorg day high plastic c) inorg clay med plastic MO Medium dense U(50) U(50) push tube org sits low plastic CH inorg clay high plastic Dense CH constan head permeability W5 water OH org sills high plastic Pt post of high org soils VD Very dense californian bearing ratio

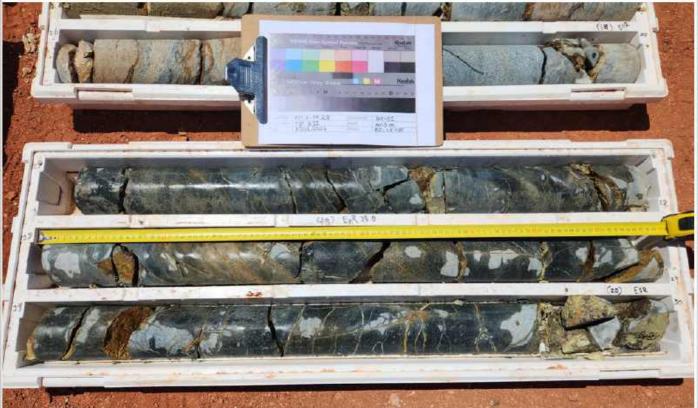
Page 10 of 10

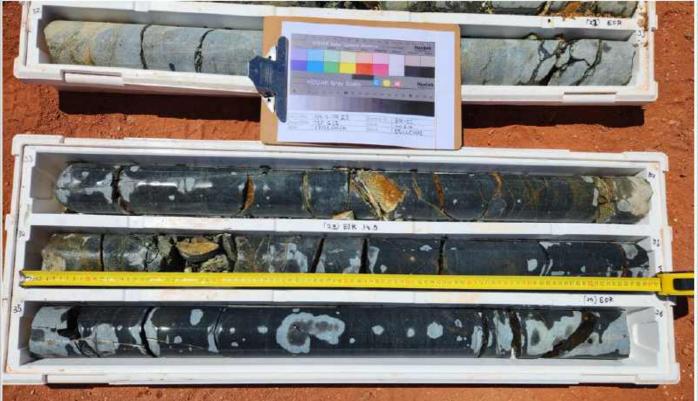
about:blank 10/10

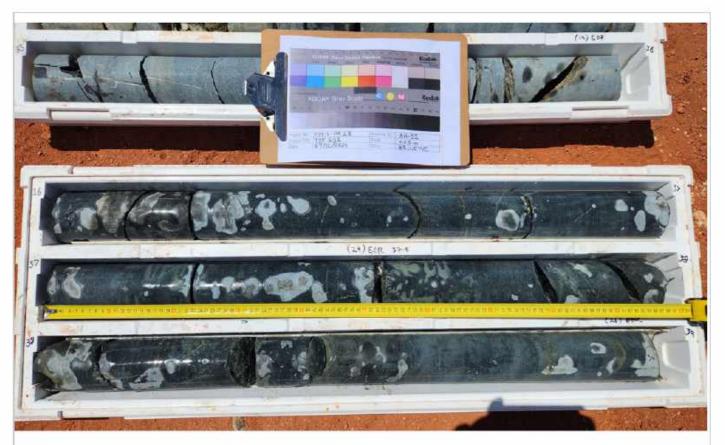
Appendix C

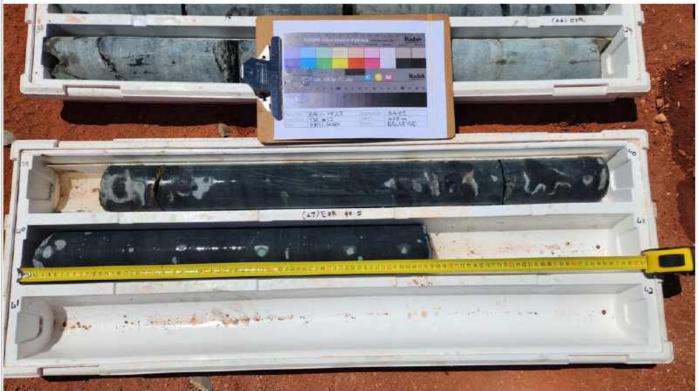

Geotechnical Field Investigation Borehole Drillings and Photographs

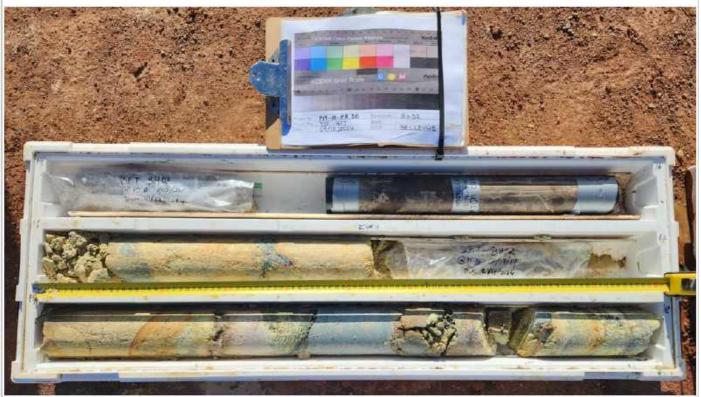
Reference: P19-11-PR-29-R01 Client: Bellevue Gold Limited



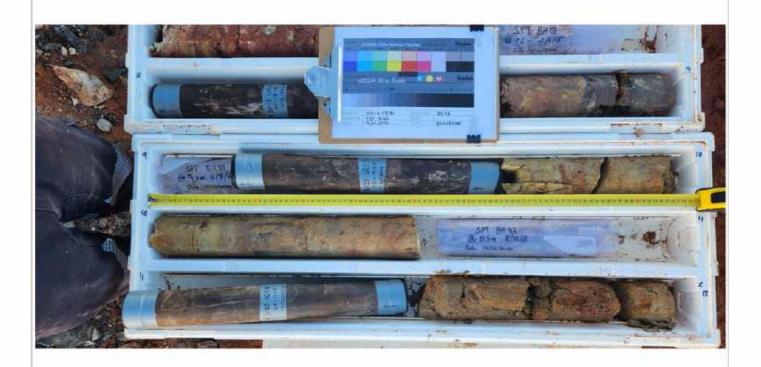


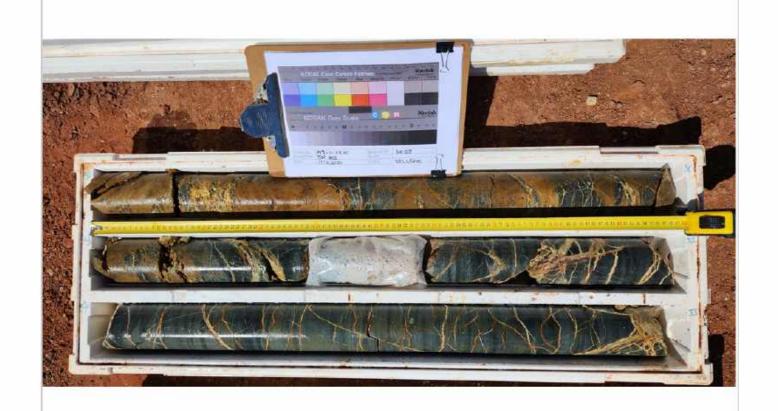


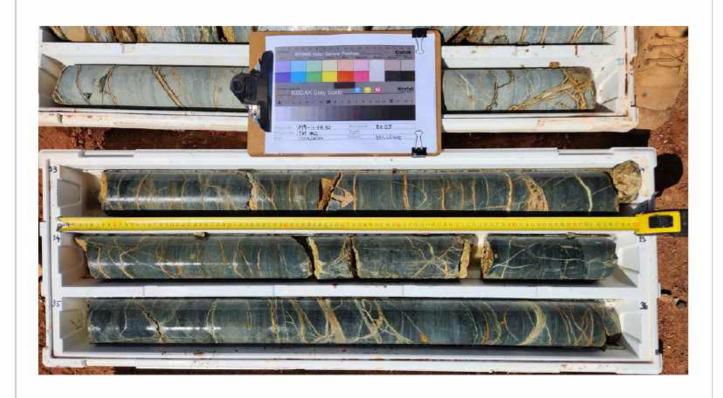


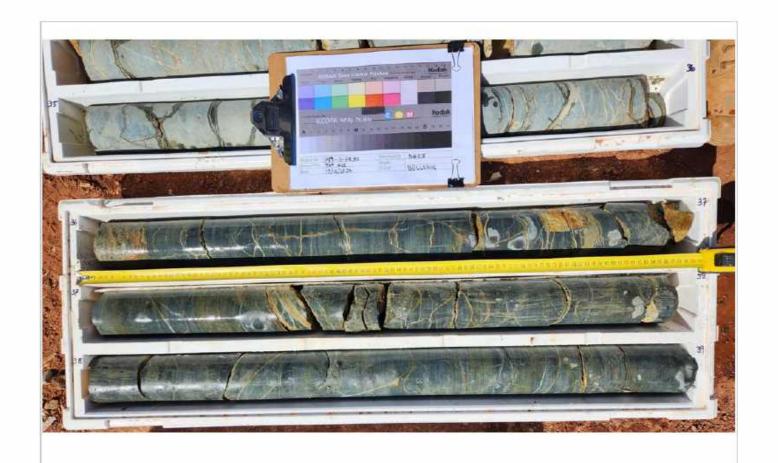


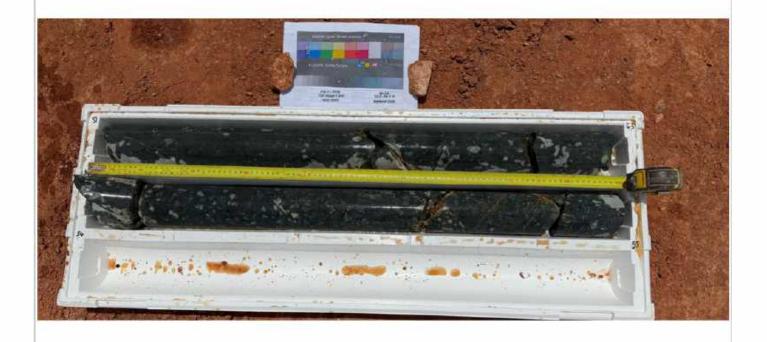




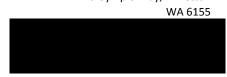








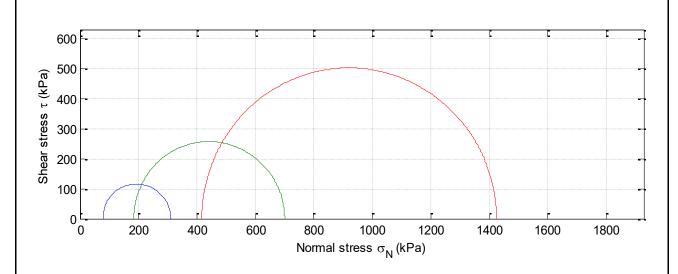




Appendix D

Geotechnical Laboratory Test Results and Certificates

Reference: P19-11-PR-29-R0'
Client: Bellevue Gold Limited


Method: AS1289.6.4.2 / In-house Method

Client:	REC		Date Teste	ed:	05/02/2025	
Project:	Bellevue TSF 2025	5	EP Lab Job	Number:	REC	
Sample No:	BH01-CB1		Lab:		EPLab	
Sample ID:	BH01-CB1_CU3					
Depth (m):	2.00 - 3.00		Room Ten	nperature at 1	Test:	~ 19°C
Tested by:	PHIL	Initial Moisture (%):	21.87	Strain Rat	e (mm/min):	0.006
Height (mm):	125.19	Final Moisture (%):	19.29	Ske	empton's (B):	1
Diameter (mm):	60.37	Bulk Density (t/m³):	1.82		Geology:	-

Dry Density (t/m³): 1.49

Failure Criteria used: Peak Principle Stress Ratio

Mohr Circle Diagram

Interpretations conducted using Matlab

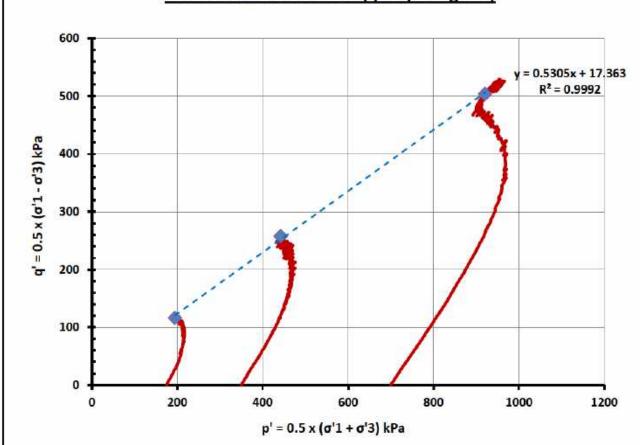
Interpretation from Mohr Circle:	Stages 1 / 2	Stages 1/3	Stage 2/3
Cohesion C' (kPa):	6.46	15.15	36.38
Angle of Shear Resistance Φ' (Degrees):	34.99	32.21	30.96

L/D Ratio:

2.07

Method: AS1289.6.4.2 / In-house Method

 Client:
 REC
 Date Tested:
 05/02/2025


 Project:
 Bellevue TSF 2025
 EP Lab Job Number:
 REC

 Sample No:
 BH01-CB1
 Lab:
 EPLab

Sample ID: BH01-CB1_CU3

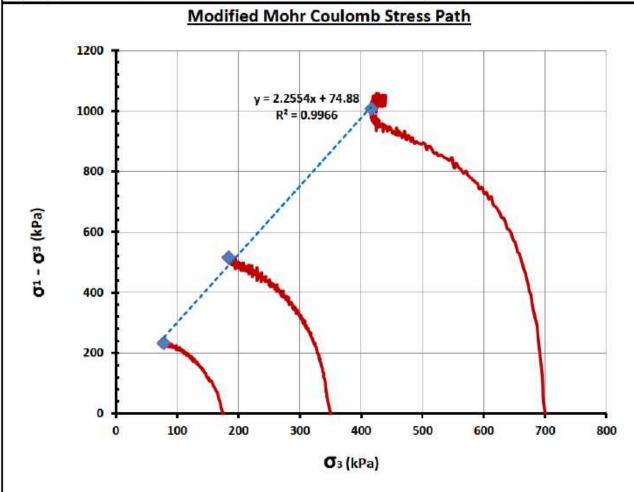
Depth (m): 2.00 - 3.00 Room Temperature at Test: ~ 19°C

MIT Effective Stress Path (q' vs p' diagram)

MIT Stress Path - Using Stress Path Tangency Method

Cohesion C' (kPa) : 20.47 Angle of Shear Resistance Φ' (Deg) : 32.01

Method: AS1289.6.4.2 / In-house Method


 Client:
 REC
 Date Tested:
 05/02/2025

 Project:
 Bellevue TSF 2025
 EP Lab Job Number:
 REC

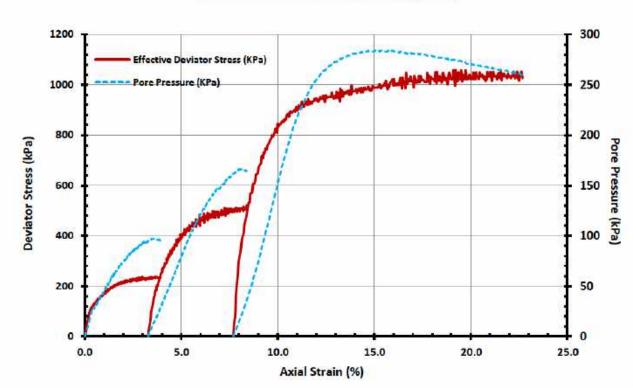
 Sample No:
 BH01-CB1
 Lab:
 EPLab

Sample ID: BH01-CB1_CU3

Depth (m): 2.00 - 3.00 Room Temperature at Test: ~ 19°C

Modified Mohr Coulomb Path - Using Stress Path Tangency Method

Cohesion C' (kPa) : 20.74 Angle of Shear Resistance Φ' (Deg) : 32.04


Method: AS1289.6.4.2 / In-house Method

REC 05/02/2025 Client: Date Tested: Project: Bellevue TSF 2025 EP Lab Job Number: REC Sample No: BH01-CB1 Lab: **EPLab**

Sample ID: BH01-CB1_CU3

Depth (m): 2.00 - 3.00 Room Temperature at Test: ~ 19°C

Deviator Stress Vs Strain Diagram

SHEAR STAGE DATA AND STRESS MEASUREMENTS (kPa)

Shear Stage	Confining	U'o	U'f	Principal Effective Stresses			-11-	C1 - 10(1)
	Pressure			σ'1	σ'3	σ'1/σ'3	σ'1 - σ'3	Strain (%)
1	175	0	97	311	78	3.99	233	3.73
2	350	0	166	700	184	3.80	516	8.22
3	700	0	283	1424	417	3.42	1007	16.23

Method: AS1289.6.4.2 / In-house Method

Client:RECDate Tested:05/02/2025Project:Bellevue TSF 2025EP Lab Job Number:RECSample No:BH01-CB1Lab:EPLab

Sample ID: BH01-CB1_CU3

Depth (m): 2.00 - 3.00 Room Temperature at Test: ~ 19°C

Photo After Test

 Sample ID:
 BH01-CB1
 Depth (m):
 2.00 - 3.00

 Lab ID:
 BH01-CB1_CU3
 Date Tested:
 05/02/2025

Failure Mode: Intact Shear 32.6 °

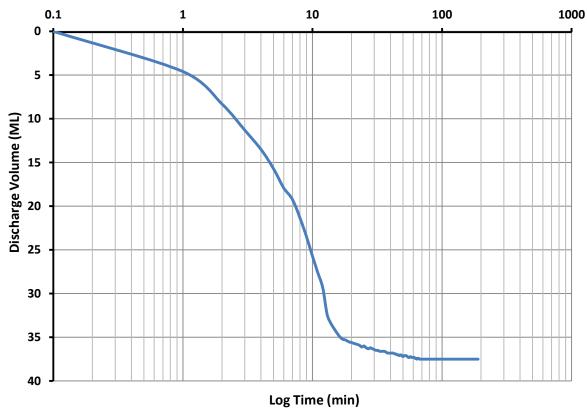
Notes:

Stored and Tested the Sample as received Samples supplied by the Client

Authorised Signatory (Geotechnical Engineer):

The results of tests performed apply only to the specific sample at time of test unless otherwise clearly stated. Reference should be made to E-Precision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431 559 578 87

Method: AS1289.6.4.2 / In-house Method


Client:RECDate Tested:05/02/2025Project:Bellevue TSF 2025EP Lab Job Number:REC

Sample No: BH01-CB1 Lab: EPLab

Sample ID: BH01-CB1_CU3

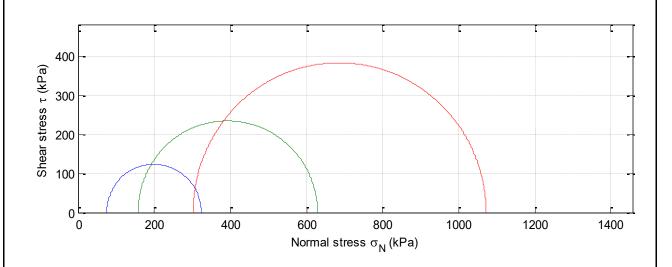
Depth (m): 2.00 - 3.00 Room Temperature at Test: ~ 19°C

Discharge Volume (ML) Vs Log Time (min)

Cv (cm²/s):

0.065

based on t₉₀



Method: AS1289.6.4.2 / In-house Method

Client:	REC		Date Tested	d: 05/	02/2025	
Project:	Bellevue TSF 2025	;	EP Lab Job	Number:	REC	
Sample No:	BH01-CB3		Lab:		EPLab	
Sample ID:	BH01-CB3_CU3					
Depth (m):	8.60 - 8.80		Room Tem	perature at Test:		~ 19°C
Tested by:	PHIL	Initial Moisture (%):	12.64	Strain Rate (m	m/min):	0.006
Height (mm):	126.75	Final Moisture (%):	11.44	Skempt	on's (B):	1
Diameter (mm):	61.78	Bulk Density (t/m³):	1.81	(Geology:	-
L/D Ratio:	2.05	Dry Density (t/m³):	1.60			

Failure Criteria used: Peak Principle Stress Ratio

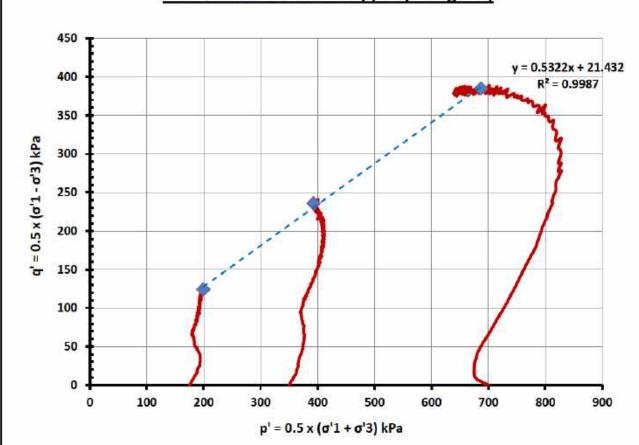
Mohr Circle Diagram

Interpretations conducted using Matlab

Interpretation from Mohr Circle:	Stages 1 / 2	Stages 1/3	Stage 2 / 3
Cohesion C' (kPa):	11.68	21.17	42.72
Angle of Shear Resistance Φ' (Degrees):	35.37	32.21	30.54

Method: AS1289.6.4.2 / In-house Method

 Client:
 REC
 Date Tested:
 05/02/2025


 Project:
 Bellevue TSF 2025
 EP Lab Job Number:
 REC

 Sample No:
 BH01-CB3
 Lab:
 EPLab

Sample ID: BH01-CB3_CU3

Depth (m): 8.60 - 8.80 Room Temperature at Test: ~ 19°C

MIT Effective Stress Path (q' vs p' diagram)

MIT Stress Path - Using Stress Path Tangency Method

Cohesion C' (kPa) : 25.27 Angle of Shear Resistance Φ' (Deg) : 32.01

Method: AS1289.6.4.2 / In-house Method

 Client:
 REC
 Date Tested:
 05/02/2025

 Project:
 Bellevue TSF 2025
 EP Lab Job Number:
 REC

 Sample No:
 BH01-CB3
 Lab:
 EPLab

Sample ID: BH01-CB3_CU3

Depth (m): 8.60 - 8.80 Room Temperature at Test: ~ 19°C

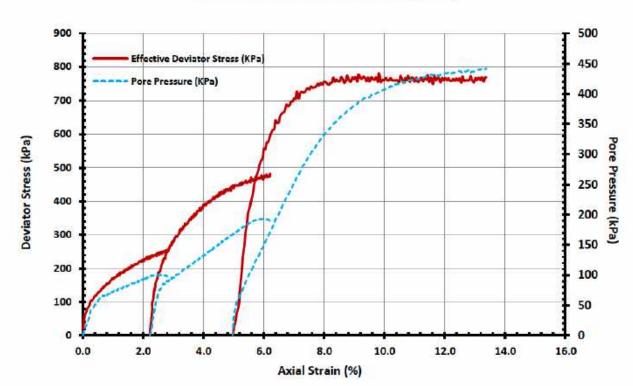
Modified Mohr Coulomb Stress Path 900 800 r = 2.2685x + 92.881 $R^2 = 0.9942$ 700 600 500 01 - 03 (kPa) 400 300 200 100 0 0 100 200 300 400 500 600 700 800 σ₃ (kPa)

Modified Mohr Coulomb Path - Using Stress Path Tangency Method

Cohesion C' (kPa) : 25.68 Angle of Shear Resistance Φ' (Deg) : 32.11

Method: AS1289.6.4.2 / In-house Method

 Client:
 REC
 Date Tested:
 05/02/2025


 Project:
 Bellevue TSF 2025
 EP Lab Job Number:
 REC

 Sample No:
 BH01-CB3
 Lab:
 EPLab

Sample ID: BH01-CB3_CU3

Depth (m): 8.60 - 8.80 Room Temperature at Test: ~ 19°C

Deviator Stress Vs Strain Diagram

SHEAR STAGE DATA AND STRESS MEASUREMENTS (kPa)

Shear Stage	Confining	U'o	U'f	Principal Effective Stresses			-11-	C1 - 10()
	Pressure			σ'1	σ'3	σ'1/σ'3	σ'1 - σ'3	Strain (%)
1	175	0	100	324	75	4.31	249	2.64
2	350	0	193	629	157	4.00	472	6.06
3	700	0	398	1072	302	3.55	770	9.57

Method: AS1289.6.4.2 / In-house Method

Client:RECDate Tested:05/02/2025Project:Bellevue TSF 2025EP Lab Job Number:RECSample No:BH01-CB3Lab:EPLab

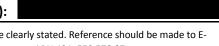
Sample ID: BH01-CB3_CU3

Depth (m): 8.60 - 8.80 Room Temperature at Test: ~ 19°C

Photo After Test

 Sample ID:
 BH01-CB3
 Depth (m):
 8.60 - 8.80

 Lab ID:
 BH01-CB3_CU3
 Date Tested:
 05/02/2025

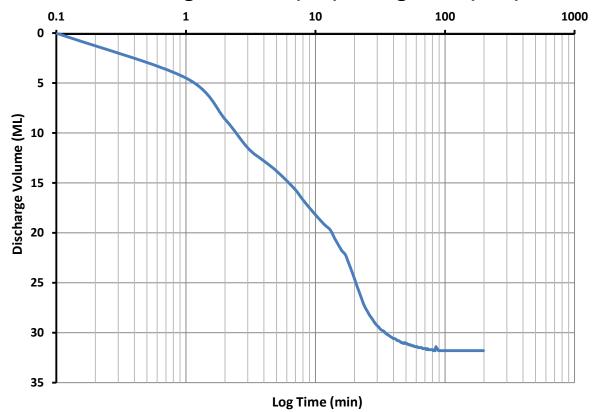


Failure Mode: Bulging N/A °

Notes:

Stored and Tested the Sample as received Samples supplied by the Client

Authorised Signatory (Geotechnical Engineer):


Method: AS1289.6.4.2 / In-house Method

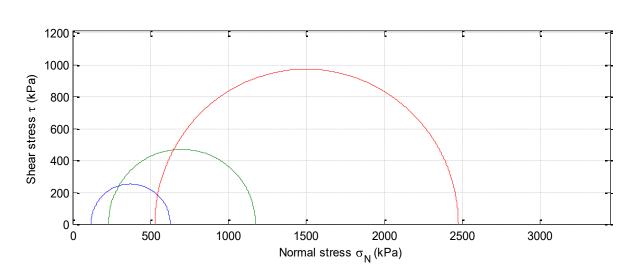
Client:RECDate Tested:05/02/2025Project:Bellevue TSF 2025EP Lab Job Number:RECSample No:BH01-CB3Lab:EPLab

Sample ID: BH01-CB3_CU3

Depth (m): 8.60 - 8.80 Room Temperature at Test: ~ 19°C

Discharge Volume (ML) Vs Log Time (min)

Cv (cm 2 /s): 0.049 based on t_{90}



Client:	REC		Date Tested	: 05/02/20	025
Project:	Bellevue TSF 2025	i	EP Lab Job N	lumber: F	REC
Sample No:	BH01-CB5		Lab:	EP	Lab
Sample ID:	BH01-CB5_CU3				
Depth (m):	16		Room Temp	erature at Test:	~ 19°C
Tested by:	PHIL	Initial Moisture (%):	8.20	Strain Rate (mm/m	in): 0.006
Height (mm):	165.29	Final Moisture (%):	19.93	Skempton's	(B):
Diameter (mm):	82.18	Bulk Density (t/m³):	2.17	Geolo	ogy:

Failure Criteria used: Peak Principle Stress Ratio

Dry Density (t/m^3) : 2.00

Mohr Circle Diagram

Interpretations conducted using Matlab

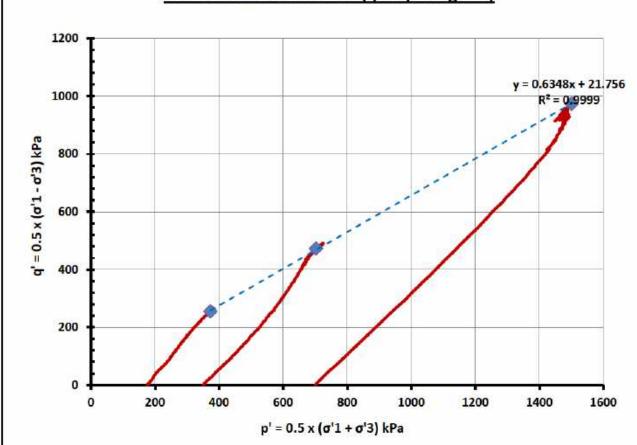
Interpretation from Mohr Circle:	Stages 1 / 2	Stages 1/3	Stage 2/3
Cohesion C' (kPa):	11.69	22.72	41.09
Angle of Shear Resistance Φ' (Degrees):	41.35	39.69	38.66

L/D Ratio:

2.01

Method: AS1289.6.4.2 / In-house Method

 Client:
 REC
 Date Tested:
 05/02/2025


 Project:
 Bellevue TSF 2025
 EP Lab Job Number:
 REC

 Sample No:
 BH01-CB5
 Lab:
 EPLab

Sample ID: BH01-CB5_CU3

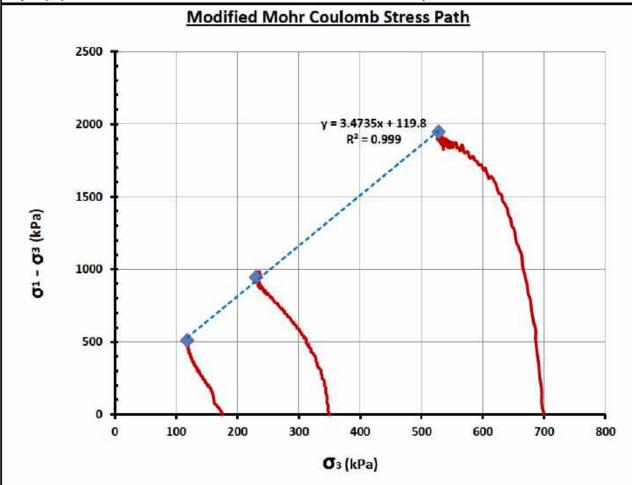
Depth (m): 16 Room Temperature at Test: ~ 19°C

MIT Effective Stress Path (q' vs p' diagram)

MIT Stress Path - Using Stress Path Tangency Method

Cohesion C' (kPa) : 28.02 Angle of Shear Resistance Φ' (Deg) : 39.05

Method: AS1289.6.4.2 / In-house Method


 Client:
 REC
 Date Tested:
 05/02/2025

 Project:
 Bellevue TSF 2025
 EP Lab Job Number:
 REC

 Sample No:
 BH01-CB5
 Lab:
 EPLab

Sample ID: BH01-CB5_CU3

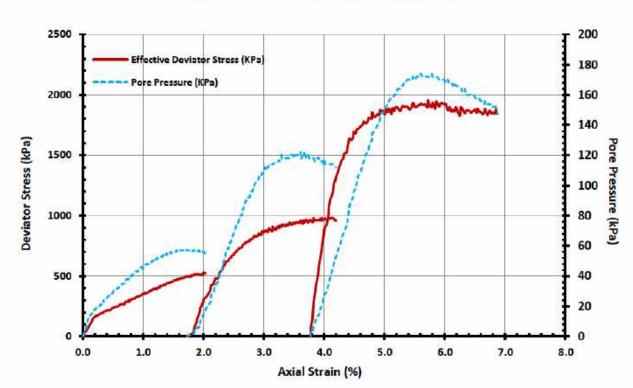
Depth (m): 16 Room Temperature at Test: ~ 19°C

Modified Mohr Coulomb Path - Using Stress Path Tangency Method

Cohesion C' (kPa) : 28.33 Angle of Shear Resistance Φ' (Deg) : 39.37

Method: AS1289.6.4.2 / In-house Method

 Client:
 REC
 Date Tested:
 05/02/2025


 Project:
 Bellevue TSF 2025
 EP Lab Job Number:
 REC

 Sample No:
 BH01-CB5
 Lab:
 EPLab

Sample ID: BH01-CB5_CU3

Depth (m): 16 Room Temperature at Test: ~ 19°C

Deviator Stress Vs Strain Diagram

SHEAR STAGE DATA AND STRESS MEASUREMENTS (kPa)

cl cı	Confining	10.	int.	Principa	Principal Effective Stresses			
Shear Stage	Pressure	U'o	U'f	σ'1	σ '3	σ'1/σ'3	σ'1 - σ'3	Strain (%)
1	175	0	57	628	118	5.32	510	1.86
2	350	0	120	1175	230	5.11	945	3.68
3	700	0	172	2475	528	4.69	1947	5.86

Method: AS1289.6.4.2 / In-house Method

Client:RECDate Tested:05/02/2025Project:Bellevue TSF 2025EP Lab Job Number:RECSample No:BH01-CB5Lab:EPLab

Sample ID: BH01-CB5_CU3

Depth (m): 16 Room Temperature at Test: ~ 19°C

Photo After Test

 Sample ID:
 BH01-CB5
 Depth (m):
 1900/1/16

 Lab ID:
 BH01-CB5_CU3
 Date Tested:
 05/02/2025

Failure Mode: Intact Shear 38.6 °

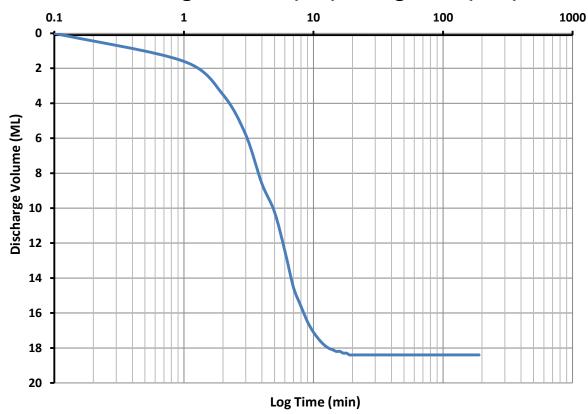
Notes:

Stored and Tested the Sample as received Samples supplied by the Client

Authorised Signatory (Geotechnical Engineer):

The results of tests performed apply only to the specific sample at time of test unless otherwise clearly stated. Reference should be made to E-Precision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431 559 578 87

Method: AS1289.6.4.2 / In-house Method


Date Tested: Client: **REC** 05/02/2025 Project: Bellevue TSF 2025 EP Lab Job Number: **REC EPLab**

Sample No: BH01-CB5 Sample ID: BH01-CB5_CU3

Depth (m): ~ 19°C 16 Room Temperature at Test:

Discharge Volume (ML) Vs Log Time (min)

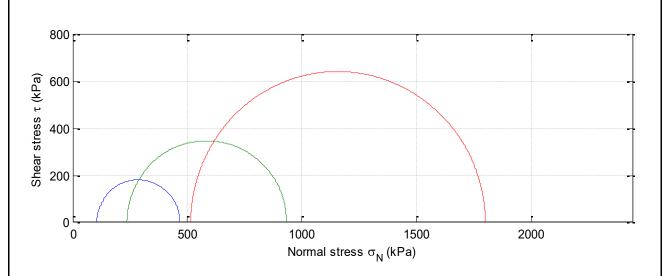
Lab:

Cv (cm²/s):

0.708

based on t₉₀

Client:	REC	Date Tested:	05/02/2025
Project:	Bellevue TSF 2025	EP Lab Job Number:	REC
Sample No:	BH01-UDS02	Lab:	EPLab


Sample ID: BH01-UDS02_CU3

Depth (m): 4.95 - 5.30 Room Temperature at Test: ~ 19°C

Tested by:	PHIL	Initial Moisture (%):	27.78	Strain Rate (mm/min):	0.006
Height (mm):	125.23	Final Moisture (%):	28.49	Skempton's (B):	1
Diameter (mm):	62.45	Bulk Density (t/m³):	2.19	Geology:	-
L/D Ratio:	2.01	Dry Density (t/m³):	1.71		

Failure Criteria used: Peak Principle Stress Ratio

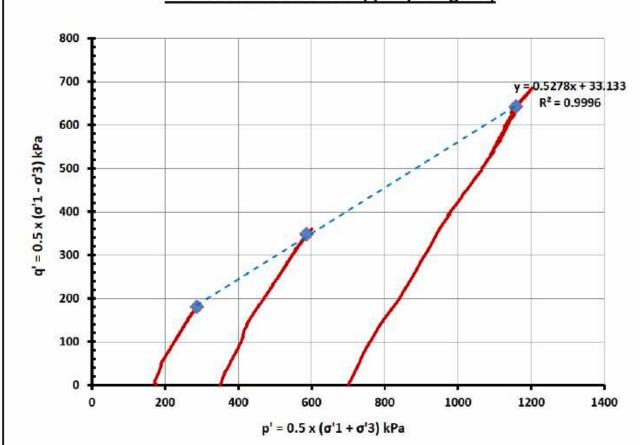
Mohr Circle Diagram

Interpretations conducted using Matlab

Interpretation from Mohr Circle:	Stages 1 / 2	Stages 1/3	Stage 2 / 3
Cohesion C' (kPa):	24.96	34.13	54.02
Angle of Shear Resistance Φ' (Degrees):	33.82	31.80	30.96

Method: AS1289.6.4.2 / In-house Method

 Client:
 REC
 Date Tested:
 05/02/2025


 Project:
 Bellevue TSF 2025
 EP Lab Job Number:
 REC

 Sample No:
 BH01-UDS02
 Lab:
 EPLab

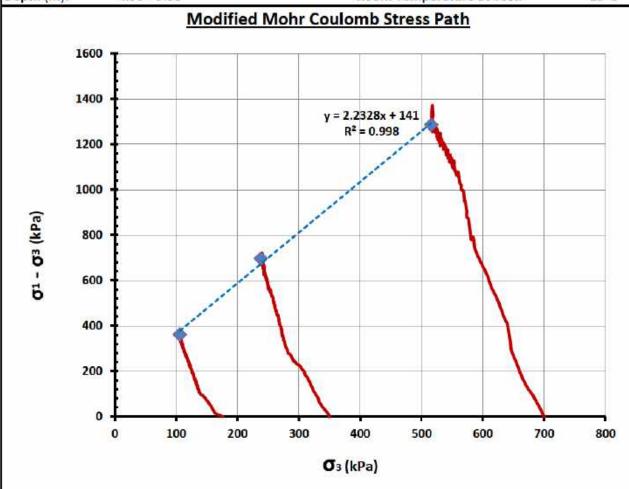
Sample ID: BH01-UDS02_CU3

Depth (m): 4.95 - 5.30 Room Temperature at Test: ~ 19°C

MIT Effective Stress Path (q' vs p' diagram)

MIT Stress Path - Using Stress Path Tangency Method

Cohesion C' (kPa) : 39.07 Angle of Shear Resistance Φ' (Deg) : 32.01



Method: AS1289.6.4.2 / In-house Method

Client: REC Date Tested: 05/02/2025 Project: Bellevue TSF 2025 EP Lab Job Number: REC Sample No: BH01-UDS02 Lab: **EPLab**

Sample ID: BH01-UDS02_CU3

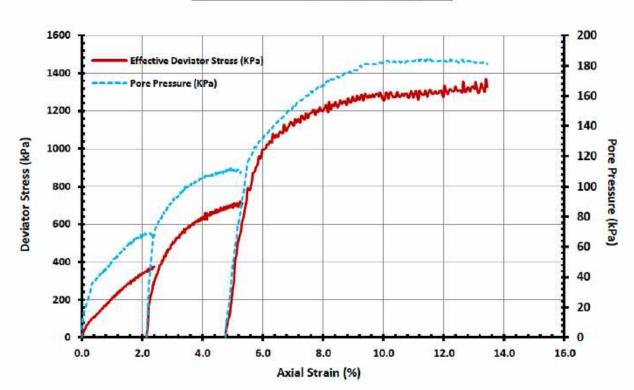
Depth (m): 4.95 - 5.30 Room Temperature at Test: ~ 19°C

Modified Mohr Coulomb Path - Using Stress Path Tangency Method

Cohesion C' (kPa): 39.23 Angle of Shear Resistance Φ' (Deg): 31.82

Method: AS1289.6.4.2 / In-house Method

 Client:
 REC
 Date Tested:
 05/02/2025


 Project:
 Bellevue TSF 2025
 EP Lab Job Number:
 REC

 Sample No:
 BH01-UDS02
 Lab:
 EPLab

Sample ID: BH01-UDS02_CU3

Depth (m): 4.95 - 5.30 Room Temperature at Test: ~19°C

Deviator Stress Vs Strain Diagram

SHEAR STAGE DATA AND STRESS MEASUREMENTS (kPa)

Chara Chara	Confining	III.	1112	Principa	Principal Effective Stresses		بيدع جام جام	C4:- (0/)
Shear Stage	Pressure	Pressure U'0	U'f	σ'1	σ'3	σ'1/σ'3	σ'1 - σ'3	Strain (%)
1	175	0	69	468	106	4.41	362	2.27
2	350	0	112	934	238	3.92	696	4.94
3	700	0	184	1801	516	3.49	1285	11.36

Method: AS1289.6.4.2 / In-house Method

Client:RECDate Tested:05/02/2025Project:Bellevue TSF 2025EP Lab Job Number:RECSample No:BH01-UDS02Lab:EPLab

Sample ID: BH01-UDS02_CU3

Depth (m): 4.95 - 5.30 Room Temperature at Test: ~ 19°C

Photo After Test

 Sample ID:
 BH01-UDS02
 Depth (m):
 4.95 - 5.30

 Lab ID:
 BH01-UDS02_CU3
 Date Tested:
 05/02/2025

Failure Mode: Intact Shear 32.5 °

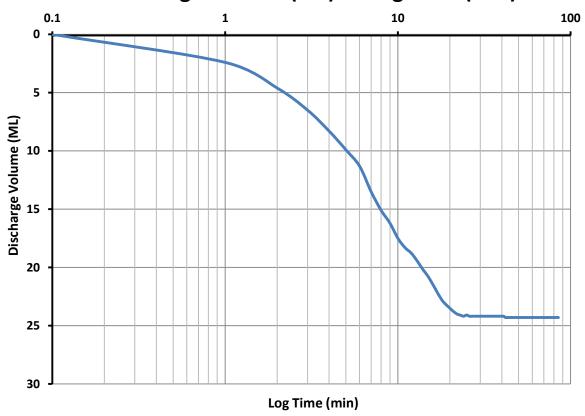
Notes: Sample extracted from Shelby Tube

Stored and Tested the Sample as received

Samples supplied by the Client

Authorised Signatory (Geotechnical Engineer):

The results of tests performed apply only to the specific sample at time of test unless otherwise clearly stated. Reference should be made to E-Precision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431 559 578 87


Method: AS1289.6.4.2 / In-house Method

Date Tested: Client: **REC** 05/02/2025 Project: Bellevue TSF 2025 EP Lab Job Number: **REC EPLab** Sample No: BH01-UDS02 Lab:

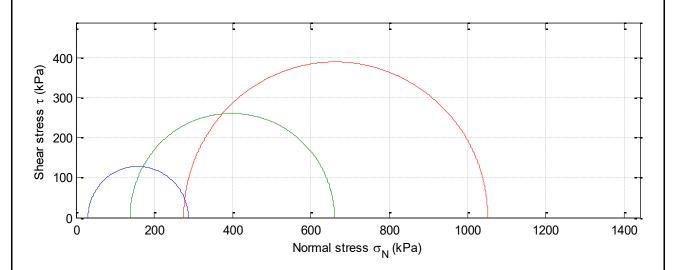
Sample ID: BH01-UDS02_CU3

Depth (m): 4.95 - 5.30 ~ 19°C Room Temperature at Test:

Discharge Volume (ML) Vs Log Time (min)

Cv (cm²/s):

0.054


based on t₉₀

Client:	REC		Date Tested	d: 05/02/202	25
Project:	Bellevue TSF 2025		EP Lab Job I	Number: RE	:C
Sample No:	BH02-UDS02		Lab:	EPLa	nb
Sample ID:	BH02-UDS02_CU3				
Depth (m):	9.50 - 9.79		Room Temp	perature at Test:	~ 19°C
Tested by:	PHIL	Initial Moisture (%):	36.62	Strain Rate (mm/min): 0.006
Height (mm):	125.33	Final Moisture (%):	25.85	Skempton's (B	3): 1
Diameter (mm):	60.16	Bulk Density (t/m³):	1.94	Geolog	y: -
L/D Ratio:	2.08	Dry Density (t/m³):	1.42		

Failure Criteria used: Peak Principle Stress Ratio

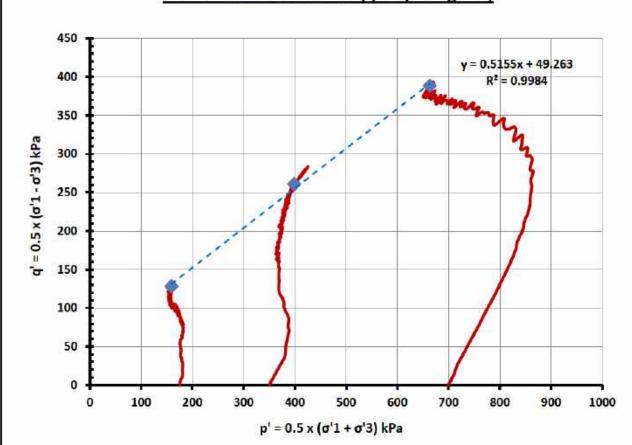
Mohr Circle Diagram

Interpretations conducted using Matlab

Interpretation from Mohr Circle:	Stages 1 / 2	Stages 1/3	Stage 2/3
Cohesion C' (kPa):	47.92	53.59	78.37
Angle of Shear Resistance Φ' (Degrees):	33.82	30.96	28.81

Method: AS1289.6.4.2 / In-house Method

 Client:
 REC
 Date Tested:
 05/02/2025


 Project:
 Bellevue TSF 2025
 EP Lab Job Number:
 REC

 Sample No:
 BH02-UDS02
 Lab:
 EPLab

Sample ID: BH02-UDS02_CU3

Depth (m): 9.50 - 9.79 Room Temperature at Test: ~ 19°C

MIT Effective Stress Path (q' vs p' diagram)

MIT Stress Path - Using Stress Path Tangency Method

Cohesion C' (kPa) : 57.67 Angle of Shear Resistance Φ' (Deg) : 31.33

Method: AS1289.6.4.2 / In-house Method

 Client:
 REC
 Date Tested:
 05/02/2025

 Project:
 Bellevue TSF 2025
 EP Lab Job Number:
 REC

 Sample No:
 BH02-UDS02
 Lab:
 EPLab

Sample ID: BH02-UDS02_CU3

Depth (m): 9.50 - 9.79 Room Temperature at Test: ~ 19°C

Modified Mohr Coulomb Stress Path 900 y = 2.1208x + 204.44 800 $R^2 = 0.9933$ 700 600 500 01 - 03 (kPa) 400 300 200 100 0 100 200 300 400 500 600 700 800 0 O₃ (kPa)

Modified Mohr Coulomb Path - Using Stress Path Tangency Method

Cohesion C' (kPa) : 57.87 Angle of Shear Resistance Φ ' (Deg) : 30.97

Method: AS1289.6.4.2 / In-house Method

REC 05/02/2025 Client: Date Tested: Bellevue TSF 2025 Project: EP Lab Job Number: REC Sample No: BH02-UDS02 Lab: **EPLab**

Sample ID: BH02-UDS02_CU3

Depth (m): 9.50 - 9.79 Room Temperature at Test: ~ 19°C

Deviator Stress Vs Strain Diagram 900 450 Effective Deviator Stress (KPa) 800 400 Pore Pressure (KPa) 700 350 600 300 Deviator Stress (kPa) 250 500 200 400 150 300 200 100 100 50 0 0.0 2.0 4.0 8.0 10.0 12.0 14.0 16.0 Axial Strain (%)

SHEAR STAGE DATA AND STRESS MEASUREMENTS (kPa)

ci ci	Confining	III.	100	Principal Effective Stresses		_lle_ :	C1 - 10/1	
Shear Stage	Pressure	U'o	U'f -	σ'1	♂ '3	σ'1/σ'3	σ'1 - σ'3	Strain (%)
1	175	0	144	287	31	9.27	256	5.07
2	350	0	212	660	138	4.78	522	7.09
3	700	0	425	1052	275	3.83	777	13.05

Method: AS1289.6.4.2 / In-house Method

Client:RECDate Tested:05/02/2025Project:Bellevue TSF 2025EP Lab Job Number:RECSample No:BH02-UDS02Lab:EPLab

Sample ID: BH02-UDS02_CU3

Depth (m): 9.50 - 9.79 Room Temperature at Test: ~ 19°C

Photo After Test

 Sample ID:
 BH02-UDS02
 Depth (m):
 9.50 - 9.79

 Lab ID:
 BH02-UDS02_CU3
 Date Tested:
 05/02/2025

Failure Mode: Intact Shear 33.1 °

Notes: Sample remolded to insitu density as received

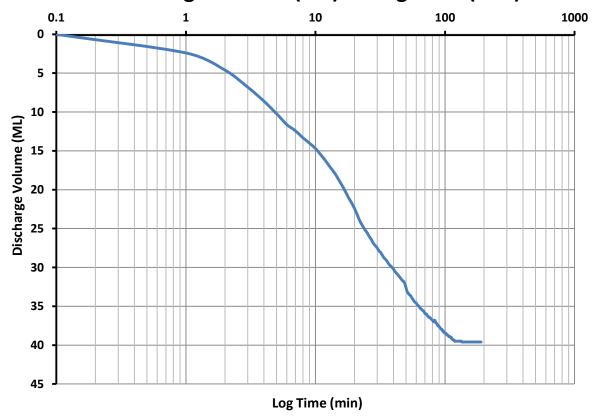
Stored and Tested the Sample as received

Samples supplied by the Client

Authorised Signatory (Geotechnical Engineer):

The results of tests performed apply only to the specific sample at time of test unless otherwise cle

Precision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431 559 578 87


Method: AS1289.6.4.2 / In-house Method

Date Tested: Client: **REC** 05/02/2025 Project: Bellevue TSF 2025 EP Lab Job Number: **REC EPLab** Sample No: BH02-UDS02 Lab:

Sample ID: BH02-UDS02_CU3

Depth (m): 9.50 - 9.79 ~ 19°C Room Temperature at Test:

Discharge Volume (ML) Vs Log Time (min)

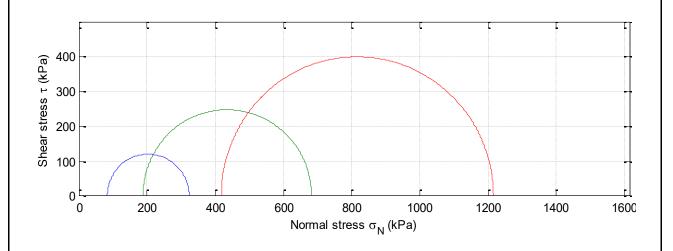
Cv (cm²/s):

0.035

based on t₉₀

Method: AS1289.6.4.2 / In-house Method

Client:	REC	Date Tested:	05/02/2025
Project:	Bellevue TSF 2025	EP Lab Job Number:	REC
Sample No:	BH02-UDS03	Lab:	EPLab


Sample ID: BH02-UDS03_CU3

Depth (m): 11.00 - 11.39 Room Temperature at Test: ~ 19°C

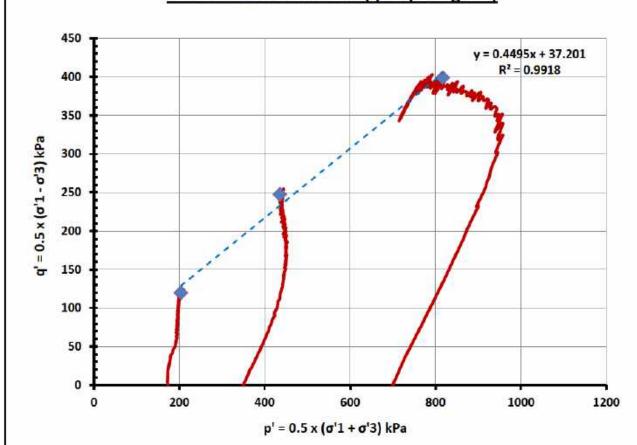
Tested by:	PHIL	Initial Moisture (%):	30.54	Strain Rate (mm/min):	0.006
Height (mm):	125.02	Final Moisture (%):	23.67	Skempton's (B):	1
Diameter (mm):	62.91	Bulk Density (t/m³):	1.88	Geology:	-
L/D Ratio:	1.99	Dry Density (t/m³):	1.44		

Failure Criteria used: Peak Principle Stress Ratio

Mohr Circle Diagram

Interpretations conducted using Matlab

Interpretation from Mohr Circle:	Stages 1 / 2	Stages 1/3	Stage 2 / 3
Cohesion C' (kPa):	9.16	30.49	81.24
Angle of Shear Resistance Φ' (Degrees):	33.42	27.02	23.27


Method: AS1289.6.4.2 / In-house Method

Client: REC Date Tested: 05/02/2025 Bellevue TSF 2025 Project: EP Lab Job Number: REC BH02-UDS03 **EPLab** Sample No: Lab:

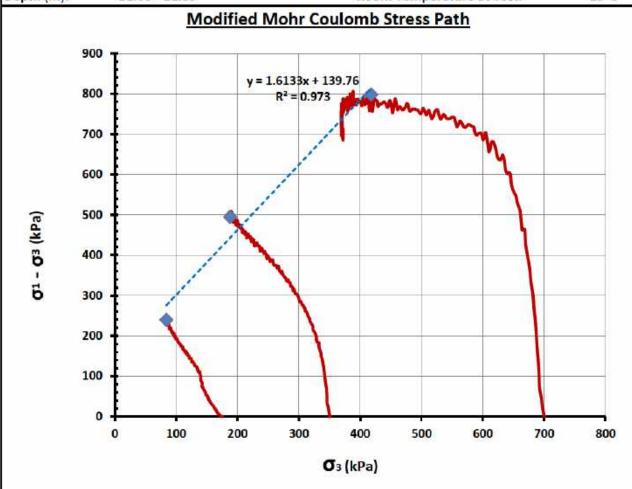
Sample ID: BH02-UDS03_CU3

Depth (m): 11.00 - 11.39 Room Temperature at Test: ~ 19°C

MIT Effective Stress Path (q' vs p' diagram)

MIT Stress Path - Using Stress Path Tangency Method

Cohesion C' (kPa): 41.66 Angle of Shear Resistance Φ' (Deg): 26.74



Method: AS1289.6.4.2 / In-house Method

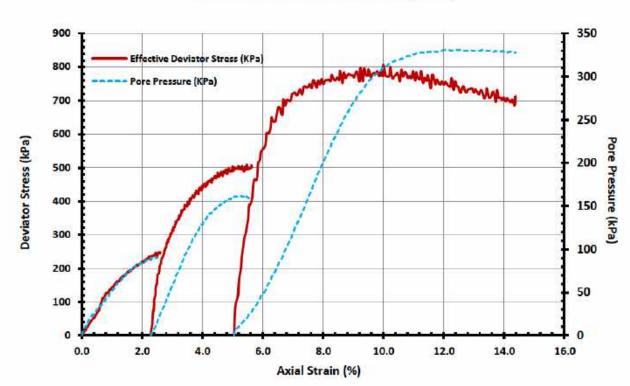
Client: REC Date Tested: 05/02/2025 Project: Bellevue TSF 2025 EP Lab Job Number: REC Sample No: BH02-UDS03 Lab: **EPLab**

Sample ID: BH02-UDS03_CU3

Depth (m): 11.00 - 11.39 Room Temperature at Test: ~ 19°C

Modified Mohr Coulomb Path - Using Stress Path Tangency Method

Cohesion C' (kPa): 43.25 Angle of Shear Resistance Φ' (Deg): 26.49


Method: AS1289.6.4.2 / In-house Method

REC 05/02/2025 Client: Date Tested: Project: Bellevue TSF 2025 EP Lab Job Number: REC Sample No: BH02-UDS03 Lab: **EPLab**

Sample ID: BH02-UDS03_CU3

Depth (m): 11.00 - 11.39 Room Temperature at Test: ~ 19°C

Deviator Stress Vs Strain Diagram

SHEAR STAGE DATA AND STRESS MEASUREMENTS (kPa)

cl cı	Confining	- U 0	110	Principal Effective Stresses			_11.	C1 1 (0/)
Shear Stage	Pressure		U'f	σ'1	σ'3	σ'1/σ'3	σ'1 - σ'3	Strain (%)
1	175	0	91	324	84	3.85	240	2.45
2	350	0	162	683	188	3.63	495	5.29
3	700	0	282	1216	418	2.91	798	9.25

Method: AS1289.6.4.2 / In-house Method

Client:RECDate Tested:05/02/2025Project:Bellevue TSF 2025EP Lab Job Number:RECSample No:BH02-UDS03Lab:EPLab

Sample ID: BH02-UDS03_CU3

Depth (m): 11.00 - 11.39 Room Temperature at Test: ~ 19°C

Photo After Test

 Sample ID:
 BH02-UDS03
 Depth (m):
 11.00 - 11.39

 Lab ID:
 BH02-UDS03_CU3
 Date Tested:
 05/02/2025

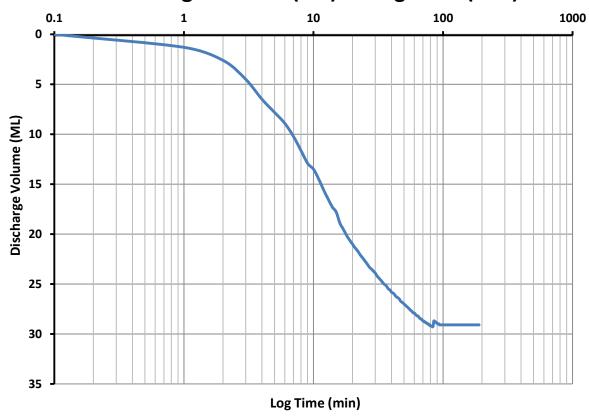
Failure Mode: Intact Shear 30.4 °

Notes: Sample extracted from Shelby Tube

Stored and Tested the Sample as received

Samples supplied by the Client

Authorised Signatory (Geotechnical Engineer):


Method: AS1289.6.4.2 / In-house Method

Client:RECDate Tested:05/02/2025Project:Bellevue TSF 2025EP Lab Job Number:RECSample No:BH02-UDS03Lab:EPLab

Sample ID: BH02-UDS03_CU3

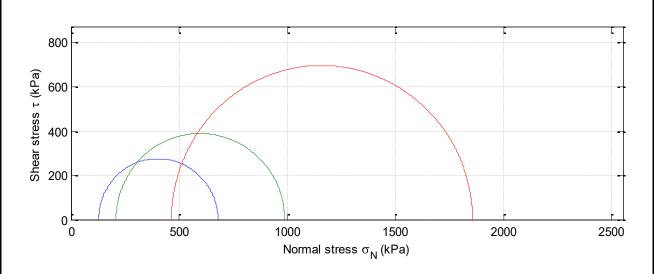
Depth (m): 11.00 - 11.39 Room Temperature at Test: ~ 19°C

Discharge Volume (ML) Vs Log Time (min)

Cv (cm²/s):

0.019

based on t₉₀


Method: AS1289.6.4.2	/ In-house Method
----------------------	-------------------

Client:	REC		Date Test	ed:	05/02/2025	
Project:	Bellevue TSF 2025		EP Lab Job	Number:	REC	
Sample No:	BH02-UDS04		Lab:		EPLab	
Sample ID:	BH02-UDS04_CU3					
Depth (m):	12.50 - 12.95		Room Ten	nperature at T	est:	~ 19°C
Tested by:	PHIL	Initial Moisture (%):	26.43	Strain Rat	e (mm/min):	0.006
Height (mm):	128.98	Final Moisture (%):	32.63	Ske	empton's (B):	0.99
Diameter (mm):	64.42	Bulk Density (t/m³):	2.02		Geology:	-

Failure Criteria used: Peak Principle Stress Ratio

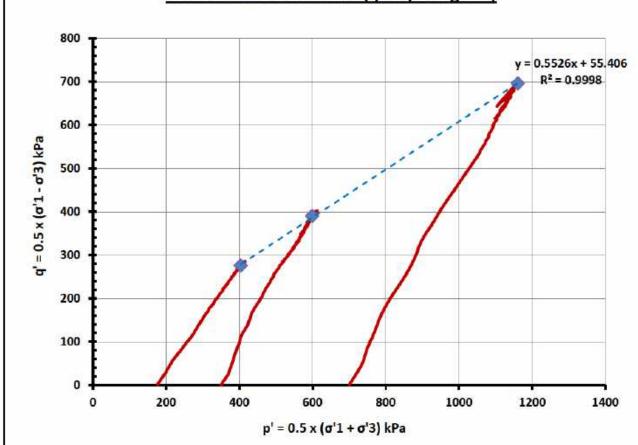
2.00 Dry Density (t/m³): 1.60

Mohr Circle Diagram

Interpretations conducted using Matlab

Interpretation from Mohr Circle:	Stages 1 / 2	Stages 1/3	Stage 2 / 3
Cohesion C' (kPa):	49.07	62.32	76.13
Angle of Shear Resistance Φ' (Degrees) :	35.75	33.82	33.02

L/D Ratio:


Method: AS1289.6.4.2 / In-house Method

Client: REC Date Tested: 05/02/2025 Bellevue TSF 2025 Project: EP Lab Job Number: REC Sample No: BH02-UDS04 **EPLab** Lab:

Sample ID: BH02-UDS04_CU3

~ 19°C Depth (m): 12.50 - 12.95 Room Temperature at Test:

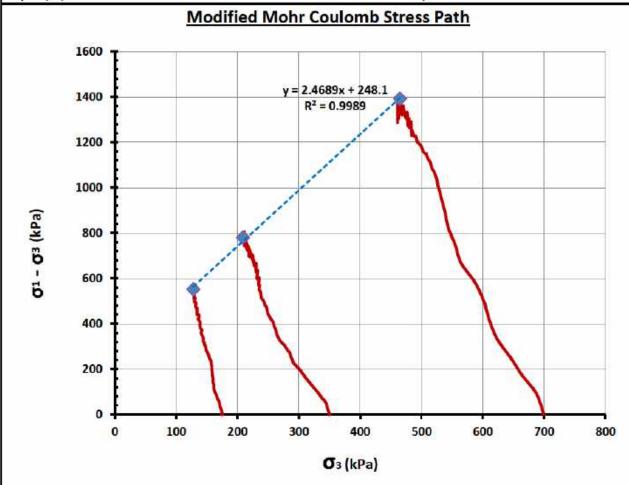
MIT Effective Stress Path (q' vs p' diagram)

MIT Stress Path - Using Stress Path Tangency Method

Cohesion C' (kPa): 66.35

Angle of Shear Resistance Φ' (Deg):

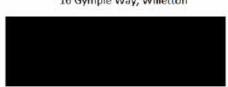
Method: AS1289.6.4.2 / In-house Method


 Client:
 REC
 Date Tested:
 05/02/2025

 Project:
 Bellevue TSF 2025
 EP Lab Job Number:
 REC

 Sample No:
 BH02-UDS04
 Lab:
 EPLab

Sample ID: BH02-UDS04_CU3

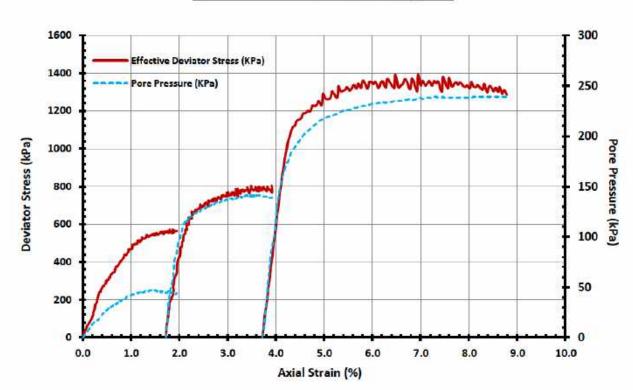

Depth (m): 12.50 - 12.95 Room Temperature at Test: ~ 19°C

Modified Mohr Coulomb Path - Using Stress Path Tangency Method

Cohesion C' (kPa) : 66.59 Angle of Shear Resistance Φ' (Deg) : 33.54

Method: AS1289.6.4.2 / In-house Method

 Client:
 REC
 Date Tested:
 05/02/2025


 Project:
 Bellevue TSF 2025
 EP Lab Job Number:
 REC

 Sample No:
 BH02-UDS04
 Lab:
 EPLab

Sample ID: BH02-UDS04_CU3

Depth (m): 12.50 - 12.95 Room Temperature at Test: ~ 19°C

Deviator Stress Vs Strain Diagram

SHEAR STAGE DATA AND STRESS MEASUREMENTS (kPa)

Ch Ch	Confining		1114	Principal Effective Stresses			_11.	Ct 1 (00)
Shear Stage	hear Stage Pressure U'0	UO	U'f	σ'1	σ'3	σ'1/σ'3	σ'1 - σ'3	Strain (%)
1	175	0	47	680	128	5.31	552	1.60
2	350	0	141	989	209	4.73	780	3.72
3	700	0	235	1857	465	3.99	1392	6.48

Method: AS1289.6.4.2 / In-house Method

Client:RECDate Tested:05/02/2025Project:Bellevue TSF 2025EP Lab Job Number:RECSample No:BH02-UDS04Lab:EPLab

Sample ID: BH02-UDS04_CU3

Depth (m): 12.50 - 12.95 Room Temperature at Test: ~ 19°C

Photo After Test

 Sample ID:
 BH02-UDS04
 Depth (m):
 12.50 - 12.95

 Lab ID:
 BH02-UDS04_CU3
 Date Tested:
 05/02/2025

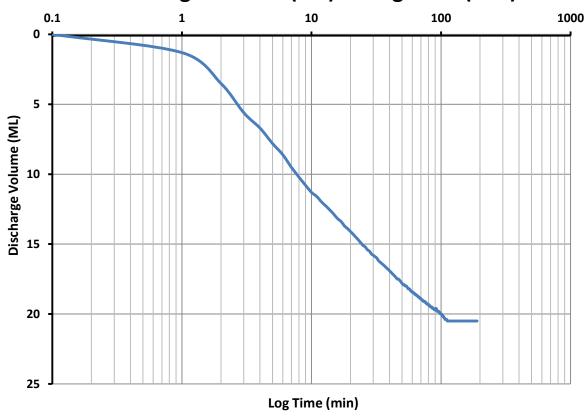
Failure Mode: Intact Shear 35.6 °

Notes:

Stored and Tested the Sample as received Samples supplied by the Client

Authorised Signatory (Geotechnical Engineer):

The results of tests performed apply only to the specific sample at time of test unless otherwise clearly stated. Reference should be made to E-Precision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431 559 578 87


Method: AS1289.6.4.2 / In-house Method

Date Tested: Client: **REC** 05/02/2025 Project: Bellevue TSF 2025 EP Lab Job Number: **REC** Sample No: BH02-UDS04 Lab: **EPLab**

Sample ID: BH02-UDS04_CU3

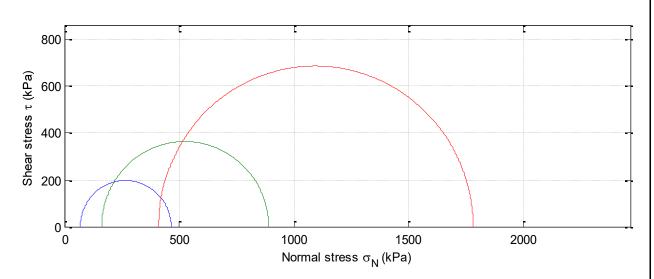
Depth (m): 12.50 - 12.95 ~ 19°C Room Temperature at Test:

Discharge Volume (ML) Vs Log Time (min)

 $Cv (cm^2/s)$:

0.046

based on t₉₀



Method: AS1289.6.4.2	/ In-house Method
----------------------	-------------------

Client:	REC		Date Teste	ed:	10/02/2025	
Project:	Bellevue TSF 202	5	EP Lab Job	Number:	REC	
Sample No:	BH02-UDS05		Lab:		EPLab	
Sample ID:	BH02-UDS05_CU	3				
Depth (m):	14.00 - 14.45		Room Ten	nperature at ⁻	Гest:	~ 19°C
Tested by:	PHIL	Initial Moisture (%):	20.55	Strain Rat	te (mm/min):	0.006
Height (mm):	127.35	Final Moisture (%):	19.28	Ske	empton's (B):	0.98
Diameter (mm):	63.18	Bulk Density (t/m³):	2.07		Geology:	-
L/D Ratio:	2.02	Dry Density (t/m³):	1.72			

Failure Criteria used: Peak Principle Stress Ratio

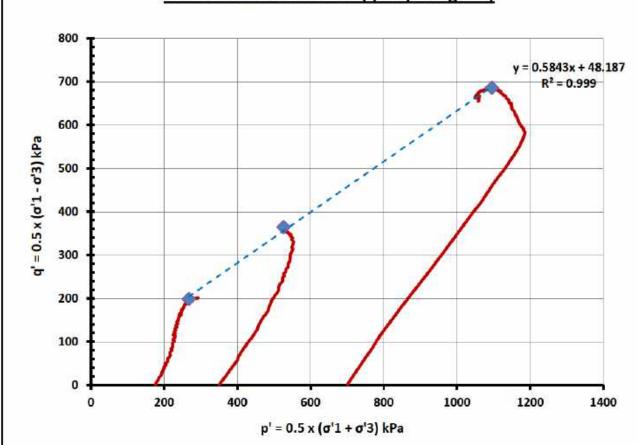
Mohr Circle Diagram

Interpretations conducted using Matlab

Interpretation from Mohr Circle:	Stages 1 / 2	Stages 1 / 3	Stage 2/3
Cohesion C' (kPa):	35.24	50.83	81.50
Angle of Shear Resistance Φ' (Degrees):	39.69	36.13	34.22

Method: AS1289.6.4.2 / In-house Method

 Client:
 REC
 Date Tested:
 10/02/2025


 Project:
 Bellevue TSF 2025
 EP Lab Job Number:
 REC

 Sample No:
 BH02-UDS05
 Lab:
 EPLab

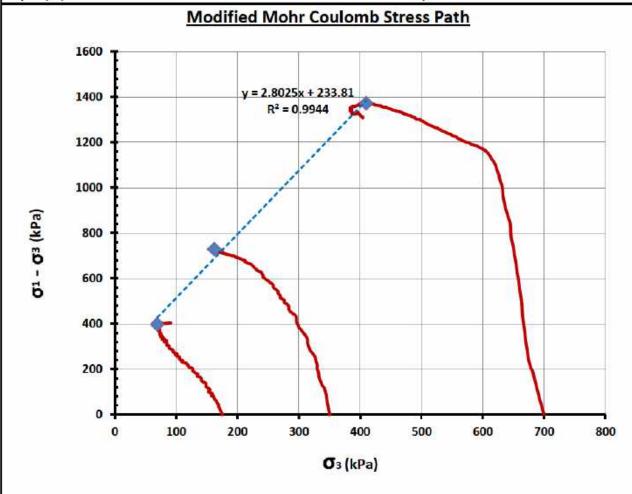
Sample ID: BH02-UDS05_CU3

Depth (m): 14.00 - 14.45 Room Temperature at Test: ~ 19°C

MIT Effective Stress Path (q' vs p' diagram)

MIT Stress Path - Using Stress Path Tangency Method

Cohesion C' (kPa) : 59.16 Angle of Shear Resistance Φ' (Deg) : 35.45



Method: AS1289.6.4.2 / In-house Method

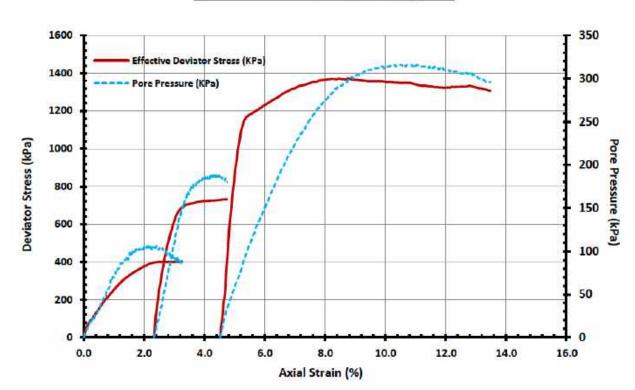
Client: REC Date Tested: 10/02/2025 Project: Bellevue TSF 2025 EP Lab Job Number: REC Sample No: BH02-UDS05 Lab: **EPLab**

Sample ID: BH02-UDS05_CU3

Depth (m): 14.00 - 14.45 Room Temperature at Test: ~ 19°C

Modified Mohr Coulomb Path - Using Stress Path Tangency Method

Cohesion C' (kPa): 59.97 Angle of Shear Resistance Φ' (Deg): 35.69


Method: AS1289.6.4.2 / In-house Method

REC 10/02/2025 Client: Date Tested: Project: Bellevue TSF 2025 EP Lab Job Number: REC Sample No: BH02-UDS05 Lab: **EPLab**

Sample ID: BH02-UDS05_CU3

Depth (m): 14.00 - 14.45 Room Temperature at Test: ~ 19°C

Deviator Stress Vs Strain Diagram

SHEAR STAGE DATA AND STRESS MEASUREMENTS (kPa)

Chara Chara	Confining	onfining	U'o U'f	Principal Effective Stresses			_11.	C1 - 1 - 10()
Snear Stage	Shear Stage Pressure	0 0		σ'1	σ'3	σ'1/σ'3	σ'1 - σ'3	Strain (%)
1	175	0	106	466	69	6.76	397	2.34
2	350	0	188	891	162	5.50	729	4.49
3	700	0	290	1782	410	4.35	1372	8.49

Method: AS1289.6.4.2 / In-house Method

Client:RECDate Tested:10/02/2025Project:Bellevue TSF 2025EP Lab Job Number:RECSample No:BH02-UDS05Lab:EPLab

Sample ID: BH02-UDS05_CU3

Depth (m): 14.00 - 14.45 Room Temperature at Test: ~ 19°C

Photo After Test

 Sample ID:
 BH02-UDS05
 Depth (m):
 14.00 - 14.45

 Lab ID:
 BH02-UDS05_CU3
 Date Tested:
 10/02/2025

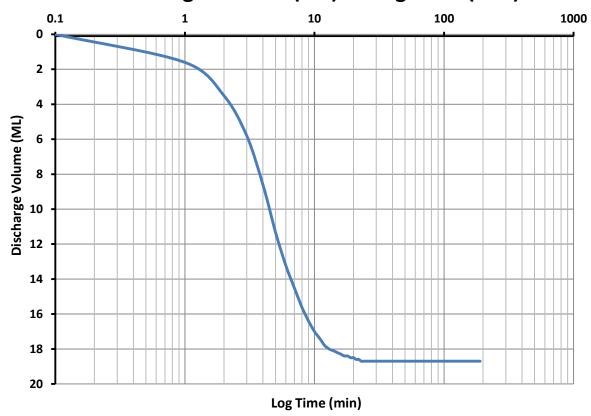
Failure Mode: Intact Shear 36.3 °

Notes:

Stored and Tested the Sample as received Samples supplied by the Client

Authorised Signatory (Geotechnical Engineer)

The results of tests performed apply only to the specific sample at time of test unless otherwise clearly stated. Reference should be made to E-Precision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431 559 578 87


Method: AS1289.6.4.2 / In-house Method

Date Tested: Client: **REC** 10/02/2025 Project: Bellevue TSF 2025 EP Lab Job Number: **REC EPLab** Sample No: BH02-UDS05 Lab:

Sample ID: BH02-UDS05_CU3

Depth (m): 14.00 - 14.45 ~ 19°C Room Temperature at Test:

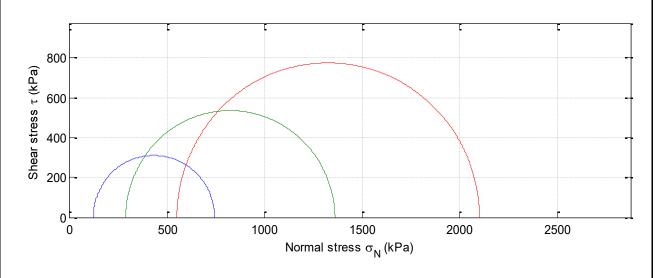
Discharge Volume (ML) Vs Log Time (min)

 $Cv (cm^2/s)$:

0.068

based on t₉₀

Method: AS1289.6.4.2 / In-house Method


Client:	REC	Date Tested:	05/02/2025
Project:	Bellevue TSF 2025	EP Lab Job Number:	REC
Sample No:	BH03-UDS02	Lab:	EPLab
Sample ID:	BH03-UDS02_CU3		
Depth (m):	5.00 - 5.45	Room Temperature at	Test: ~ 19

Strain Rate (mm/min): 0.006 Tested by: PHIL Initial Moisture (%): 28.49 Height (mm): 124.95 Final Moisture (%): 31.68 Skempton's (B): Diameter (mm): 62.39 Bulk Density (t/m³): 1.94 Geology:

L/D Ratio: 2.00 Dry Density (t/m³): 1.51

Failure Criteria used: Peak Principle Stress Ratio

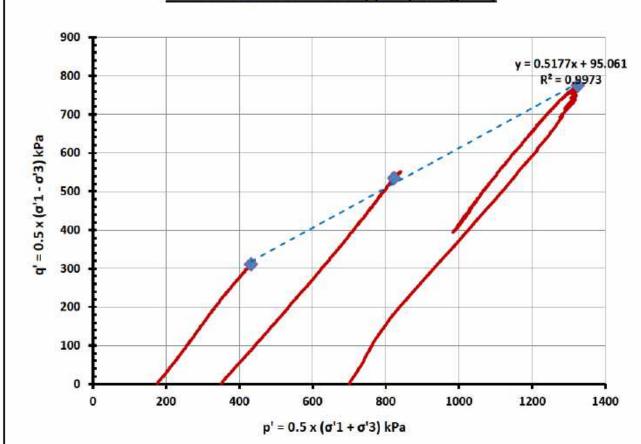
Mohr Circle Diagram

Interpretations conducted using Matlab

Interpretation from Mohr Circle:	Stages 1 / 2	Stages 1/3	Stage 2/3
Cohesion C' (kPa):	77.49	101.28	161.14
Angle of Shear Resistance Φ' (Degrees):	34.99	31.38	28.37

Method: AS1289.6.4.2 / In-house Method

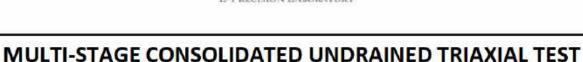
 Client:
 REC
 Date Tested:
 05/02/2025


 Project:
 Bellevue TSF 2025
 EP Lab Job Number:
 REC

 Sample No:
 BH03-UDS02
 Lab:
 EPLab

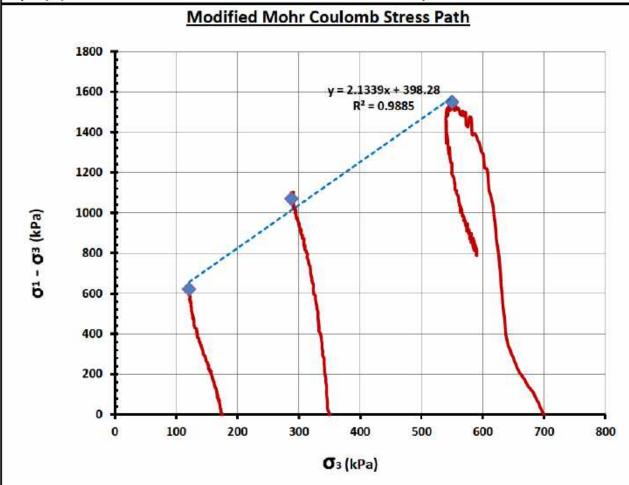
Sample ID: BH03-UDS02_CU3

Depth (m): 5.00 - 5.45 Room Temperature at Test: ~ 19°C


MIT Effective Stress Path (q' vs p' diagram)

MIT Stress Path - Using Stress Path Tangency Method

Cohesion C' (kPa) : 111.29 Angle of Shear Resistance Φ' (Deg) : 31.33


 Client:
 REC
 Date Tested:
 05/02/2025

 Project:
 Bellevue TSF 2025
 EP Lab Job Number:
 REC

 Sample No:
 BH03-UDS02
 Lab:
 EPLab

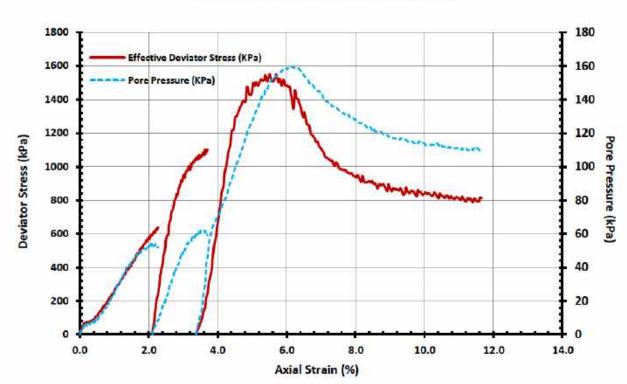
Sample ID: BH03-UDS02_CU3

Depth (m): 5.00 - 5.45 Room Temperature at Test: ~ 19°C

Modified Mohr Coulomb Path - Using Stress Path Tangency Method

Cohesion C' (kPa): 112.56 Angle of Shear Resistance Φ ' (Deg): 31.05

 Client:
 REC
 Date Tested:
 05/02/2025


 Project:
 Bellevue TSF 2025
 EP Lab Job Number:
 REC

 Sample No:
 BH03-UDS02
 Lab:
 EPLab

Sample ID: BH03-UDS02_CU3

Depth (m): 5.00 - 5.45 Room Temperature at Test: ~ 19°C

Deviator Stress Vs Strain Diagram

SHEAR STAGE DATA AND STRESS MEASUREMENTS (kPa)

Cl Cl	Confining	m.	1114	Principa	al Effective	دایم رایم	Ct:- (9/)	
Shear Stage	Pressure	U'o	U'f	σ'1	σ '3	σ'1/σ'3	σ'1 - σ'3	Strain (%)
1	175	0	54	743	121	6.14	622	2.19
2	350	0	62	1358	288	4.71	1070	3.61
3	700	0	150	2100	550	3.82	1550	5.52

Method: AS1289.6.4.2 / In-house Method

 Client:
 REC
 Date Tested:
 05/02/2025

 Project:
 Bellevue TSF 2025
 EP Lab Job Number:
 REC

 Sample No:
 BH03-UDS02
 Lab:
 EPLab

Sample ID: BH03-UDS02_CU3

Depth (m): 5.00 - 5.45 Room Temperature at Test: ~ 19°C

Photo After Test

 Sample ID:
 BH03-UDS02
 Depth (m):
 5.00 - 5.45

 Lab ID:
 BH03-UDS02_CU3
 Date Tested:
 05/02/2025

Failure Mode: Intact Shear 32.2 °

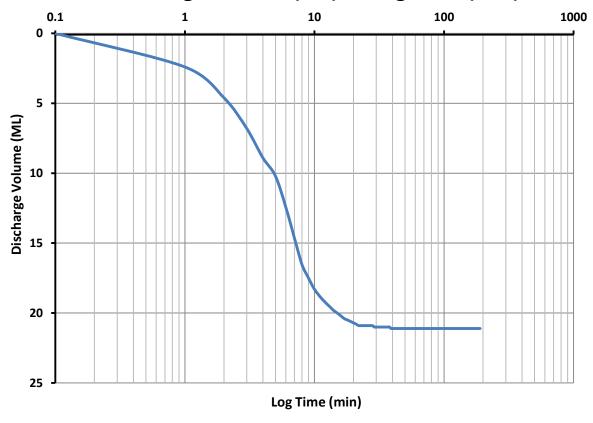
Notes: Sample extracted from Shelby Tube

Stored and Tested the Sample as received

Samples supplied by the Client

Authorised Signatory (Geotechnical Engineer):

The results of tests performed apply only to the specific sample at time of test unless otherwise clearly stated. Reference should be made to E-Precision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431 559 578 87



Client:RECDate Tested:05/02/2025Project:Bellevue TSF 2025EP Lab Job Number:RECSample No:BH03-UDS02Lab:EPLab

Sample ID: BH03-UDS02_CU3

Depth (m): 5.00 - 5.45 Room Temperature at Test: ~ 19°C

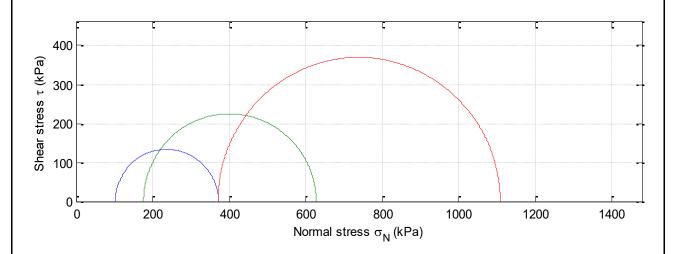
Discharge Volume (ML) Vs Log Time (min)

Cv (cm²/s):

0.054

based on t₉₀

Client:	REC	Date Tested:	10/02/2025
Project:	Bellevue TSF 2025	EP Lab Job Number:	REC
Sample No:	BH03-UDS04	Lab:	EPLab
Camarala ID.	DUIDS LIDCOA CLIS		


Sample ID: BH03-UDS04_CU3

Depth (m): 8.00 - 8.45Room Temperature at Test:

PHIL Strain Rate (mm/min): 0.006 Tested by: Initial Moisture (%): 28.60 Height (mm): 126.98 Final Moisture (%): 25.43 Skempton's (B): Diameter (mm): 63.65 Bulk Density (t/m³): 1.93 Geology: L/D Ratio: 1.99 Dry Density (t/m³): 1.50

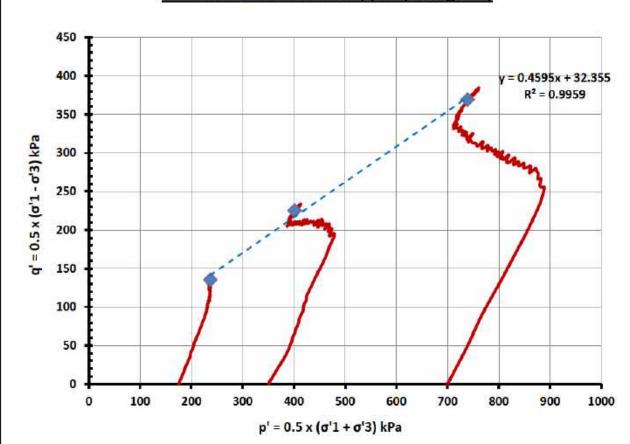
Failure Criteria used: Peak Principle Stress Ratio

Mohr Circle Diagram

Interpretations conducted using Matlab

Interpretation from Mohr Circle:	Stages 1 / 2	Stages 1/3	Stage 2 / 3
Cohesion C' (kPa):	5.53	27.72	60.54

27.92 Angle of Shear Resistance Φ' (Degrees): 33.42 25.17


Method: AS1289.6.4.2 / In-house Method

Client: REC Date Tested: 10/02/2025 Bellevue TSF 2025 Project: EP Lab Job Number: REC BH03-UDS04 **EPLab** Sample No: Lab:

Sample ID: BH03-UDS04_CU3

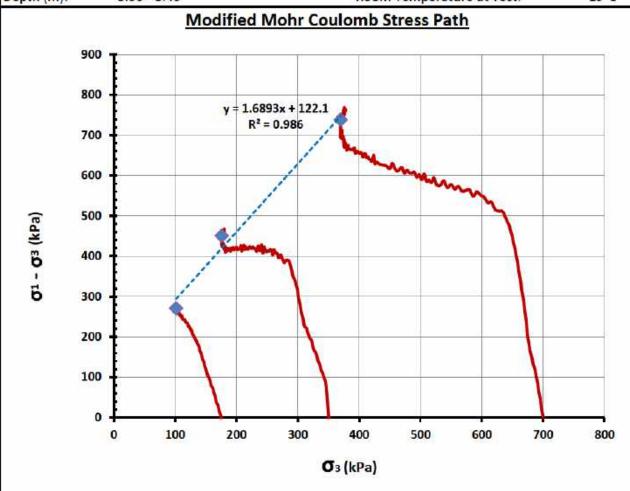
8.00 - 8.45 ~ 19°C Depth (m): Room Temperature at Test:

MIT Effective Stress Path (q' vs p' diagram)

MIT Stress Path - Using Stress Path Tangency Method

Cohesion C' (kPa): 36.44

Angle of Shear Resistance Φ' (Deg): 27.39



Method: AS1289.6.4.2 / In-house Method

Client: REC Date Tested: 10/02/2025 Project: Bellevue TSF 2025 EP Lab Job Number: REC Sample No: BH03-UDS04 Lab: **EPLab**

Sample ID: BH03-UDS04_CU3

Depth (m): 8.00 - 8.45 Room Temperature at Test: ~ 19°C

Modified Mohr Coulomb Path - Using Stress Path Tangency Method

Cohesion C' (kPa): 37.22 Angle of Shear Resistance Φ' (Deg): 27.26

Method: AS1289.6.4.2 / In-house Method

 Client:
 REC
 Date Tested:
 10/02/2025

 Project:
 Bellevue TSF 2025
 EP Lab Job Number:
 REC

 Sample No:
 BH03-UDS04
 Lab:
 EPLab

Sample ID: BH03-UDS04_CU3

Depth (m): 8.00 - 8.45 Room Temperature at Test: ~ 19°C

Deviator Stress Vs Strain Diagram 900 350 Effective Deviator Stress (KPa) 800 300 Pore Pressure (KPa) 700 250 600 Deviator Stress (kPa) 200 500 400 150 300 100 200 50 100 0 0.0 2.0 4.0 6.0 8.0 10.0 12.0

SHEAR STAGE DATA AND STRESS MEASUREMENTS (kPa)

Axial Strain (%)

Character Confining		III.	1112	Principal Effective Stresses			وابع وابع	C1:- (0/)
Shear Stage	Pressure	U'o	U'f	σ'1	σ'3	σ'1/σ'3	σ'1 - σ'3	Strain (%)
1	175	0	74	372	102	3.67	271	1.15
2	350	0	174	627	176	3.56	451	3.53
3	700	0	330	1108	370	3.00	738	8.91

Method: AS1289.6.4.2 / In-house Method

Client:RECDate Tested:10/02/2025Project:Bellevue TSF 2025EP Lab Job Number:RECSample No:BH03-UDS04Lab:EPLab

Sample ID: BH03-UDS04_CU3

Depth (m): 8.00 - 8.45 Room Temperature at Test: ~ 19°C

Photo After Test

 Sample ID:
 BH03-UDS04
 Depth (m):
 8.00 - 8.45

 Lab ID:
 BH03-UDS04_CU3
 Date Tested:
 10/02/2025

Failure Mode: Intact Shear 46.6 °

Notes:

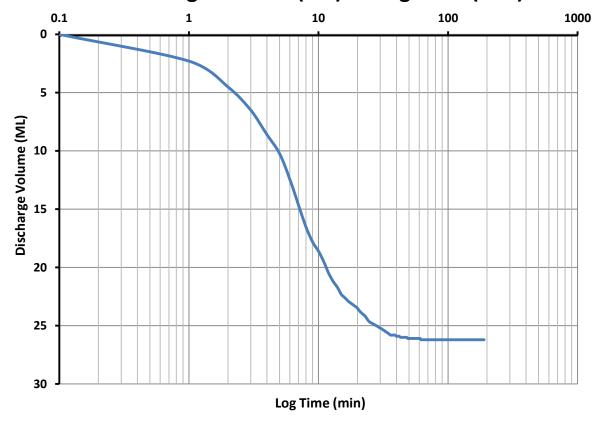
Stored and Tested the Sample as received

Samples supplied by the Client

Authorised Signatory (Geotechnical Engineer

The results of tests performed apply only to the specific sample at time of test unless otherwis

Precision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431 559 578 87


Method: AS1289.6.4.2 / In-house Method

Date Tested: Client: **REC** 10/02/2025 Project: Bellevue TSF 2025 EP Lab Job Number: **REC EPLab** Sample No: BH03-UDS04 Lab:

Sample ID: BH03-UDS04_CU3

Depth (m): 8.00 - 8.45 ~ 19°C Room Temperature at Test:

Discharge Volume (ML) Vs Log Time (min)

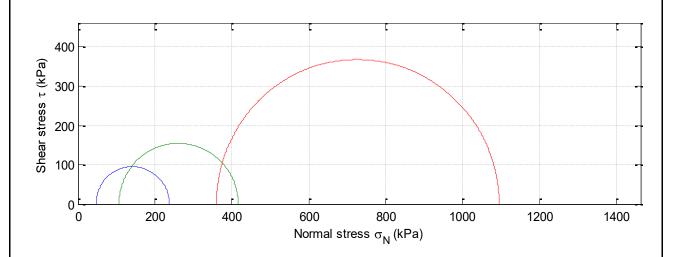
Cv (cm²/s):

0.039

based on t₉₀

Method: AS1289.6.4.2 / In-house Method

Client:	REC	Date Tested:	10/02/2025
Project:	Bellevue TSF 2025	EP Lab Job Number:	REC
Sample No:	BH03-UDS06	Lab:	EPLab


Sample ID: BH03-UDS06_CU3

~ 19°C Depth (m): 11.00 - 11.25 Room Temperature at Test:

Strain Rate (mm/min): PHIL Initial Moisture (%): 35.38 0.006 Tested by: Height (mm): 165.32 Final Moisture (%): 24.60 Skempton's (B): 0.99 Diameter (mm): 62.87 Bulk Density (t/m³): 1.83 Geology: L/D Ratio: 2.63 Dry Density (t/m³): 1.35

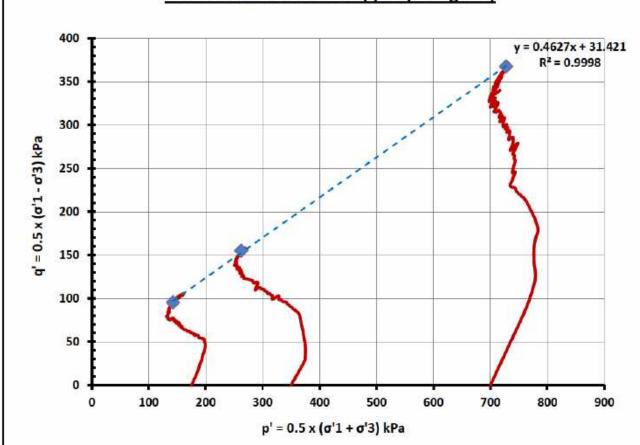
Failure Criteria used: Peak Principle Stress Ratio

Mohr Circle Diagram

Interpretations conducted using Matlab

Interpretation from Mohr Circle:	Stages 1 / 2	Stages 1/3	Stage 2/3
Cohesion C' (kPa):	28.31	33.03	39.78
Angle of Shear Resistance Φ' (Degrees):	29.68	27.92	27.02

 Client:
 REC
 Date Tested:
 10/02/2025


 Project:
 Bellevue TSF 2025
 EP Lab Job Number:
 REC

 Sample No:
 BH03-UDS06
 Lab:
 EPLab

Sample ID: BH03-UDS06_CU3

Depth (m): 11.00 - 11.25 Room Temperature at Test: ~ 19°C

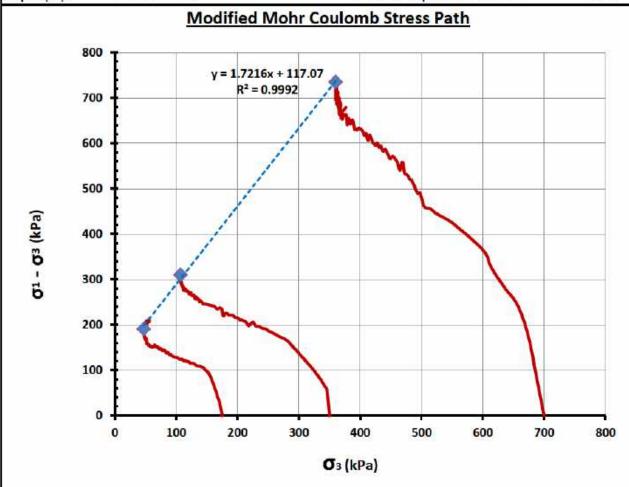
MIT Effective Stress Path (q' vs p' diagram)

MIT Stress Path - Using Stress Path Tangency Method

Cohesion C' (kPa): 35.39

Angle of Shear Resistance Φ' (Deg) : 27.39

Method: AS1289.6.4.2 / In-house Method


 Client:
 REC
 Date Tested:
 10/02/2025

 Project:
 Bellevue TSF 2025
 EP Lab Job Number:
 REC

 Sample No:
 BH03-UDS06
 Lab:
 EPLab

Sample ID: BH03-UDS06_CU3

Depth (m): 11.00 - 11.25 Room Temperature at Test: ~ 19°C

Modified Mohr Coulomb Path - Using Stress Path Tangency Method

Cohesion C' (kPa) : 35.49 Angle of Shear Resistance Φ' (Deg) : 27.54

 Client:
 REC
 Date Tested:
 10/02/2025

 Project:
 Bellevue TSF 2025
 EP Lab Job Number:
 REC

 Sample No:
 BH03-UDS06
 Lab:
 EPLab

Sample ID: BH03-UDS06_CU3

Depth (m): 11.00 - 11.25 Room Temperature at Test: ~ 19°C

Deviator Stress Vs Strain Diagram 800 400 Effective Deviator Stress (KPa) 700 350 Pore Pressure (KPa) 600 300 Deviator Stress (kPa) 500 250 400 200 300 150 200 100 50 100 0 0.0 2.0 4.0 6.0 10.0 12.0 14.0 Axial Strain (%)

SHEAR STAGE DATA AND STRESS MEASUREMENTS (kPa)

cl cı	Confining	10.	int.	Principa	Principal Effective Stre		-11.	C1:- (0/)
Shear Stage	Pressure	U'o	U'f	σ'1	σ '3	σ'1/σ'3	σ'1 - σ'3	Strain (%)
1	175	0	128	238	47	5.06	191	1.66
2	350	0	243	417	107	3.90	310	3.89
3	700	0	340	1095	360	3.04	735	9.16

Method: AS1289.6.4.2 / In-house Method

Client:RECDate Tested:10/02/2025Project:Bellevue TSF 2025EP Lab Job Number:RECSample No:BH03-UDS06Lab:EPLab

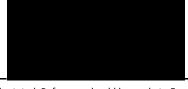
Sample ID: BH03-UDS06_CU3

Depth (m): 11.00 - 11.25 Room Temperature at Test: ~ 19°C

Photo After Test

 Sample ID:
 BH03-UDS06
 Depth (m):
 11.00 - 11.25

 Lab ID:
 BH03-UDS06_CU3
 Date Tested:
 10/02/2025



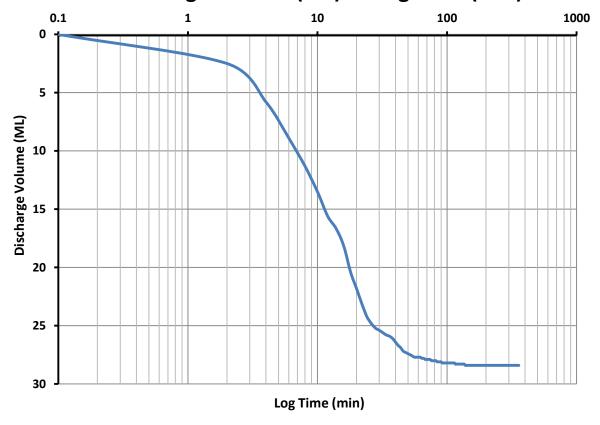
Failure Mode: Intact Shear 27 °

Notes:

Stored and Tested the Sample as received Samples supplied by the Client

Authorised Signatory (Geotechnical Engineer):

The results of tests performed apply only to the specific sample at time of test unless otherwise clearly stated. Reference should be made to E-Precision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431 559 578 87


Method: AS1289.6.4.2 / In-house Method

Client:RECDate Tested:10/02/2025Project:Bellevue TSF 2025EP Lab Job Number:RECSample No:BH03-UDS06Lab:EPLab

Sample ID: BH03-UDS06_CU3

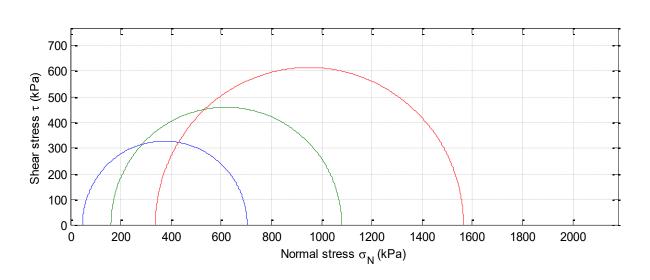
Depth (m): 11.00 - 11.25 Room Temperature at Test: ~ 19°C

Discharge Volume (ML) Vs Log Time (min)

 $Cv (cm^2/s)$:

0.048

based on t₉₀


Method: AS1289.6.4.2 / In-house Method

Client:	REC		Date Test	ted: 10	/02/2025	
Project:	Bellevue TSF 202	5	EP Lab Jo	b Number:	REC	
Sample No:	BH03-UDS08		Lab:		EPLab	
Sample ID:	BH03-UDS08_CU	3				
Depth (m):	14.00 - 14.45		Room Te	mperature at Test	:	~ 19°C
Tested by:	PHIL	Initial Moisture (%):	34.02	Strain Rate (r	mm/min):	0.006
Height (mm):	129.63	Final Moisture (%):	37.55	Skemp	oton's (B):	1
Diameter (mm):	64.15	Bulk Density (t/m³):	1.98		Geology:	-

Failure Criteria used: Peak Principle Stress Ratio

Dry Density (t/m³): 1.48

Mohr Circle Diagram

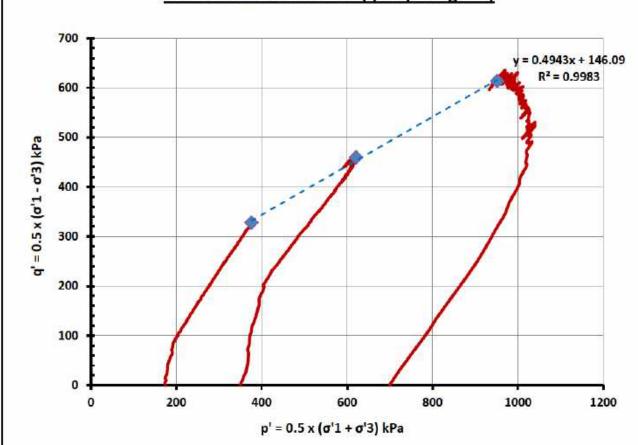
Interpretations conducted using Matlab

Interpretation from Mohr Circle:	Stages 1 / 2	Stages 1/3	Stage 2/3
Cohesion C' (kPa):	149.19	162.93	192.97
Angle of Shear Resistance Φ' (Degrees):	32.62	29.68	27.92

L/D Ratio:

2.02

 Client:
 REC
 Date Tested:
 10/02/2025


 Project:
 Bellevue TSF 2025
 EP Lab Job Number:
 REC

 Sample No:
 BH03-UDS08
 Lab:
 EPLab

Sample ID: BH03-UDS08_CU3

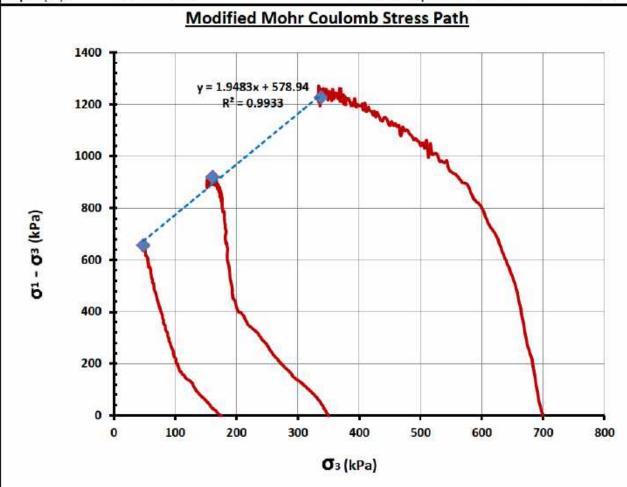
Depth (m): 14.00 - 14.45 Room Temperature at Test: ~ 19°C

MIT Effective Stress Path (q' vs p' diagram)

MIT Stress Path - Using Stress Path Tangency Method

Cohesion C' (kPa) : 167.59 Angle of Shear Resistance Φ' (Deg) : 29.34

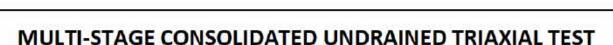
Method: AS1289.6.4.2 / In-house Method


 Client:
 REC
 Date Tested:
 10/02/2025

 Project:
 Bellevue TSF 2025
 EP Lab Job Number:
 REC

 Sample No:
 BH03-UDS08
 Lab:
 EPLab

Sample ID: BH03-UDS08_CU3


Depth (m): 14.00 - 14.45 Room Temperature at Test: ~ 19°C

Modified Mohr Coulomb Path - Using Stress Path Tangency Method

Cohesion C' (kPa) : 168.54 Angle of Shear Resistance Φ' (Deg) : 29.58

 Client:
 REC
 Date Tested:
 10/02/2025

 Project:
 Bellevue TSF 2025
 EP Lab Job Number:
 REC

 Sample No:
 BH03-UDS08
 Lab:
 EPLab

Sample ID: BH03-UDS08_CU3

Depth (m): 14.00 - 14.45 Room Temperature at Test: ~ 19°C

Deviator Stress Vs Strain Diagram 1400 400 Effective Deviator Stress (KPa) 350 1200 Pore Pressure (KPa) 300 1000 Deviator Stress (kPa) 250 800 200 600 150 400 100 200 50 0.0 2.0 4.0 6.0 8.0 10.0 12.0 Axial Strain (%)

SHEAR STAGE DATA AND STRESS MEASUREMENTS (kPa)

Confining		nfining U'o		Principal Effective Stresses			وابع وابع	Ct:- (9/)
Shear Stage	Pressure	0 0	U'f	σ_1 σ_3 σ_{1/σ_3} $\sigma_{1-\sigma_3}$	01-03	Strain (%)		
1	175	0	127	704	48	14.67	656	1.65
2	350	0	189	1080	161	6.71	919	3.46
3	700	0	362	1565	338	4.63	1227	9.44

Client:RECDate Tested:10/02/2025Project:Bellevue TSF 2025EP Lab Job Number:RECSample No:BH03-UDS08Lab:EPLab

Sample ID: BH03-UDS08_CU3

Depth (m): 14.00 - 14.45 Room Temperature at Test: ~ 19°C

Photo After Test

 Sample ID:
 BH03-UDS08
 Depth (m):
 14.00 - 14.45

 Lab ID:
 BH03-UDS08_CU3
 Date Tested:
 10/02/2025

Failure Mode: Intact Shear 42.5 °

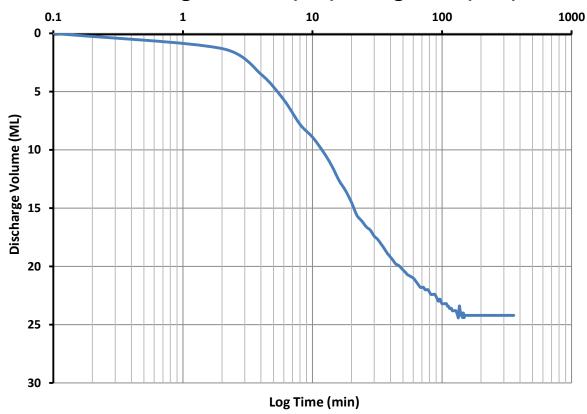
Notes:

Stored and Tested the Sample as received

Samples supplied by the Client

Authorised Signatory (Geotechnical Engineer):

The results of tests performed apply only to the specific sample at time of test unless otherwise clearly stated. Reference should be made to E-Precision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431 559 578 87


Method: AS1289.6.4.2 / In-house Method

Client:RECDate Tested:10/02/2025Project:Bellevue TSF 2025EP Lab Job Number:RECSample No:BH03-UDS08Lab:EPLab

Sample ID: BH03-UDS08_CU3

Depth (m): 14.00 - 14.45 Room Temperature at Test: ~ 19°C

Discharge Volume (ML) Vs Log Time (min)

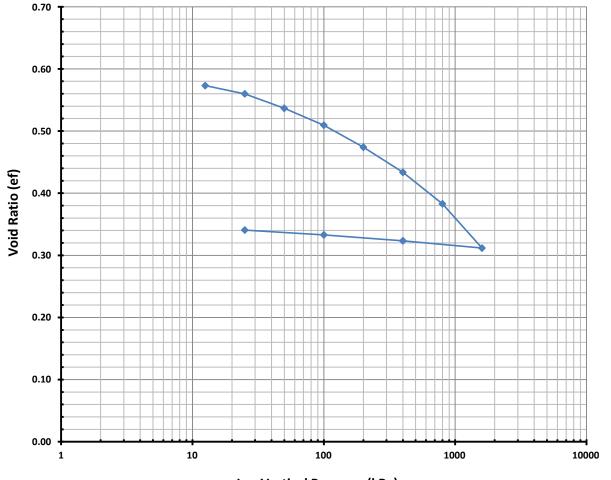
 $Cv (cm^2/s)$:

0.047

based on t₉₀

Method: AS1289 6.6.1 / Inhouse Method

Client: REC Date Tested: 04/02/2025
Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC


Sample ID: BH01-CB01

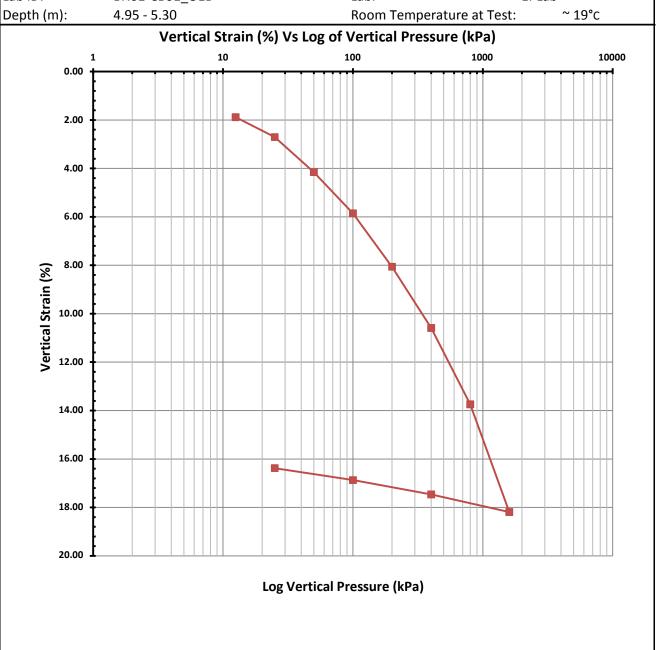
Lab ID: BH01-CB01_OED Lab: EPLab

Depth (m): 4.95 - 5.30 Room Temperature at Test: $\sim 19^{\circ}$ C

Tested by: Phil 21.05 Initial Moisture (%): **Test Condition:** Undrained 26.33 Height (mm): 20.84 Final Moisture Content (%): Sample Condition: Saturated Diameter (mm): 61.80 Bulk Density (t/m³): 1.84 Particle Density (t/m³): 2.416 Dry Density (t/m³): Direction: Vertical 1.52 Initial Void Ratio (e_i): 0.590

Void Ratio (e_f) Vs Log of Vertical Pressure (kPa)

Log Vertical Pressure (kPa)



Method: AS1289 6.6.1 / Inhouse Method

Client: REC Date Tested: 04/02/2025
Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC

Sample ID: BH01-CB01

Lab ID: BH01-CB01_OED Lab: EPLab

Method: AS1289 6.6.1 / Inhouse Method

Client: REC Date Tested: 04/02/2025

Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC

Sample ID: BH01-CB01

Lab ID: BH01-CB01_OED Lab: EPLab

Depth (m): 4.95 - 5.30 Room Temperature at Test: $\sim 19^{\circ}$ C

Test Results

*

Channe	Vert Disp	Cv (m	²/yr)	Compressibility	V (m /a)		Void Ratio	Vertical Strain
Stages	(mm)	* t 50	t 90	Mv (m²/kN)	K (m/s)		(e _f)	(%)
Stage 1 @ 12.5kPa	0.393	10.889	-	1.51E-03	5.1E-09		0.573	1.89
Stage 2 @ 25kPa	0.564	5.357	-	6.69E-04	1.1E-09		0.560	2.71
Stage 3 @ 50kPa	0.866	3.473	-	5.96E-04	6.4E-10		0.537	4.16
Stage 4 @ 100kPa	1.220	3.356	-	3.54E-04	3.7E-10		0.509	5.85
Stage 5 @ 200kPa	1.680	3.193	-	2.34E-04	2.3E-10		0.474	8.06
Stage 6 @ 400kPa	2.207	3.017	-	1.38E-04	1.3E-10		0.433	10.59
Stage 7 @ 800kPa	2.864	2.113	-	8.82E-05	5.8E-11		0.383	13.74
Stage 8 @ 1600kPa	3.791	0.972	-	6.45E-05	1.9E-11		0.312	18.19

 Unload @ 400kPa
 3.639

 Unload @ 100kPa
 3.516

 Unload @ 25kPa
 3.413

Comments: Core Sample

Cv values to be interpreted via Engineer

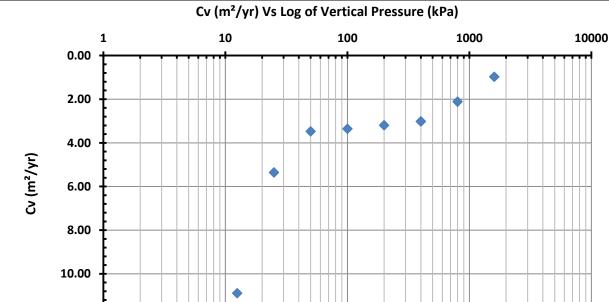
Samples supplied by the Client

Authorised Signatory (Geotechnical Engineer):

The results of tests performed apply only to the specific sample at time of test unless otherwise clearly stated. Reference should be made to E-Precision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431 559 578 87

^{*} Values interpreted via lab only

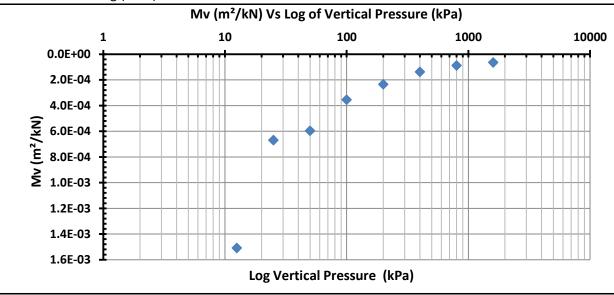
Method: AS1289 6.6.1 / Inhouse Method


Client: **REC** Date Tested: 04/02/2025 EP Lab Job Number: **REC**

Project: Bellevue TSF Testing 2025

Sample ID: BH01-CB01

Lab ID: BH01-CB01_OED Lab: **EPLab**


Depth (m): Room Temperature at Test: ~ 19°C 4.95 - 5.30

Log Vertical Pressure (kPa)

* Plot based on Log (time) data

12.00

Method: AS1289 6.6.1 / Inhouse Method

Client: REC Date Tested: 04/02/2025

Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC

Sample ID: BH01-CB01

Lab ID: BH01-CB01_OED Lab: EPLab

Depth (m): 4.95 - 5.30 Room Temperature at Test: ~ 19°C

TEST RESULTS PLEASE SEE PAGES BELOW

Method: AS1289 6.6.1 / Inhouse Method

Date Tested: Client: REC 04/02/2025 REC

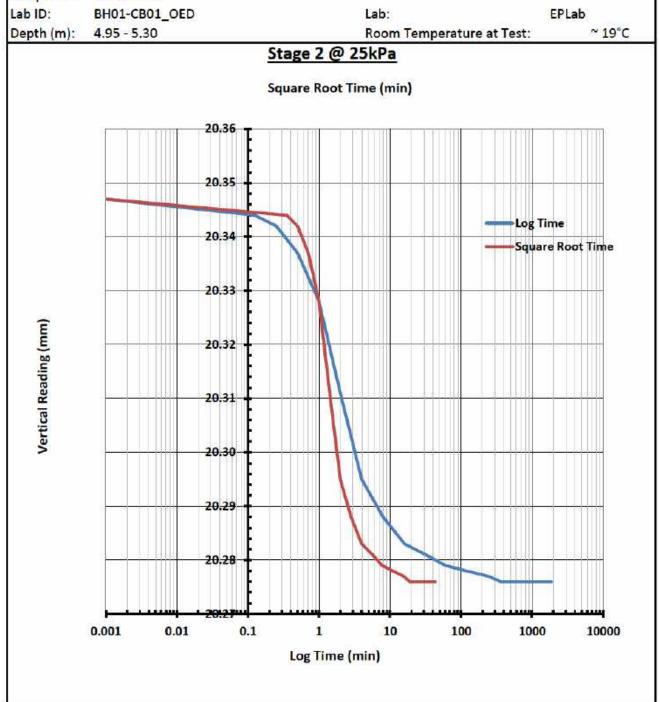
Project: Bellevue TSF Testing 2025 EP Lab Job Number:

Sample ID: BH01-CB01

Lab ID: BH01-CB01_OED Lab: **EPLab**

Depth (m): Room Temperature at Test: ~ 19°C 4.95 - 5.30 Stage 1 @ 12.5kPa Square Root Time (min) 20.52 Log Time Square Root Time 20.50 20.49 Vertical Reading (mm) 20.48 20.47 20.46 20.45 0.001 0.01 0.1 1 10 100 1000 10000

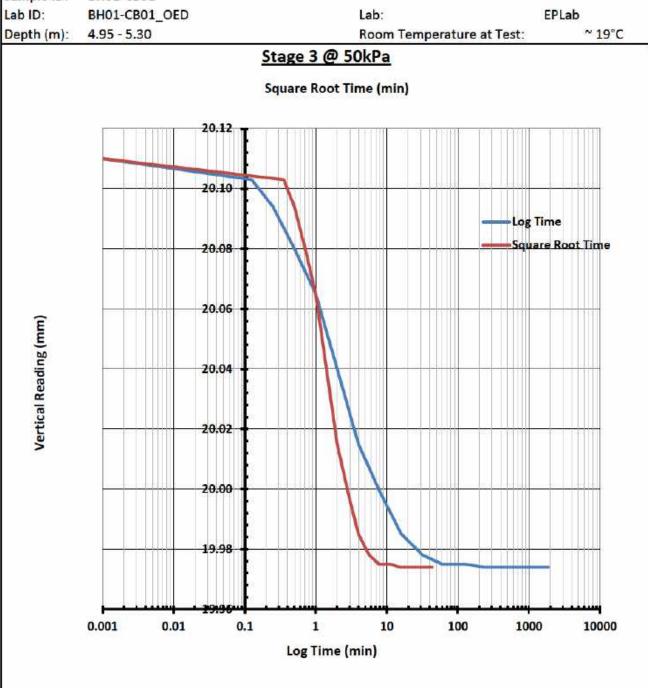
Log Time (min)



Method: AS1289 6.6.1 / Inhouse Method

Client: Date Tested: 04/02/2025 EP Lab Job Number: Project: Bellevue TSF Testing 2025 REC

Sample ID: BH01-CB01

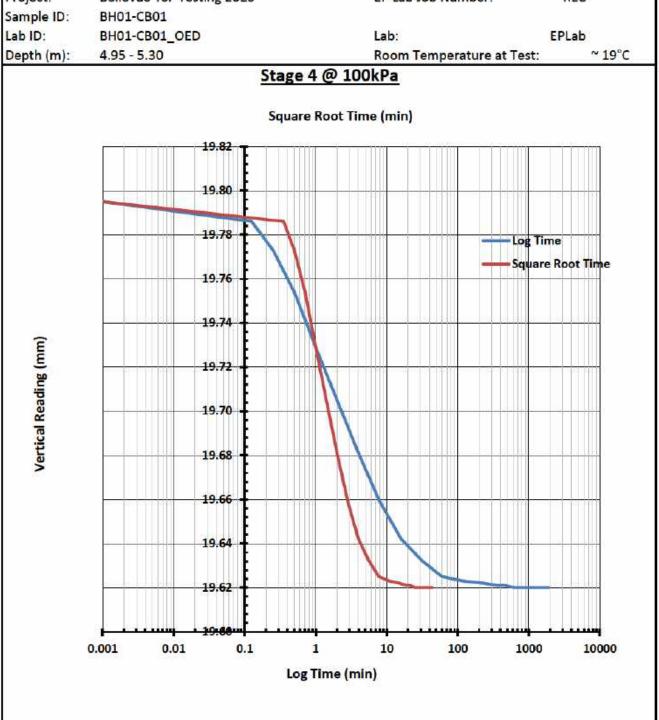

Method: AS1289 6.6.1 / Inhouse Method

Client: REC Date Tested: 04/02/2025

> EP Lab Job Number: REC

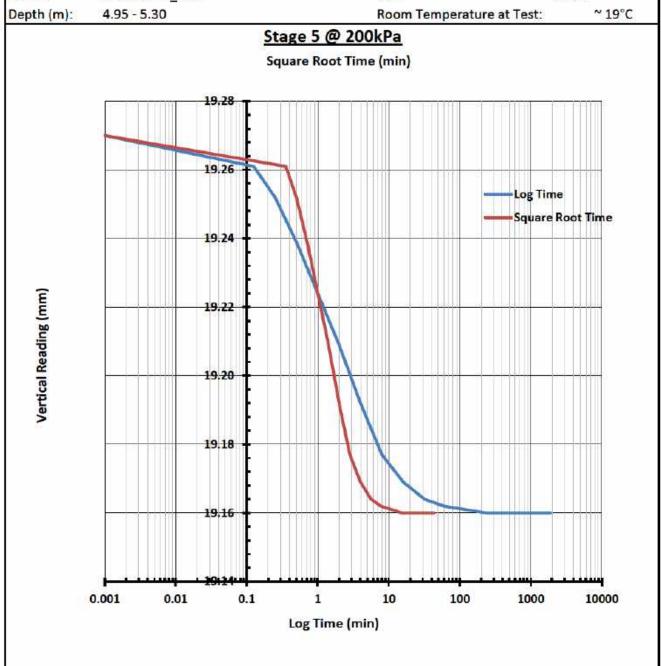
Sample ID: BH01-CB01

Bellevue TSF Testing 2025



Method: AS1289 6.6.1 / Inhouse Method

Client: Date Tested: 04/02/2025 Project: EP Lab Job Number: **Bellevue TSF Testing 2025** REC

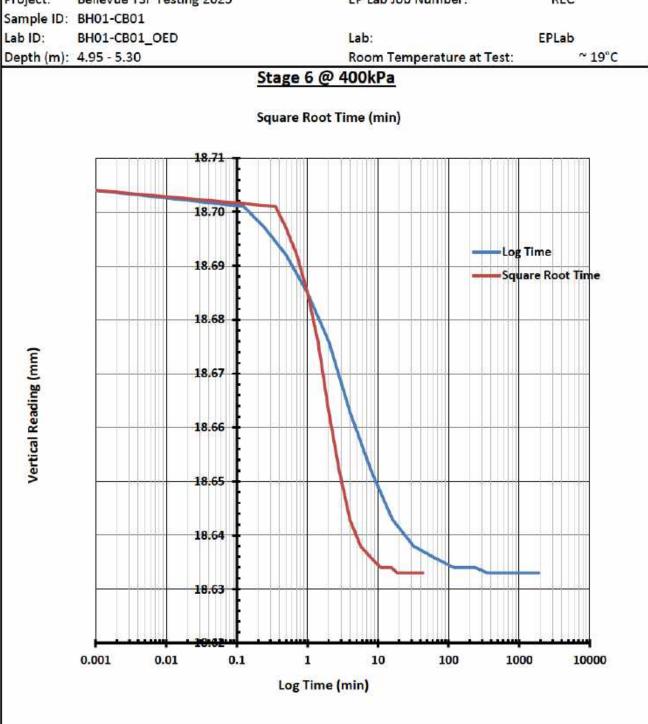


Method: AS1289 6.6.1 / Inhouse Method

Client: REC Date Tested: 04/02/2025
Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC

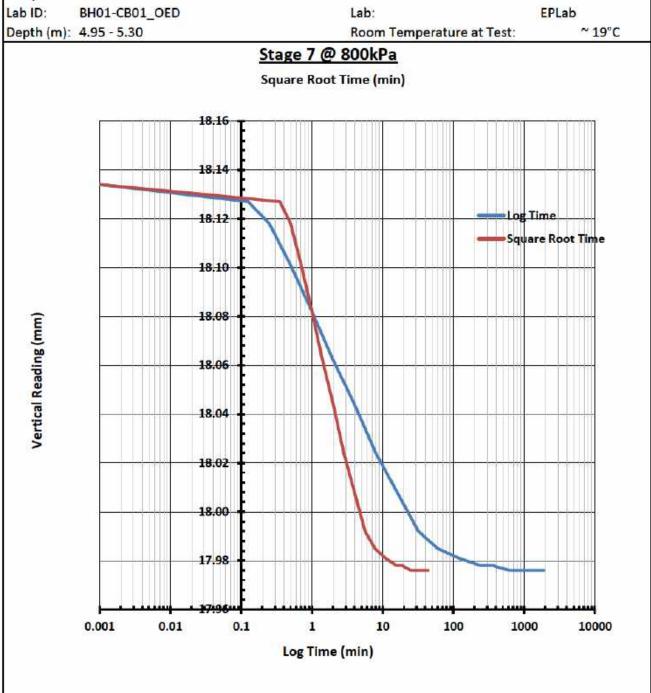
Sample ID: BH01-CB01

Lab ID: BH01-CB01_OED Lab: EPLab



Method: AS1289 6.6.1 / Inhouse Method

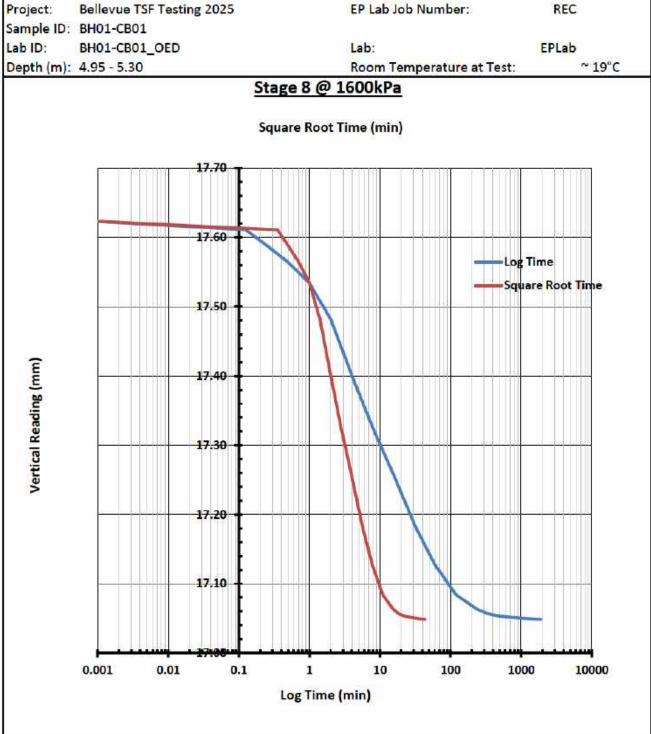
Client: REC Date Tested: 04/02/2025
Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC



Method: AS1289 6.6.1 / Inhouse Method

Client: REC Date Tested: 04/02/2025
Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC

Sample ID: BH01-CB01

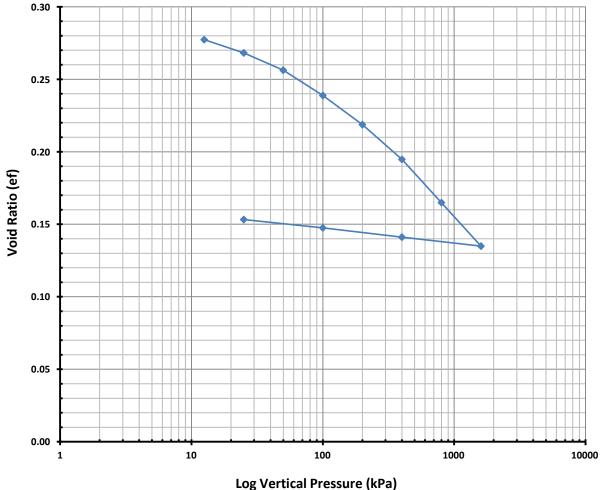


Client: REC Date Tested: 04/02/2025

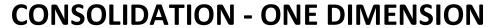
Project: Rellevue TSE Testing 2025 EP Lab Joh Number: REC

Method: AS1289 6.6.1 / Inhouse Method

Client: REC Date Tested: 04/02/2025 Project: Bellevue TSF Testing 2025 EP Lab Job Number: **REC**


Sample ID: BH01-CB05

Lab ID: BH01-CB05_OED Lab: **EPLab**


~ 19°C Room Temperature at Test: Depth (m): 16.25

12.05 Tested by: Phil Initial Moisture (%): Test Condition: Undrained 21.55 Height (mm): 20.13 Final Moisture Content (%): Sample Condition: Saturated Diameter (mm): 61.80 Bulk Density (t/m³): Particle Density (t/m³): 2.479 2.15 Dry Density (t/m³): Direction: Vertical 1.92 Initial Void Ratio (e_i): 0.290

Void Ratio (e_f) Vs Log of Vertical Pressure (kPa)

Method: AS1289 6.6.1 / Inhouse Method

Client: REC Date Tested: 04/02/2025
Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC

Sample ID: BH01-CB05

Lab ID: BH01-CB05_OED Lab: EPLab

Method: AS1289 6.6.1 / Inhouse Method

Client: REC Date Tested: 04/02/2025

Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC

Sample ID: BH01-CB05

Lab ID: BH01-CB05_OED Lab: EPLab

Depth (m): 16.25 Room Temperature at Test: ~ 19°C

Test Results

·

Stages	Vert Disp	Cv (m²/yr)		Compressibility	W ((-)	Void Ratio	Vertical Strain
	(mm)	* t 50	t 90	Mv (m²/kN)	K (m/s)	(e _f)	(%)
Stage 1 @ 12.5kPa	0.205	10.341	-	8.15E-04	2.6E-09	0.277	1.02
Stage 2 @ 25kPa	0.347	5.099	-	5.70E-04	9.0E-10	0.268	1.72
Stage 3 @ 50kPa	0.533	3.337	-	3.76E-04	3.9E-10	0.256	2.65
Stage 4 @ 100kPa	0.805	3.247	-	2.78E-04	2.8E-10	0.239	4.00
Stage 5 @ 200kPa	1.119	3.146	-	1.62E-04	1.6E-10	0.219	5.56
Stage 6 @ 400kPa	1.493	3.028	-	9.84E-05	9.3E-11	0.195	7.42
Stage 7 @ 800kPa	1.958	2.882	-	6.24E-05	5.6E-11	0.165	9.73
Stage 8 @ 1600kPa	2.426	2.053	-	3.22E-05	2.1E-11	0.135	12.05

Unload @ 400kPa 2.329
Unload @ 100kPa 2.230
Unload @ 25kPa 2.140

Comments: Core Sample

Cv values to be interpreted via Engineer

Samples supplied by the Client

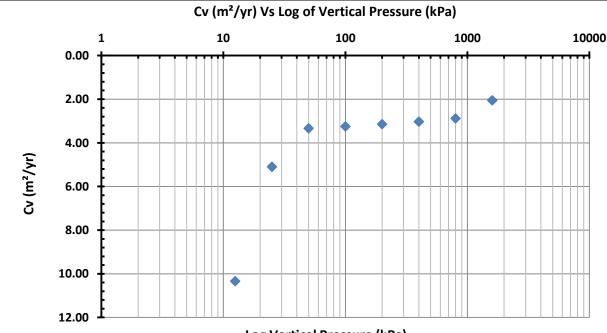
Authorised Signatory (Geotechnical Engineer):

The results of tests performed apply only to the specific sample at time of test unless otherwise clearly stated. Reference should be made to E-Precision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431 559 578 87

^{*} Values interpreted via lab only

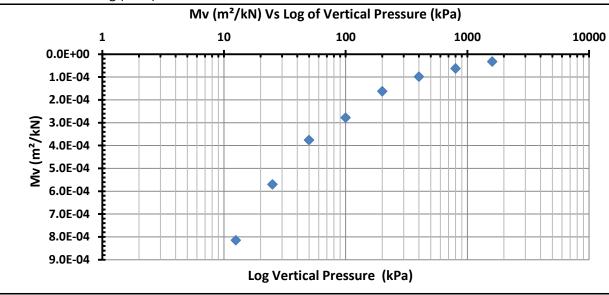
Method: AS1289 6.6.1 / Inhouse Method

Client: **REC** Date Tested: 04/02/2025 EP Lab Job Number: **REC**


Project: Bellevue TSF Testing 2025

Sample ID:

BH01-CB05


Lab ID: BH01-CB05_OED Lab: **EPLab**

Depth (m): Room Temperature at Test: ~ 19°C 16.25

Log Vertical Pressure (kPa)

* Plot based on Log (time) data

Method: AS1289 6.6.1 / Inhouse Method

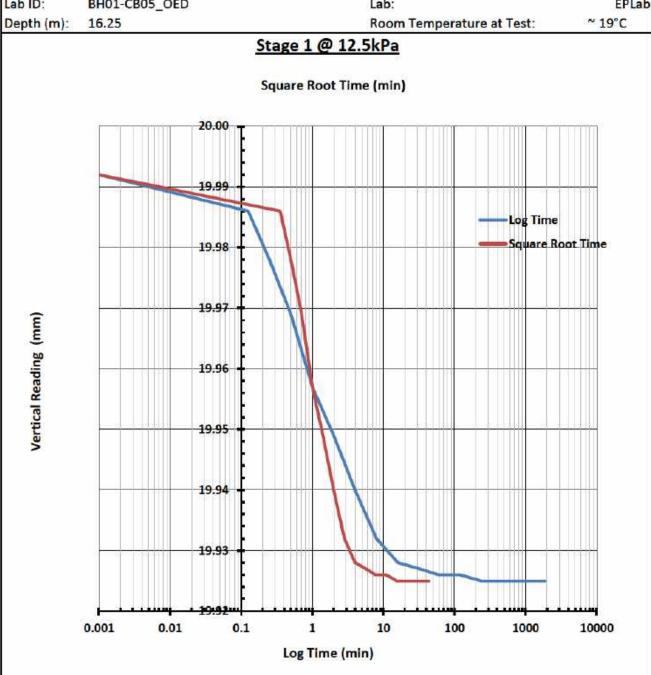
Client: REC Date Tested: 04/02/2025
Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC

Sample ID: BH01-CB05

Lab ID: BH01-CB05_OED Lab: EPLab

Depth (m): 16.25 Room Temperature at Test: ~ 19°C

TEST RESULTS PLEASE SEE PAGES BELOW

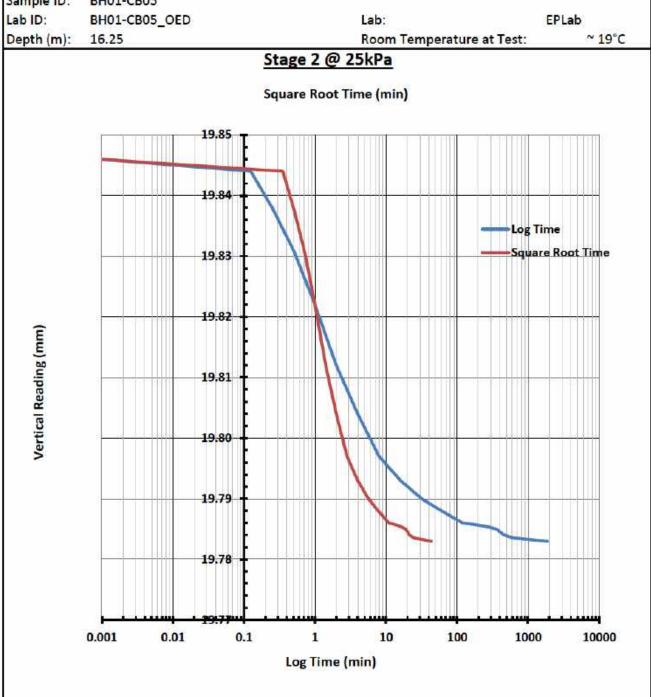

Method: AS1289 6.6.1 / Inhouse Method

Client: REC Date Tested: 04/02/2025 REC

Project: Bellevue TSF Testing 2025 EP Lab Job Number:

Sample ID: BH01-CB05

Lab ID: BH01-CB05_OED Lab: **EPLab**

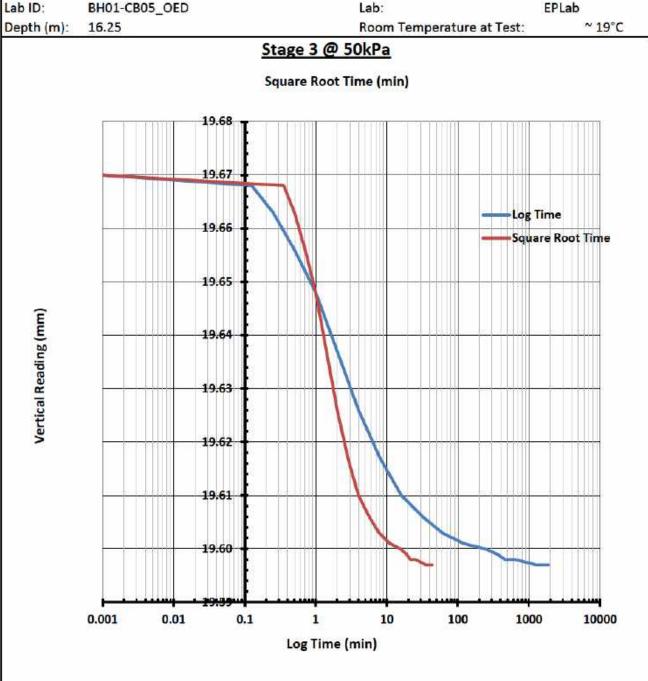


Method: AS1289 6.6.1 / Inhouse Method

Client: Date Tested: 04/02/2025 Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC

Sample ID: BH01-CB05

Method: AS1289 6.6.1 / Inhouse Method

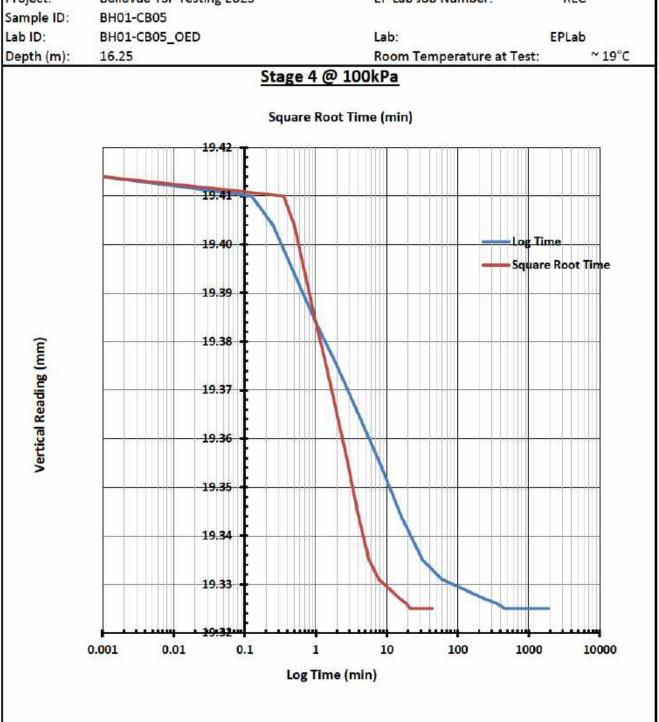

Client: REC Date Tested: 04/02/2025

> EP Lab Job Number: REC

Sample ID: BH01-CB05

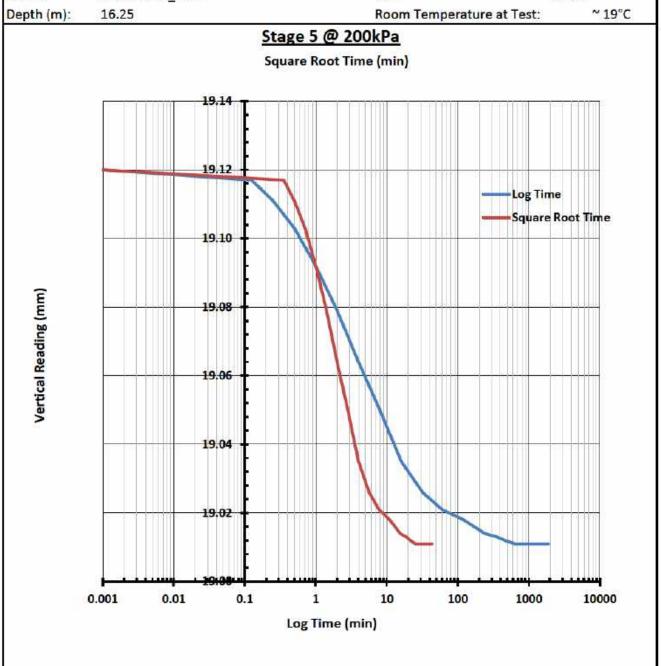
Bellevue TSF Testing 2025

Lab ID: **EPLab** Lab:



Method: AS1289 6.6.1 / Inhouse Method

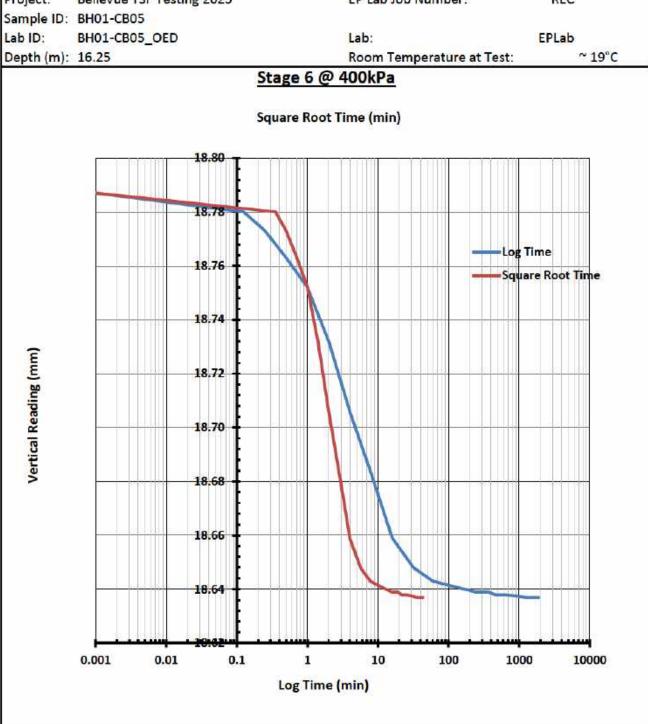
Client: Date Tested: 04/02/2025 Project: **Bellevue TSF Testing 2025** EP Lab Job Number: REC

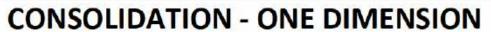


Method: AS1289 6.6.1 / Inhouse Method

Client: REC Date Tested: 04/02/2025
Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC

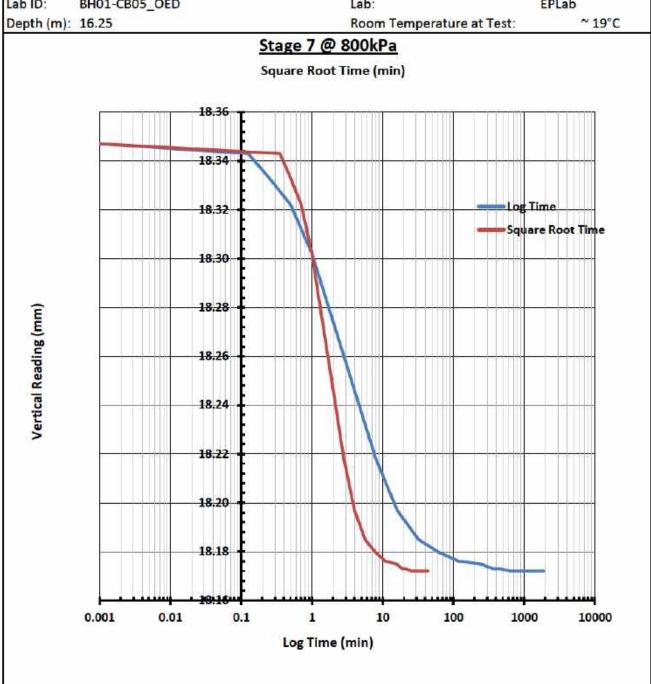
Sample ID: BH01-CB05


Lab ID: BH01-CB05_OED Lab: EPLab



Method: AS1289 6.6.1 / Inhouse Method

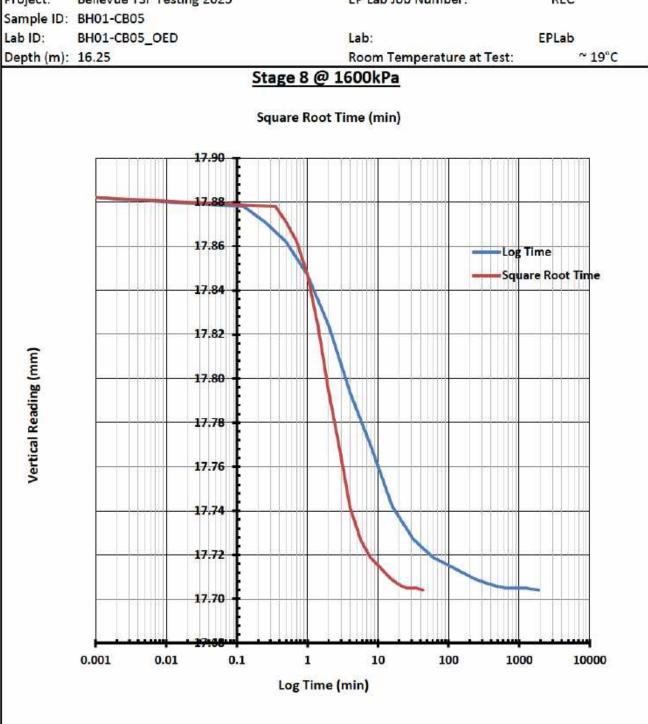
Client: REC Date Tested: 04/02/2025
Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC



Method: AS1289 6.6.1 / Inhouse Method

Client: REC Date Tested: 04/02/2025 Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC

Sample ID: BH01-CB05

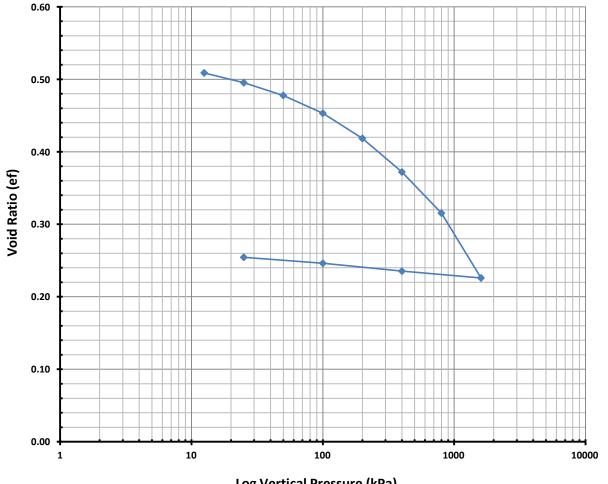

Lab ID: Lab: **EPLab** BH01-CB05_OED

Method: AS1289 6.6.1 / Inhouse Method

Client: REC Date Tested: 04/02/2025
Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC

Method: AS1289 6.6.1 / Inhouse Method

Client: REC Date Tested: 04/02/2025 Project: Bellevue TSF Testing 2025 EP Lab Job Number: **REC**

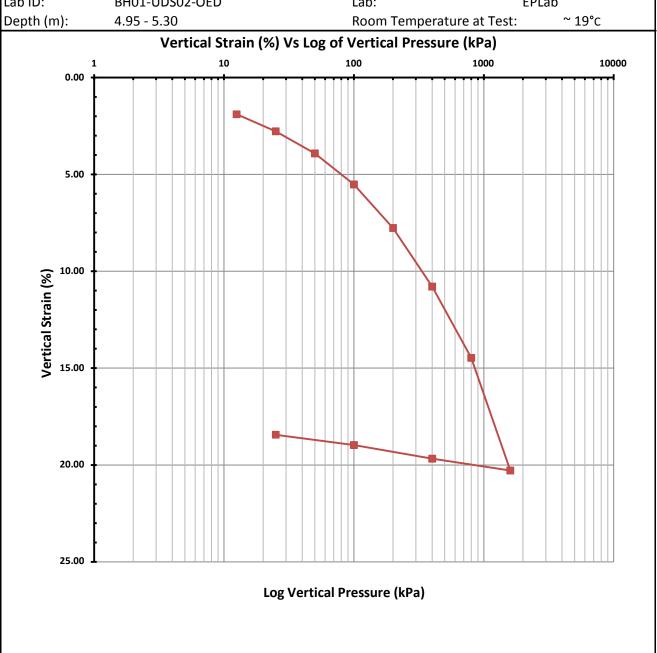

Sample ID: BH01-UDS02

Lab ID: BH01-UDS02-OED Lab: **EPLab**

~ 19°C Depth (m): 4.95 - 5.30Room Temperature at Test:

Phil 27.97 Tested by: Initial Moisture (%): **Test Condition:** Undrained Height (mm): 20.04 Final Moisture Content (%): 32.67 Sample Condition: Saturated Diameter (mm): Bulk Density (t/m³): 2.584 61.80 2.16 Particle Density (t/m³): Dry Density (t/m³): Direction: Vertical 1.69 Initial Void Ratio (e_i): 0.529

Void Ratio (e_f) Vs Log of Vertical Pressure (kPa)



Method: AS1289 6.6.1 / Inhouse Method

Client: **REC** Date Tested: 04/02/2025 Project: Bellevue TSF Testing 2025 EP Lab Job Number: **REC**

Sample ID: BH01-UDS02

Lab ID: BH01-UDS02-OED Lab: **EPLab**

Method: AS1289 6.6.1 / Inhouse Method

Client: **REC** Date Tested: 04/02/2025

Project: Bellevue TSF Testing 2025 EP Lab Job Number: **REC**

Sample ID: BH01-UDS02

Lab ID: BH01-UDS02-OED Lab: **EPLab**

Depth (m): 4.95 - 5.30 Room Temperature at Test:

Test Results

Stages	Vert Disp	Cv (m²/yr)		Compressibility	W ((-)		Void Ratio	Vertical Strain
	(mm)	* t 50	t 90	Mv (m²/kN)	K (m/s)		(e _f)	(%)
Stage 1 @ 12.5kPa	0.380	5.057	-	1.52E-03	2.4E-09		0.509	1.90
Stage 2 @ 25kPa	0.556	3.303	-	7.16E-04	7.4E-10		0.495	2.77
Stage 3 @ 50kPa	0.785	2.422	-	4.70E-04	3.5E-10		0.478	3.92
Stage 4 @ 100kPa	1.106	1.564	-	3.33E-04	1.6E-10		0.453	5.52
Stage 5 @ 200kPa	1.557	0.996	-	2.38E-04	7.4E-11		0.418	7.77
Stage 6 @ 400kPa	2.162	0.842	-	1.64E-04	4.3E-11		0.372	10.79
Stage 7 @ 800kPa	2.900	0.773	-	1.03E-04	2.5E-11	·	0.315	14.47
Stage 8 @ 1600kPa	4.065	0.677	-	8.50E-05	1.8E-11		0.226	20.28

Unload @ 400kPa 3.943 Unload @ 100kPa 3.802 Unload @ 25kPa 3.695

Samples collected from Shelby tubes **Comments:**

Cv values to be interpreted via Engineer

Samples supplied by the Client

Authorised Signatory (Geotechnical Engineer):

The results of tests performed apply only to the specific sample at time of test unless otherwise clearly stated. Reference should be made to E-Precision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431 559 578 87

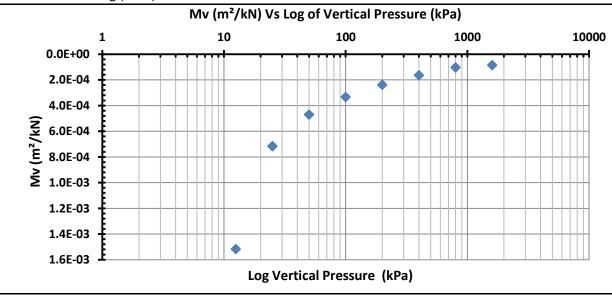
^{*} Values interpreted via lab only

Method: AS1289 6.6.1 / Inhouse Method

Client: **REC** Date Tested: 04/02/2025 **REC**

Project: Bellevue TSF Testing 2025 EP Lab Job Number:

Sample ID: BH01-UDS02


Lab ID: Lab: **EPLab** BH01-UDS02-OED

Depth (m): Room Temperature at Test: ~ 19°C 4.95 - 5.30

Log Vertical Pressure (kPa)

* Plot based on Log (time) data

Method: AS1289 6.6.1 / Inhouse Method

Client: REC Date Tested: 04/02/2025
Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC

Sample ID: BH01-UDS02

Lab ID: BH01-UDS02-OED Lab: EPLab

Depth (m): 4.95 - 5.30 Room Temperature at Test: ~ 19°C

TEST RESULTS PLEASE SEE PAGES BELOW

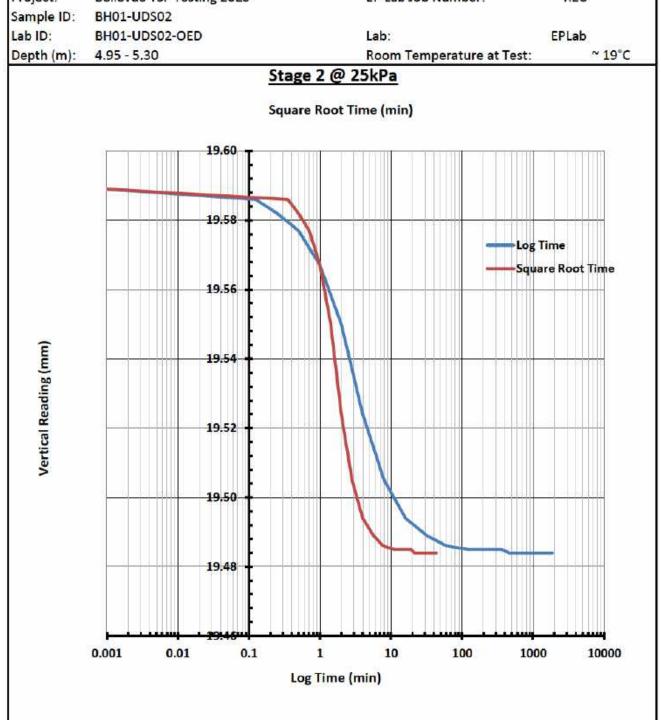
Method: AS1289 6.6.1 / Inhouse Method

Client: REC Date Tested: 04/02/2025 REC

Project: Bellevue TSF Testing 2025 EP Lab Job Number:

Sample ID: BH01-UDS02

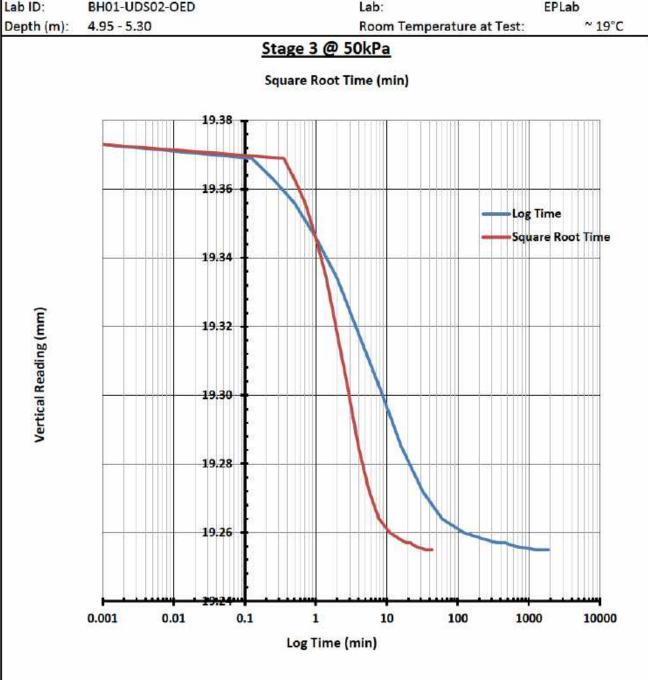
Lab ID: BH01-UDS02-OED Lab: **EPLab**


Depth (m): Room Temperature at Test: ~ 19°C 4.95 - 5.30 Stage 1 @ 12.5kPa Square Root Time (min) 19.90 Square Root Time Vertical Reading (mm) 19.80 19.75 19.70 0.001 0.01 0.1 1 10 100 1000 10000 Log Time (min)

Method: AS1289 6.6.1 / Inhouse Method

Client: REC Date Tested: 04/02/2025
Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC

Method: AS1289 6.6.1 / Inhouse Method

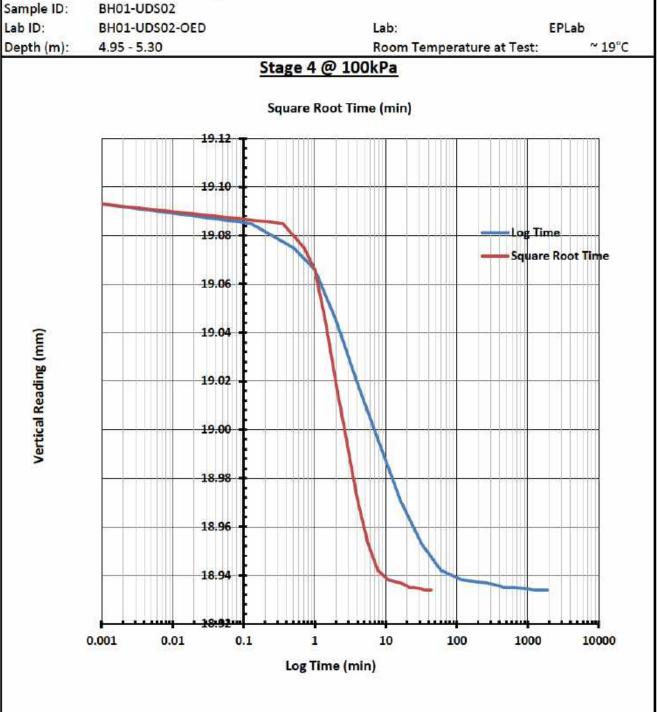

Client: REC Date Tested: 04/02/2025

> EP Lab Job Number: REC

BH01-UDS02 Sample ID:

Bellevue TSF Testing 2025

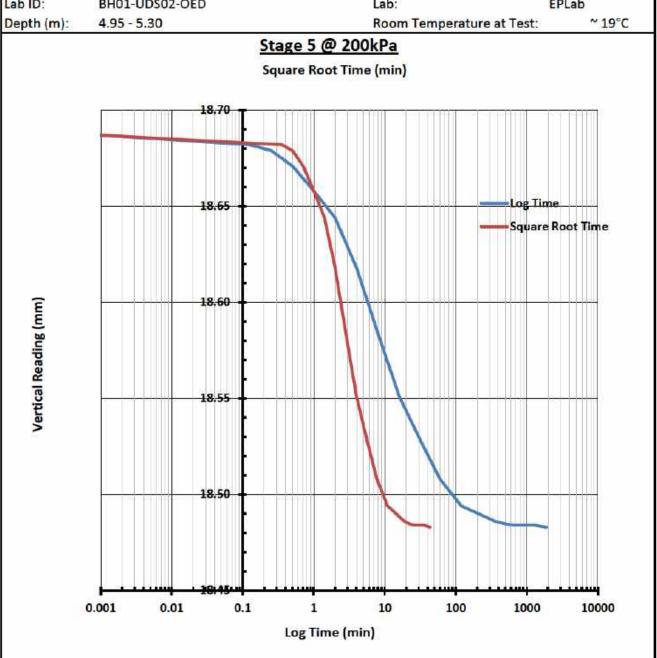
Lab ID: **EPLab** BH01-UDS02-OED Lab:



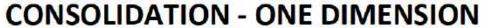
Method: AS1289 6.6.1 / Inhouse Method

Client: Date Tested: 04/02/2025 Project: EP Lab Job Number: **Bellevue TSF Testing 2025** REC

Sample ID:

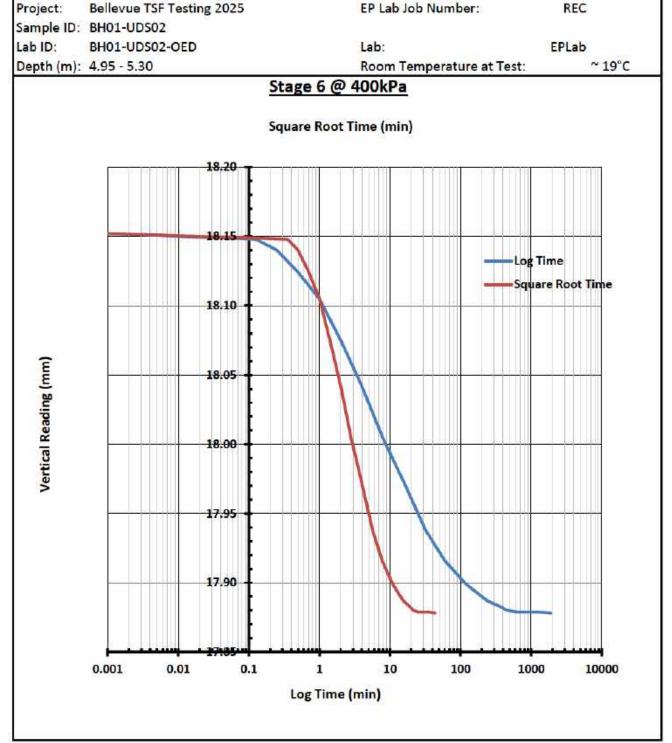


Method: AS1289 6.6.1 / Inhouse Method


Client: REC Date Tested: 04/02/2025 Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC

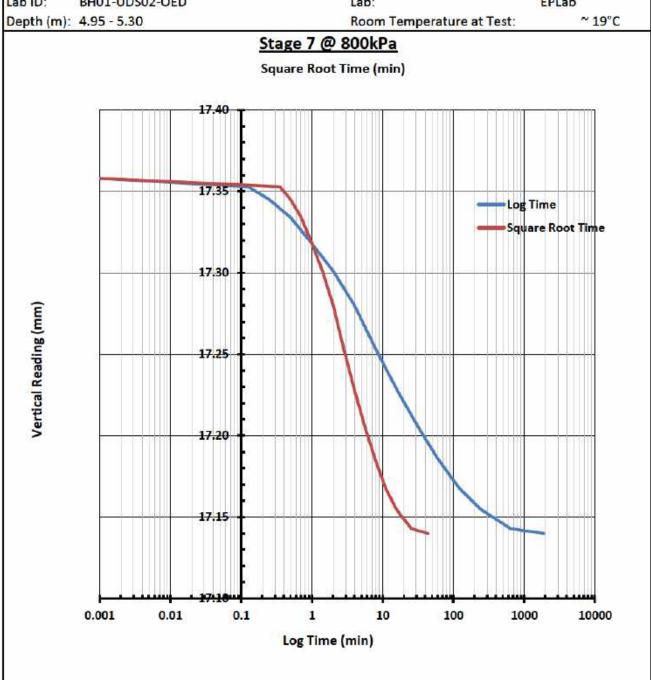
Sample ID: BH01-UDS02

Lab ID: Lab: **EPLab** BH01-UDS02-OED



Method: AS1289 6.6.1 / Inhouse Method

Client: REC Date Tested: 04/02/2025
Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC

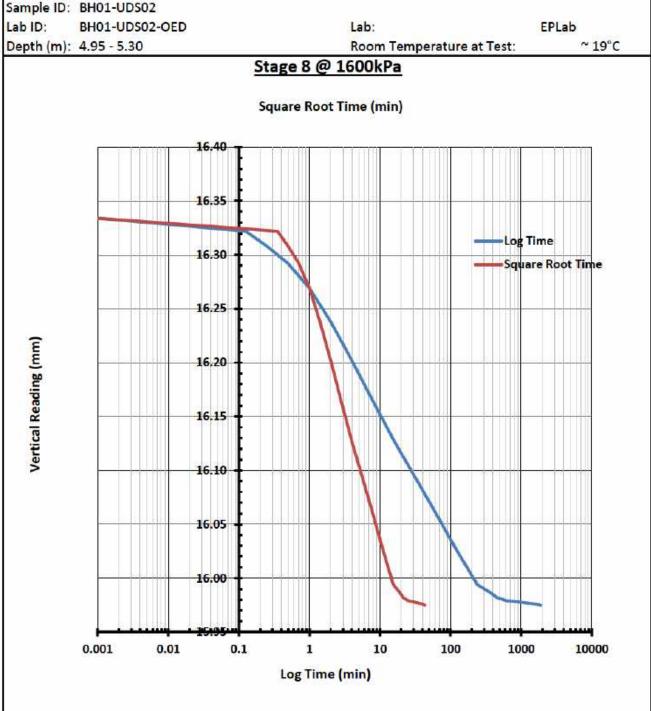


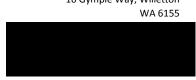
Method: AS1289 6.6.1 / Inhouse Method

Client: REC Date Tested: 04/02/2025 Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC

Sample ID: BH01-UDS02

Lab ID: Lab: **EPLab** BH01-UDS02-OED



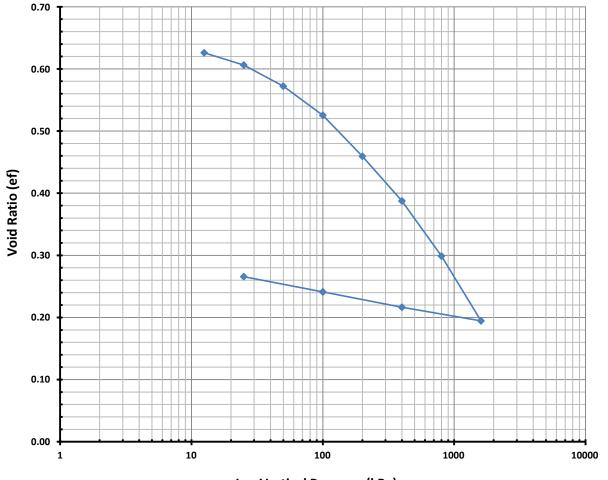

Method: AS1289 6.6.1 / Inhouse Method

Client: Date Tested: 04/02/2025 EP Lab Job Number: Project: Bellevue TSF Testing 2025 REC

Sample ID: BH01-UDS02

Method: AS1289 6.6.1 / Inhouse Method

Client: REC Date Tested: 04/02/2025
Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC

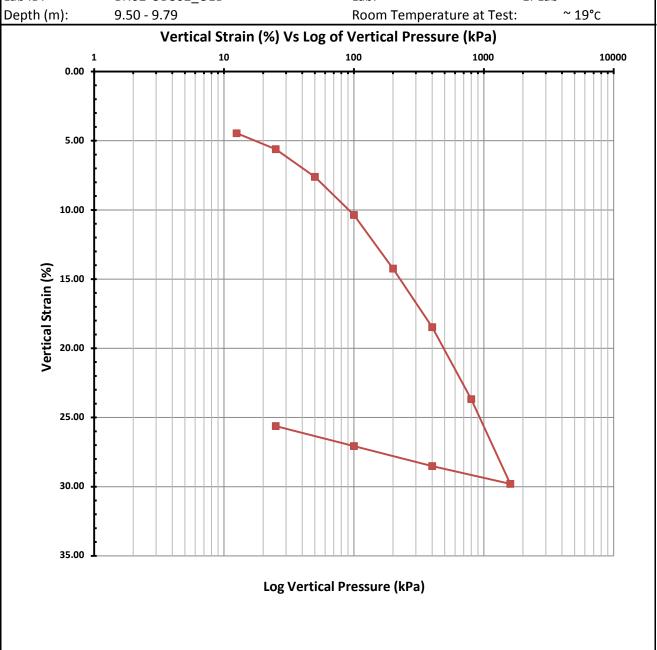

Sample ID: BH02-UDS02

Lab ID: BH02-UDS02_OED Lab: EPLab

Depth (m): 9.50 - 9.79 Room Temperature at Test: $\sim 19^{\circ}$ C

Phil 34.57 Tested by: Initial Moisture (%): **Test Condition:** Undrained Height (mm): 20.03 Final Moisture Content (%): 34.13 Sample Condition: Saturated Diameter (mm): Bulk Density (t/m³): 1.93 2.365 61.80 Particle Density (t/m³): Dry Density (t/m³): Direction: Vertical 1.43 Initial Void Ratio (e_i): 0.648

Void Ratio (e_f) Vs Log of Vertical Pressure (kPa)



Method: AS1289 6.6.1 / Inhouse Method

Client: **REC** Date Tested: 04/02/2025 Project: Bellevue TSF Testing 2025 EP Lab Job Number: **REC**

Sample ID: BH02-UDS02

Lab ID: BH02-UDS02_OED Lab: **EPLab**

Method: AS1289 6.6.1 / Inhouse Method

Client: REC Date Tested: 04/02/2025

Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC

Sample ID: BH02-UDS02

Lab ID: BH02-UDS02_OED Lab: EPLab

Depth (m): 9.50 - 9.79 Room Temperature at Test: ~ 19°C

Test Results

*

Stages	Vert Disp	Cv (m²/yr)		Compressibility	W ((-)	Void Ratio	Vertical Strain
	(mm)	* t 50	t 90	Mv (m²/kN)	K (m/s)	(e _f)	(%)
Stage 1 @ 12.5kPa	0.893	3.192	-	3.57E-03	3.5E-09	0.626	4.46
Stage 2 @ 25kPa	1.124	1.338	-	9.66E-04	4.0E-10	0.606	5.61
Stage 3 @ 50kPa	1.524	1.795	-	8.46E-04	4.7E-10	0.572	7.61
Stage 4 @ 100kPa	2.076	1.407	-	5.97E-04	2.6E-10	0.525	10.36
Stage 5 @ 200kPa	2.852	0.970	-	4.32E-04	1.3E-10	0.459	14.24
Stage 6 @ 400kPa	3.700	0.779	-	2.47E-04	6.0E-11	0.387	18.47
Stage 7 @ 800kPa	4.742	0.622	-	1.60E-04	3.1E-11	0.299	23.67
Stage 8 @ 1600kPa	5.969	0.533	-	1.00E-04	1.7E-11	0.195	29.80

Unload @ 400kPa 5.712 Unload @ 100kPa 5.421 Unload @ 25kPa 5.132

Comments: Samples collected from Shelby tubes

Cv values to be interpreted via Engineer

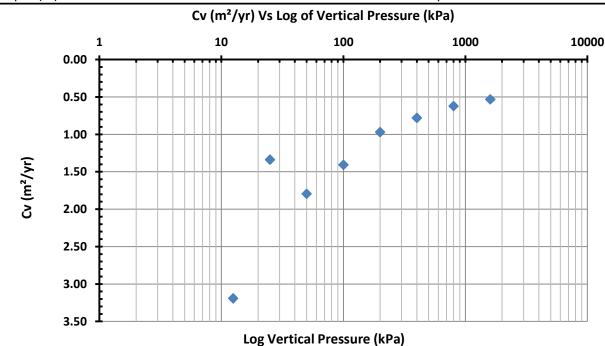
Samples supplied by the Client

Authorised Signatory (Geotechnical Engineer):

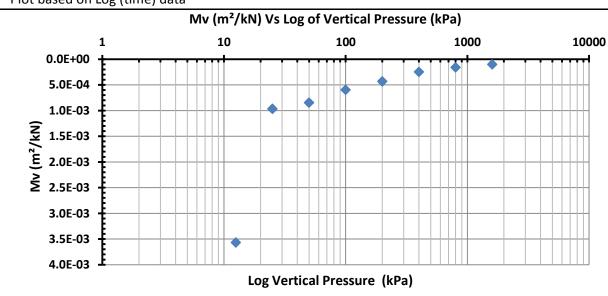
The results of tests performed apply only to the specific sample at time of test unless otherwise clearly stated. Reference should be made to E-Precision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431 559 578 87

^{*} Values interpreted via lab only

Method: AS1289 6.6.1 / Inhouse Method


Client: **REC** Date Tested: 04/02/2025 **REC**

Project: Bellevue TSF Testing 2025 EP Lab Job Number:


Sample ID: BH02-UDS02

Lab ID: BH02-UDS02_OED Lab: **EPLab**

Depth (m): Room Temperature at Test: ~ 19°C 9.50 - 9.79

* Plot based on Log (time) data

Method: AS1289 6.6.1 / Inhouse Method

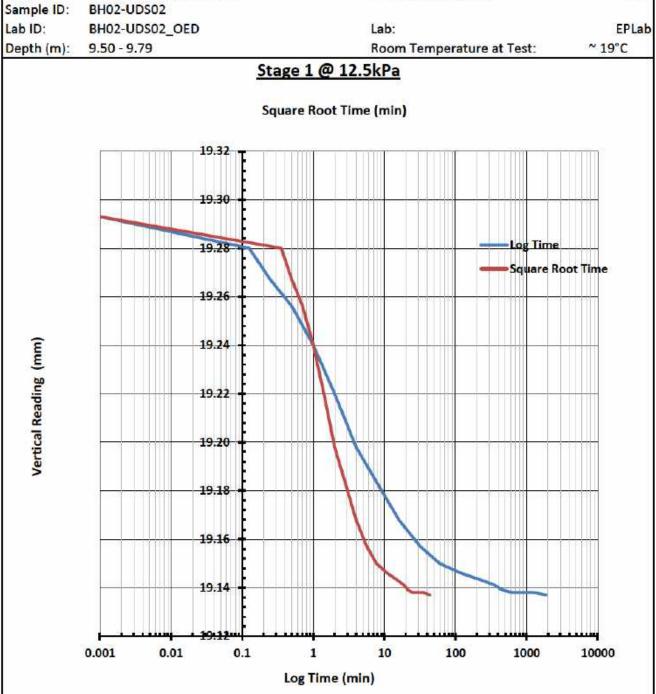
Client: REC Date Tested: 04/02/2025
Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC

Sample ID: BH02-UDS02

Lab ID: BH02-UDS02_OED Lab: EPLab

Depth (m): 9.50 - 9.79 Room Temperature at Test: ~ 19°C

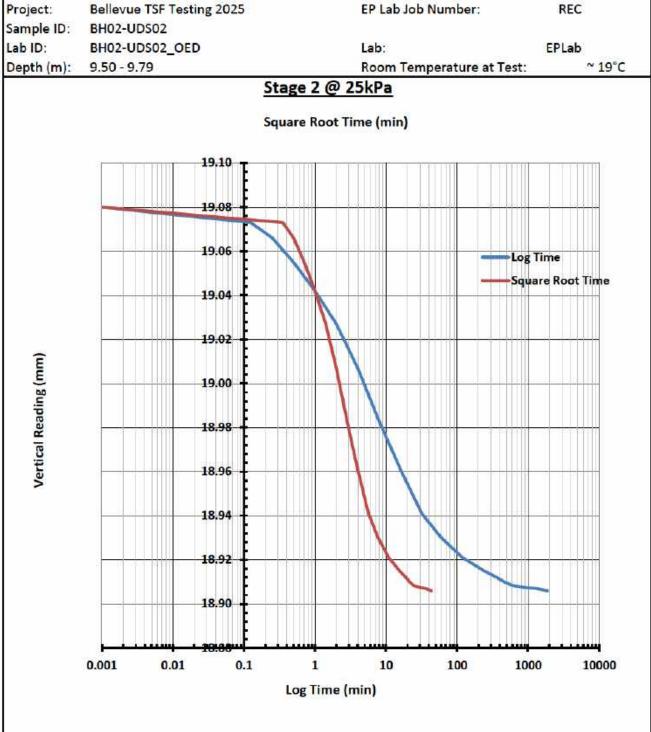
TEST RESULTS PLEASE SEE PAGES BELOW



Method: AS1289 6.6.1 / Inhouse Method

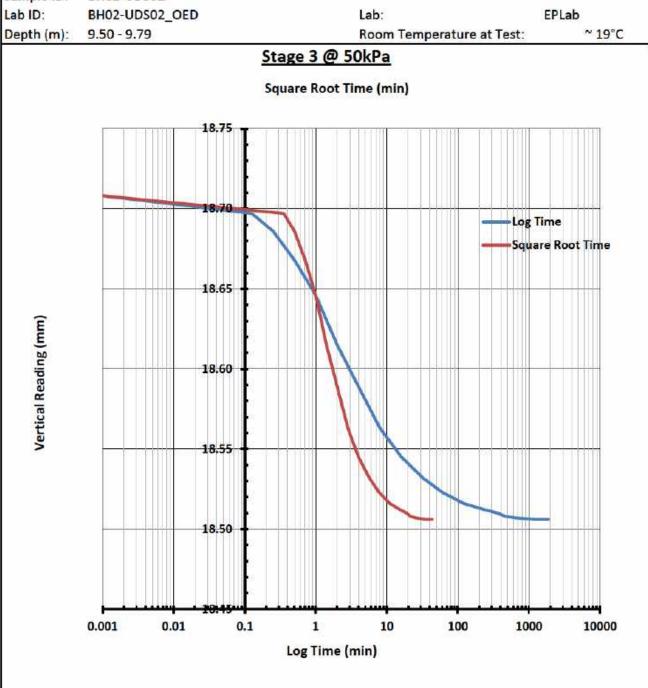
Client: REC Date Tested: 04/02/2025
Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC

Project. Believed for resting 2023



Method: AS1289 6.6.1 / Inhouse Method

Client: REC Date Tested: 04/02/2025
Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC

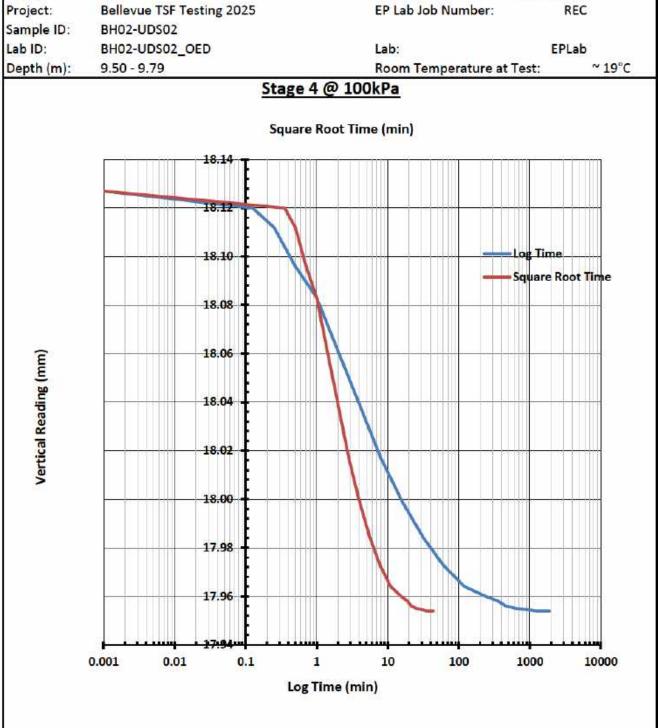


Method: AS1289 6.6.1 / Inhouse Method

Client: REC Date Tested: 04/02/2025

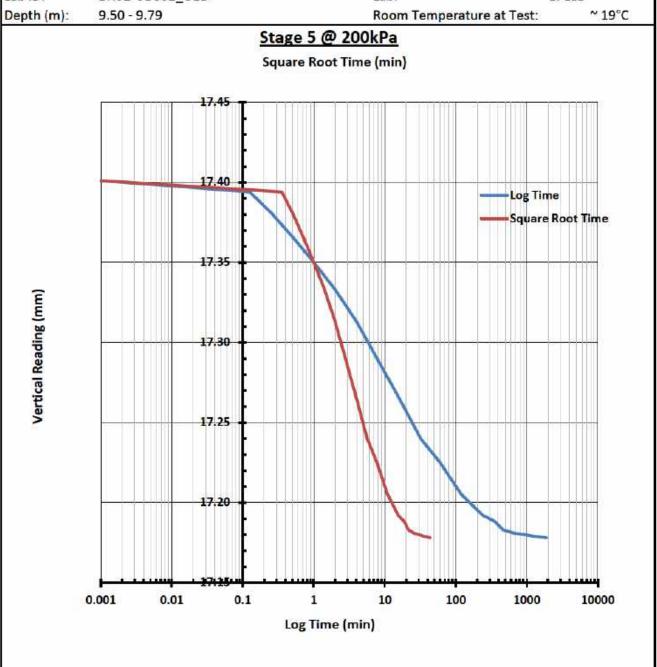
> Bellevue TSF Testing 2025 EP Lab Job Number: REC

Sample ID: BH02-UDS02



Method: AS1289 6.6.1 / Inhouse Method

Client: Date Tested: 04/02/2025

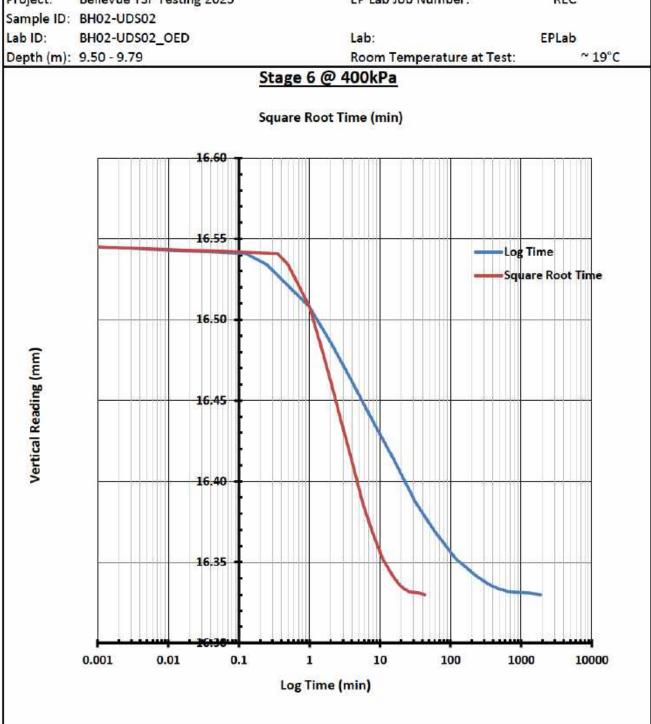


Method: AS1289 6.6.1 / Inhouse Method

Client: REC Date Tested: 04/02/2025
Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC

Sample ID: BH02-UDS02

Lab ID: BH02-UDS02_OED Lab: EPLab



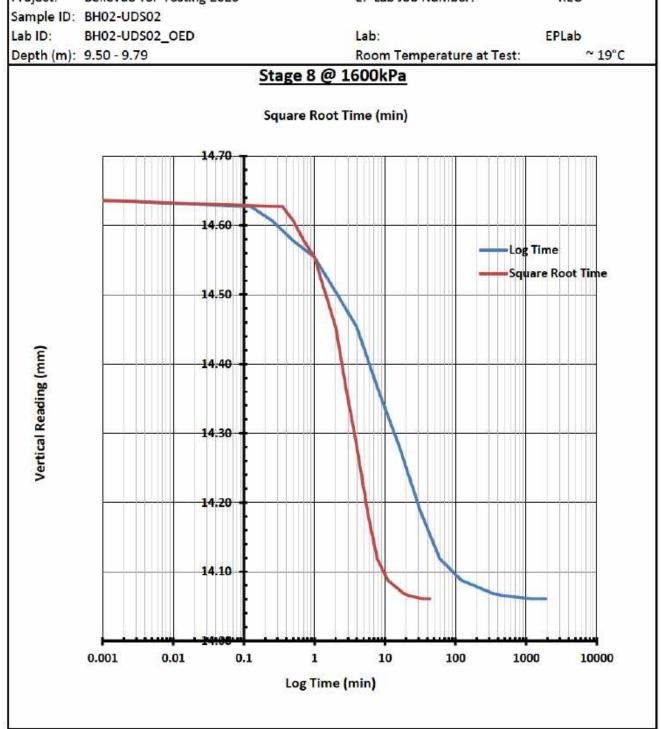
Method: AS1289 6.6.1 / Inhouse Method

Client: REC Date Tested: 04/02/2025
Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC

Method: AS1289 6.6.1 / Inhouse Method

Client: REC Date Tested: 04/02/2025 Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC

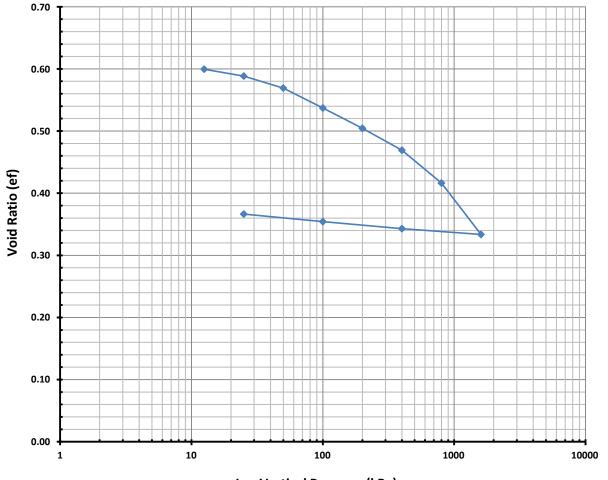
Sample ID: BH02-UDS02


Lab ID: Lab: **EPLab** BH02-UDS02_OED

Method: AS1289 6.6.1 / Inhouse Method

Method: AS1289 6.6.1 / Inhouse Method

Client: REC Date Tested: 04/02/2025
Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC

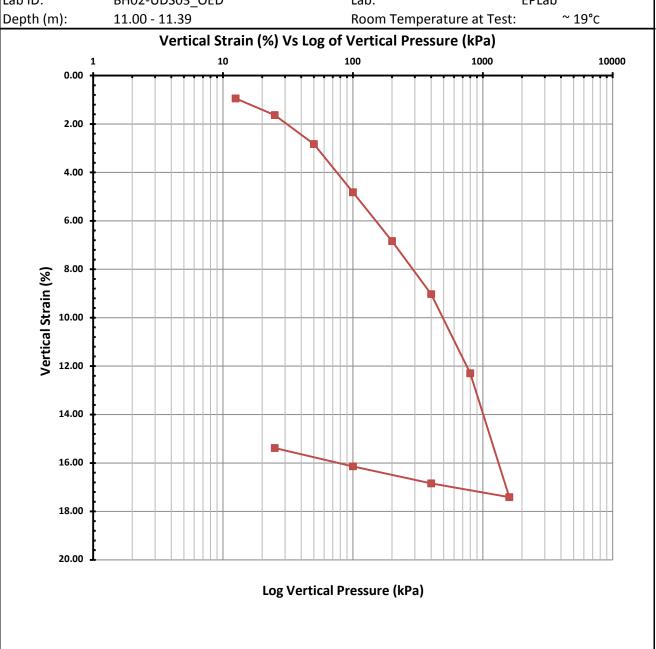

Sample ID: BH02-UDS03

Lab ID: BH02-UDS03_OED Lab: EPLab

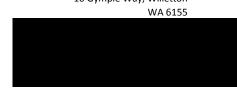
Depth (m): 11.00 - 11.39 Room Temperature at Test: ~ 19°C

Phil 28.42 Tested by: Initial Moisture (%): **Test Condition:** Undrained 33.33 Height (mm): 20.23 Final Moisture Content (%): Sample Condition: Saturated Diameter (mm): Bulk Density (t/m³): 2.347 61.38 1.87 Particle Density (t/m³): Dry Density (t/m³): Direction: Vertical 1.46 Initial Void Ratio (e_i): 0.611

Void Ratio (e_f) Vs Log of Vertical Pressure (kPa)



Method: AS1289 6.6.1 / Inhouse Method


Client: **REC** Date Tested: 04/02/2025 Project: Bellevue TSF Testing 2025 EP Lab Job Number: **REC**

Sample ID: BH02-UDS03

Lab ID: BH02-UDS03_OED Lab: **EPLab**

Method: AS1289 6.6.1 / Inhouse Method

Client: REC Date Tested: 04/02/2025

Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC

Sample ID: BH02-UDS03

Lab ID: BH02-UDS03_OED Lab: EPLab

Depth (m): 11.00 - 11.39 Room Temperature at Test: $\sim 19^{\circ}$ C

Test Results

.

Stages	Vert Disp (mm)	Cv (m²/yr)		Compressibility	V (m /a)	Void Ratio	Vertical Strain
		* t 50	t 90	Mv (m²/kN)	K (m/s)	(e _f)	(%)
Stage 1 @ 12.5kPa	0.192	2.618	-	7.58E-04	6.2E-10	0.600	0.95
Stage 2 @ 25kPa	0.331	2.069	-	5.55E-04	3.6E-10	0.588	1.63
Stage 3 @ 50kPa	0.572	1.682	-	4.86E-04	2.5E-10	0.569	2.83
Stage 4 @ 100kPa	0.975	1.217	-	4.10E-04	1.6E-10	0.537	4.82
Stage 5 @ 200kPa	1.383	1.033	-	2.12E-04	6.8E-11	0.504	6.84
Stage 6 @ 400kPa	1.826	0.889	-	1.18E-04	3.2E-11	0.469	9.03
Stage 7 @ 800kPa	2.487	0.765	-	8.98E-05	2.1E-11	0.416	12.29
Stage 8 @ 1600kPa	3.522	0.618	-	7.29E-05	1.4E-11	0.334	17.41

 Unload @ 400kPa
 3.407

 Unload @ 100kPa
 3.265

 Unload @ 25kPa
 3.112

Comments: Samples collected from Shelby tubes

Cv values to be interpreted via Engineer

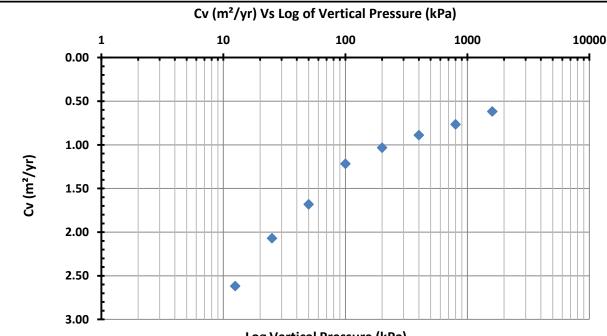
Samples supplied by the Client

Authorised Signatory (Geotechnical Engineer):

The results of tests performed apply only to the specific sample at time of test unless otherwise clearly stated. Reference should be made to E-Precision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431 559 578 87

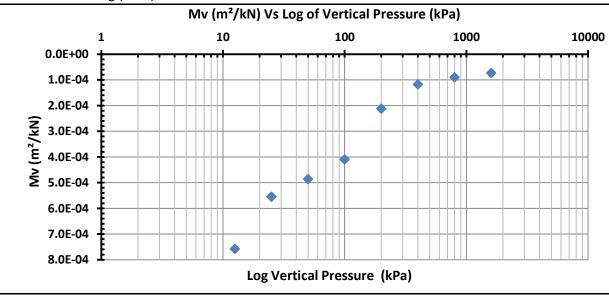
^{*} Values interpreted via lab only

Method: AS1289 6.6.1 / Inhouse Method


Client: **REC** Date Tested: 04/02/2025 EP Lab Job Number: **REC**

Project: Bellevue TSF Testing 2025 Sample ID:

BH02-UDS03


Lab ID: BH02-UDS03_OED Lab: **EPLab**

Depth (m): 11.00 - 11.39 Room Temperature at Test: ~ 19°C

Log Vertical Pressure (kPa)

* Plot based on Log (time) data

Method: AS1289 6.6.1 / Inhouse Method

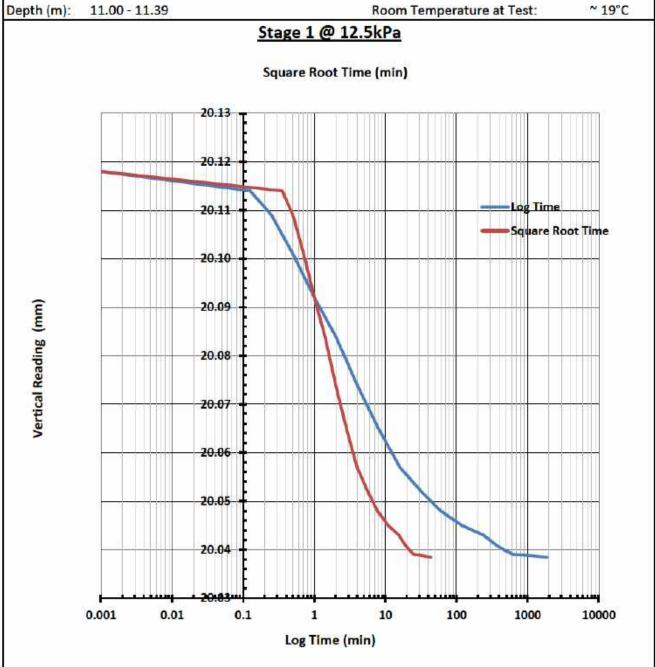
Client: REC Date Tested: 04/02/2025
Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC

Sample ID: BH02-UDS03

Lab ID: BH02-UDS03_OED Lab: EPLab

Depth (m): 11.00 - 11.39 Room Temperature at Test: ~ 19°C

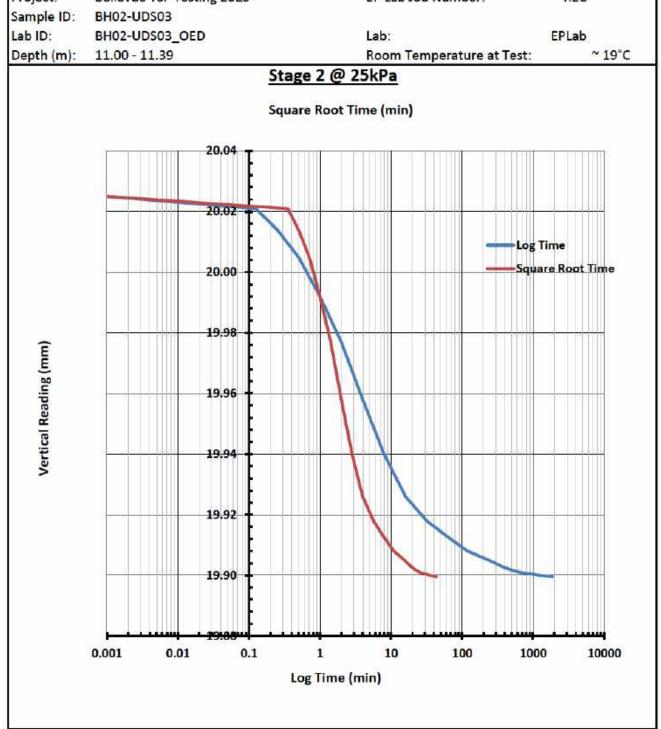
TEST RESULTS PLEASE SEE PAGES BELOW


Method: AS1289 6.6.1 / Inhouse Method

Date Tested: Client: REC 04/02/2025 REC

Project: Bellevue TSF Testing 2025 EP Lab Job Number:

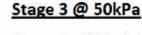
Sample ID: BH02-UDS03


Lab ID: BH02-UDS03_OED Lab: **EPLab**

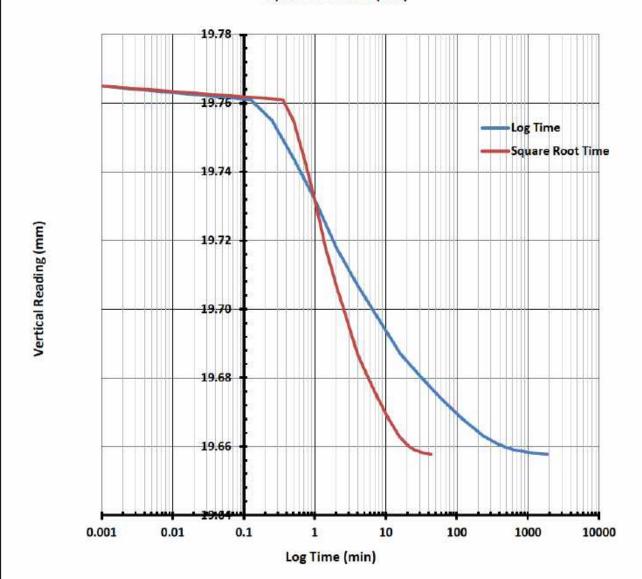
Method: AS1289 6.6.1 / Inhouse Method

Method: AS1289 6.6.1 / Inhouse Method

Client: REC Date Tested: 04/02/2025

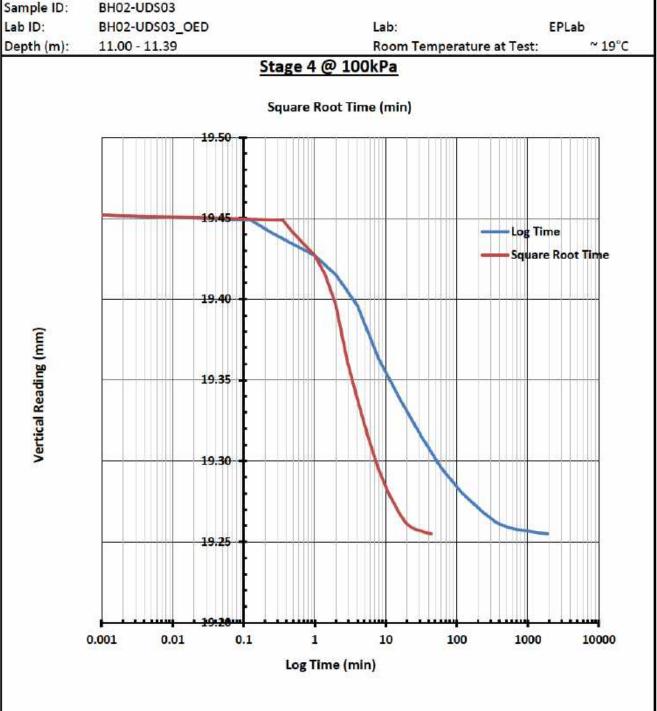

> EP Lab Job Number: REC

Sample ID: BH02-UDS03


Bellevue TSF Testing 2025

Lab ID: **EPLab** BH02-UDS03_OED Lab:

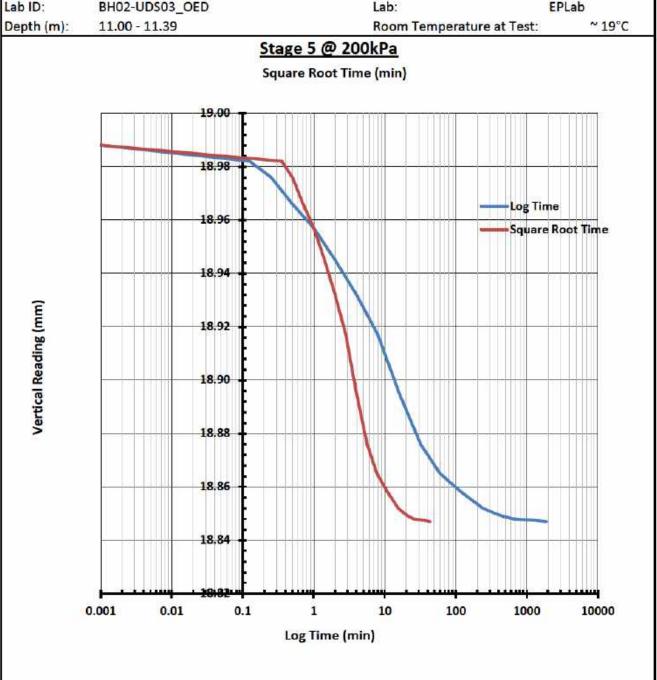
Depth (m): Room Temperature at Test: 11.00 - 11.39 ~ 19°C



Method: AS1289 6.6.1 / Inhouse Method

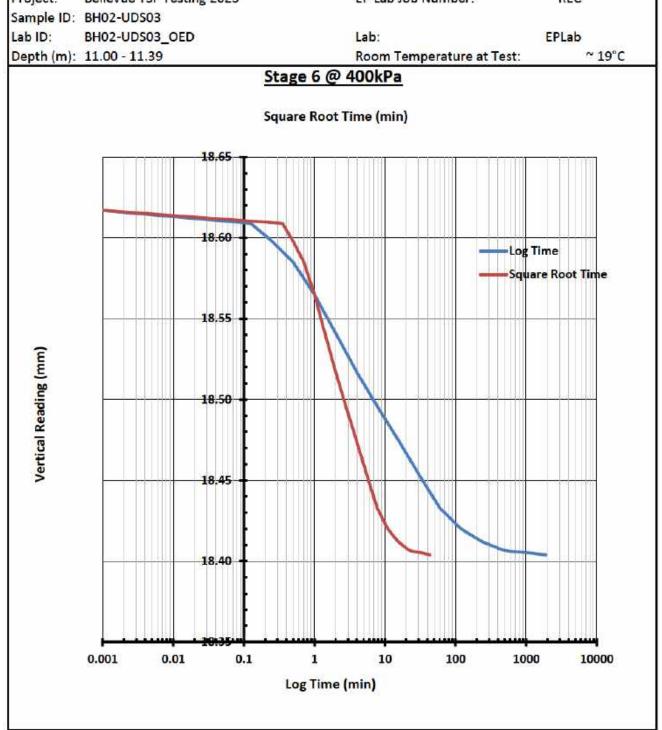
Client: Date Tested: 04/02/2025 Project: EP Lab Job Number: **Bellevue TSF Testing 2025** REC

Sample ID: BH02-UDS03



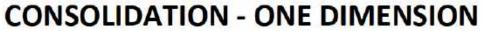
Method: AS1289 6.6.1 / Inhouse Method

Date Tested: Client: REC 04/02/2025 Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC

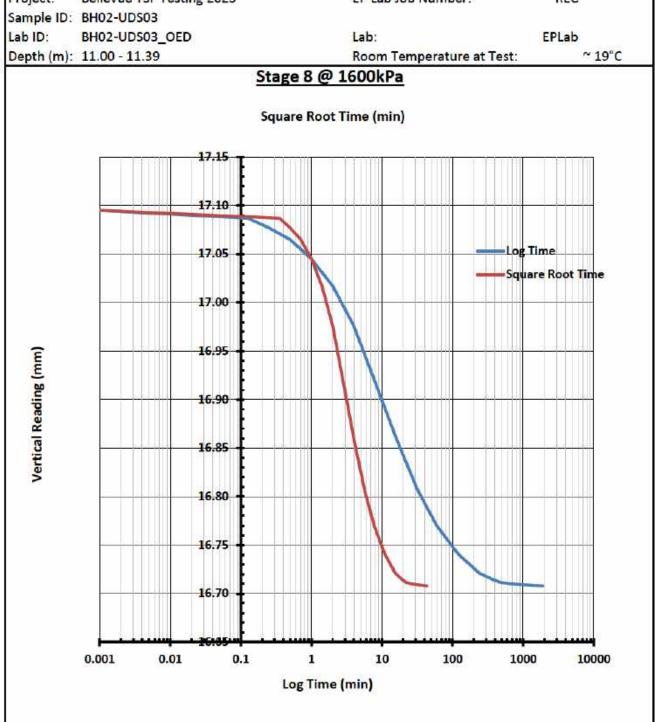

Sample ID: BH02-UDS03

Lab ID: Lab: **EPLab** BH02-UDS03_OED

Method: AS1289 6.6.1 / Inhouse Method


Method: AS1289 6.6.1 / Inhouse Method

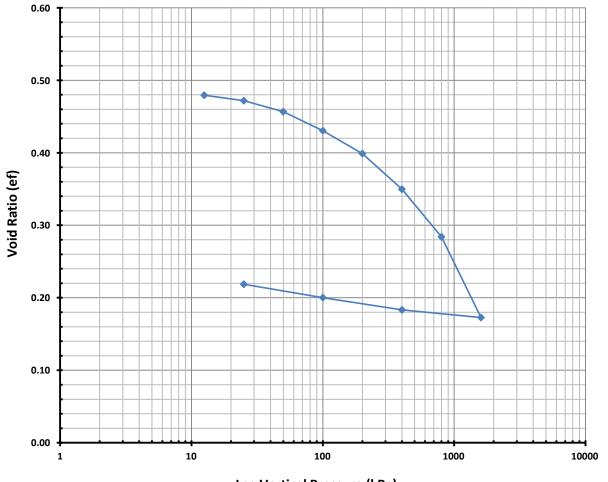
Client: REC Date Tested: 04/02/2025
Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC


Sample ID: BH02-UDS03

Method: AS1289 6.6.1 / Inhouse Method

CONSOLIDATION - ONE DIMENSION Method: AS1289 6.6.1 / Inhouse Method

Client: REC Date Tested: 04/02/2025
Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC

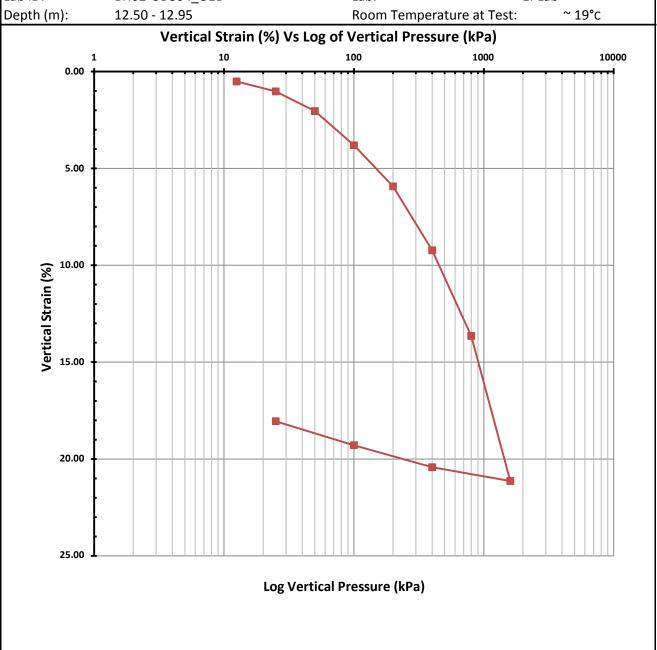

Sample ID: BH02-UDS04

Lab ID: BH02-UDS04_OED Lab: EPLab

Depth (m): 12.50 - 12.95 Room Temperature at Test: ~ 19°C

Phil Tested by: Initial Moisture (%): 25.45 **Test Condition:** Undrained Height (mm): 20.11 Final Moisture Content (%): 35.05 Sample Condition: Saturated 61.80 Diameter (mm): Bulk Density (t/m³): 2.02 2.401 Particle Density (t/m³): Dry Density (t/m³): Direction: Vertical 1.61 Initial Void Ratio (e_i): 0.489

Void Ratio (e_f) Vs Log of Vertical Pressure (kPa)



Method: AS1289 6.6.1 / Inhouse Method

Client: REC Date Tested: 04/02/2025
Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC

Sample ID: BH02-UDS04

Lab ID: BH02-UDS04_OED Lab: EPLab

Method: AS1289 6.6.1 / Inhouse Method

Client: REC Date Tested: 04/02/2025

Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC

Sample ID: BH02-UDS04

Lab ID: BH02-UDS04_OED Lab: EPLab

Depth (m): 12.50 - 12.95 Room Temperature at Test: ~ 19°C

Test Results

·

Stages	Vert Disp (mm)	Cv (m²/yr)		Compressibility	V (m /a)		Void Ratio	Vertical Strain
		* t 50	t 90	Mv (m²/kN)	K (m/s)	1	(e _f)	(%)
Stage 1 @ 12.5kPa	0.103	5.213	-	4.09E-04	6.6E-10		0.479	0.51
Stage 2 @ 25kPa	0.206	3.440	-	4.13E-04	4.4E-10		0.472	1.02
Stage 3 @ 50kPa	0.410	2.038	-	4.10E-04	2.6E-10		0.457	2.04
Stage 4 @ 100kPa	0.765	1.635	-	3.60E-04	1.8E-10		0.430	3.80
Stage 5 @ 200kPa	1.192	1.168	-	2.21E-04	8.0E-11		0.399	5.93
Stage 6 @ 400kPa	1.856	0.974	-	1.75E-04	5.3E-11		0.350	9.23
Stage 7 @ 800kPa	2.745	0.819	-	1.22E-04	3.1E-11		0.284	13.65
Stage 8 @ 1600kPa	4.250	0.606	-	1.08E-04	2.0E-11		0.173	21.13

 Unload @ 400kPa
 4.108

 Unload @ 100kPa
 3.879

 Unload @ 25kPa
 3.630

Comments: Samples collected from Shelby tubes

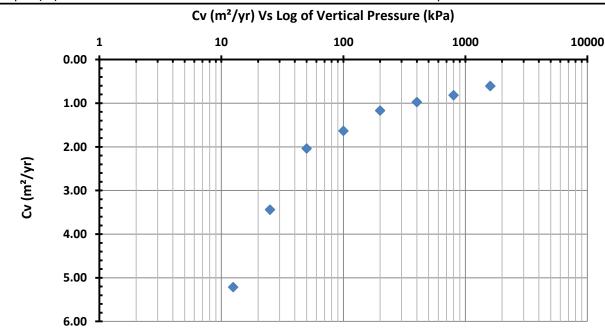
Cv values to be interpreted via Engineer

Samples supplied by the Client

Authorised Signatory (Geotechnical Engineer):

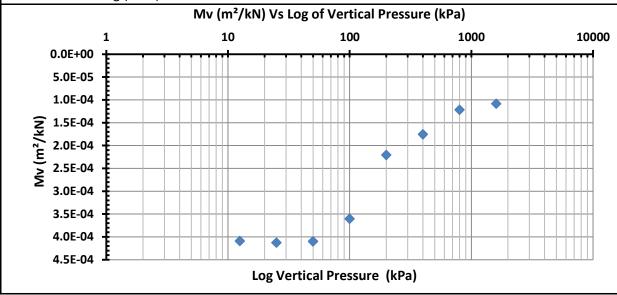
The results of tests performed apply only to the specific sample at time of test unless otherwise clearly stated. Reference should be made to E-Precision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431 559 578 87

^{*} Values interpreted via lab only


Method: AS1289 6.6.1 / Inhouse Method

Client: REC Date Tested: 04/02/2025
Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC

Sample ID: BH02-UDS04


Lab ID: BH02-UDS04_OED Lab: EPLab

Depth (m): 12.50 - 12.95 Room Temperature at Test: ~ 19°C

Log Vertical Pressure (kPa)

* Plot based on Log (time) data

Method: AS1289 6.6.1 / Inhouse Method

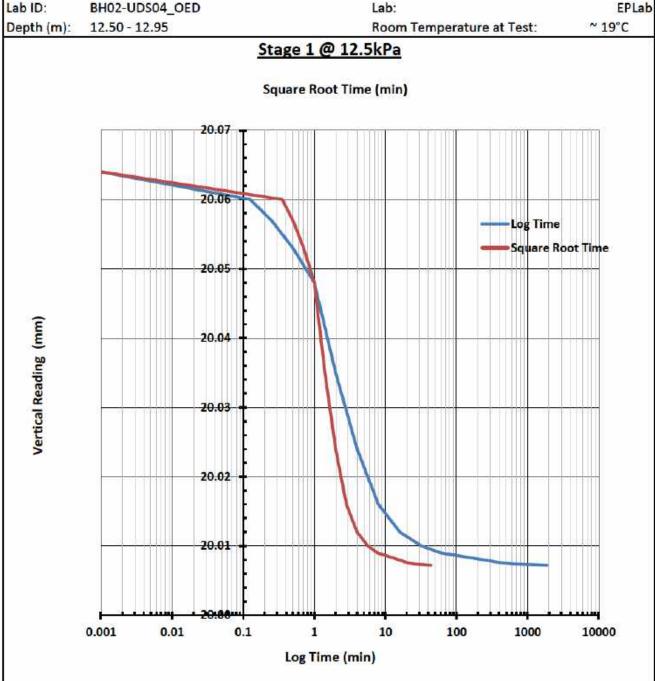
Client: REC Date Tested: 04/02/2025 Project: Bellevue TSF Testing 2025 EP Lab Job Number: **REC**

Sample ID: BH02-UDS04

Lab ID: BH02-UDS04_OED **EPLab** Lab:

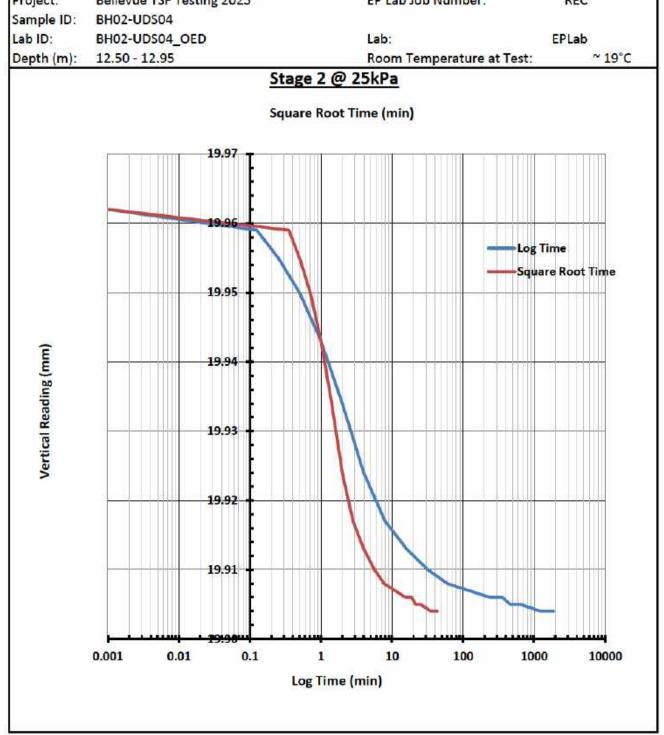
Depth (m): 12.50 - 12.95 Room Temperature at Test: ~ 19°C

TEST RESULTS PLEASE SEE PAGES BELOW

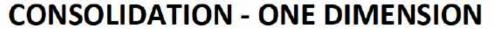

Method: AS1289 6.6.1 / Inhouse Method

Date Tested: Client: REC 04/02/2025 EP Lab Job Number: REC

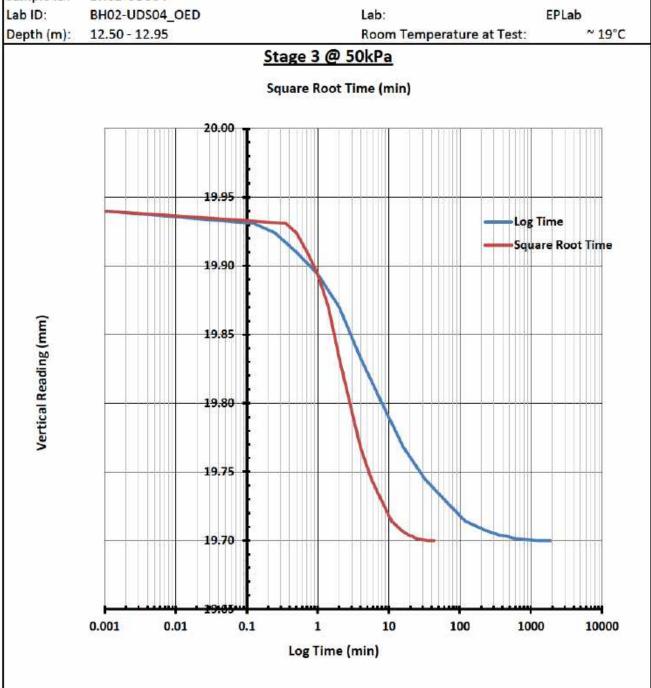
Project: Bellevue TSF Testing 2025


Sample ID: BH02-UDS04

Lab ID: BH02-UDS04_OED Lab:

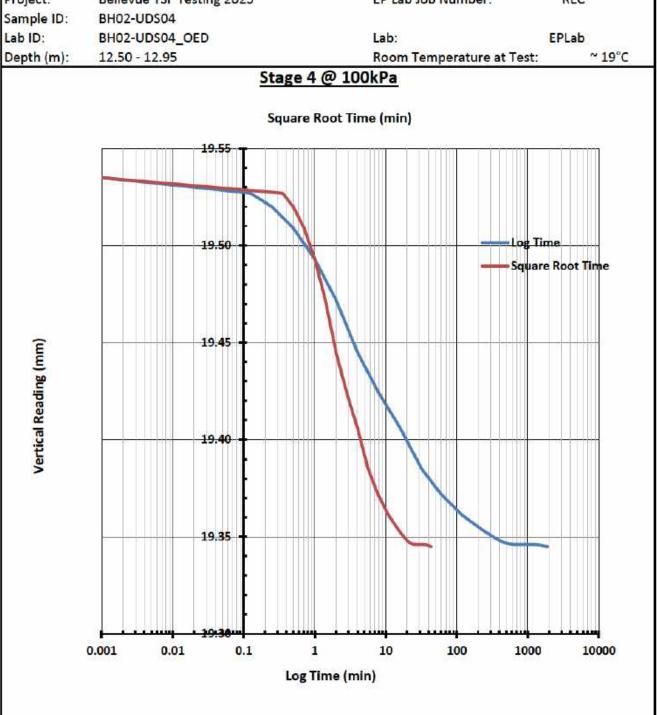


Method: AS1289 6.6.1 / Inhouse Method


Method: AS1289 6.6.1 / Inhouse Method

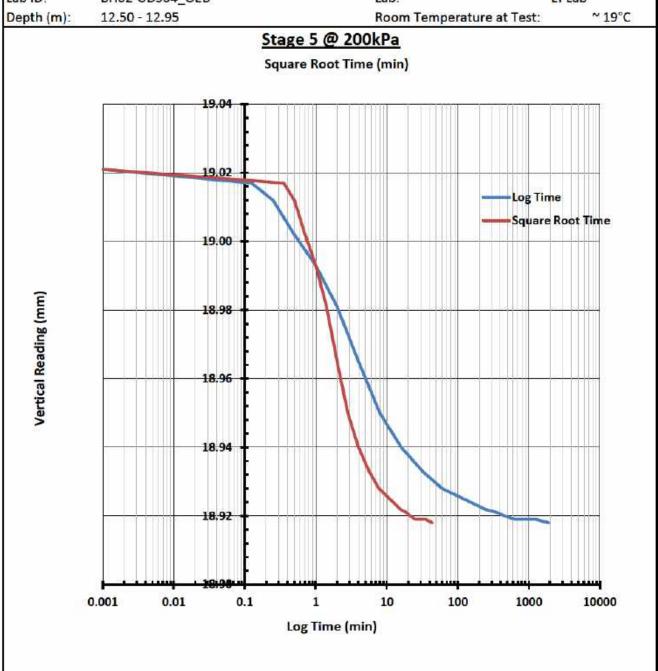
Client: REC Date Tested: 04/02/2025

EP Lab Job Number: REC


Sample ID: BH02-UDS04

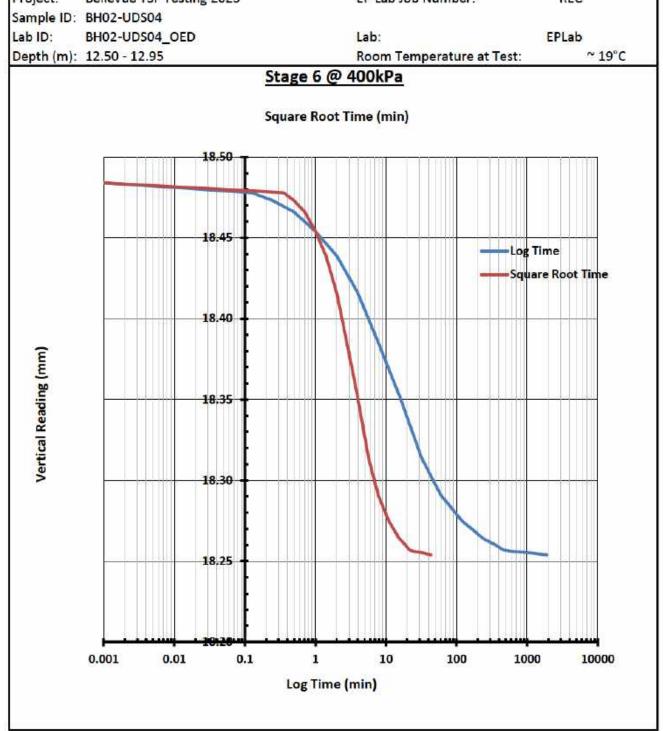
Bellevue TSF Testing 2025

Method: AS1289 6.6.1 / Inhouse Method



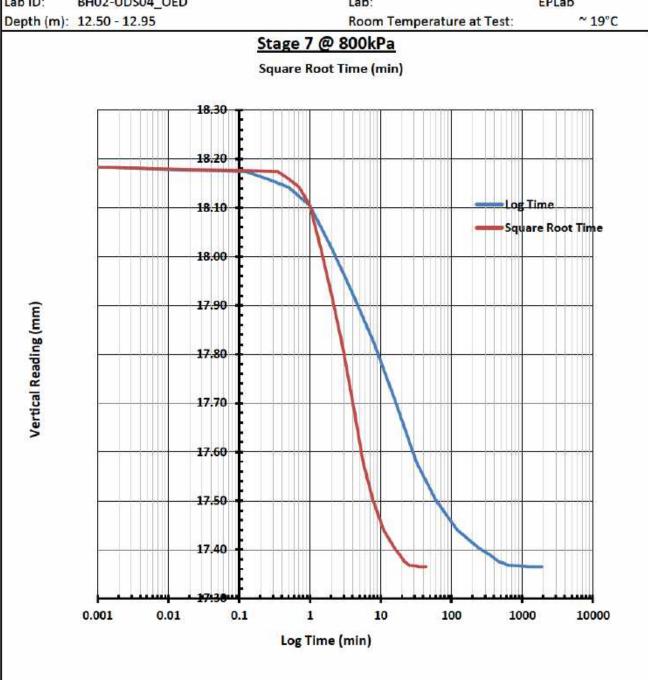
Method: AS1289 6.6.1 / Inhouse Method

Client: REC Date Tested: 04/02/2025
Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC


Sample ID: BH02-UDS04

Lab ID: BH02-UDS04_OED Lab: EPLab

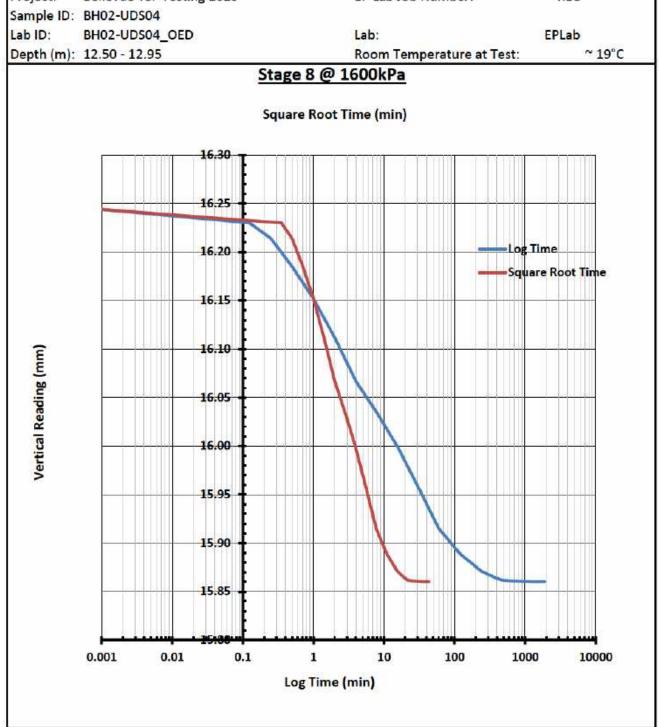
Method: AS1289 6.6.1 / Inhouse Method



Method: AS1289 6.6.1 / Inhouse Method

Client: REC Date Tested: 04/02/2025 Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC

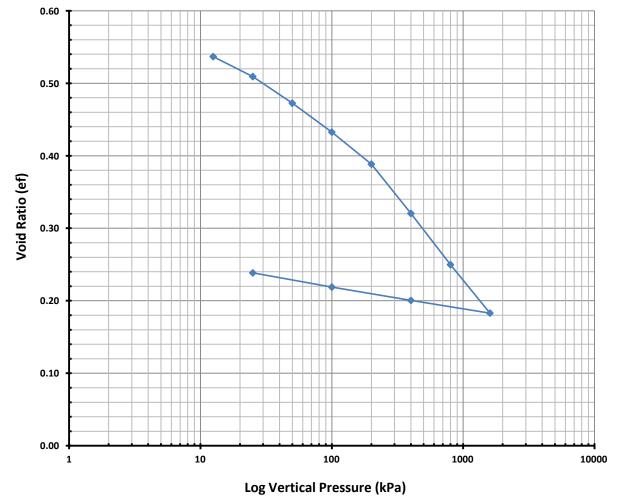
Sample ID: BH02-UDS04


Lab ID: Lab: **EPLab** BH02-UDS04_OED

Method: AS1289 6.6.1 / Inhouse Method

Method: AS12	289 6.6.1	/ Inhouse	Method
--------------	-----------	-----------	--------

Client: REC Date Tested: 04/02/2025 Project: Bellevue TSF Testing 2025 EP Lab Job Number: **REC**

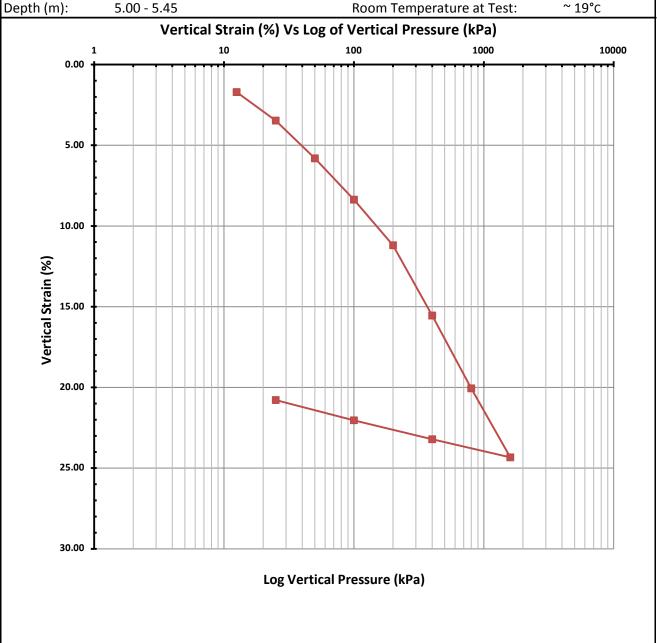

Sample ID: BH03-UDS02

Lab ID: BH03-UDS02_OED Lab: **EPLab**

~ 19°C Room Temperature at Test: Depth (m): 5.00 - 5.45

Tested by: Phil 29.14 Initial Moisture (%): Test Condition: Undrained Height (mm): 20.13 Final Moisture Content (%): 33.33 Sample Condition: Saturated Diameter (mm): Bulk Density (t/m³): 1.95 Particle Density (t/m³): 2.404 61.85 Dry Density (t/m³): Direction: Vertical 1.51 Initial Void Ratio (e_i): 0.591

Void Ratio (e_f) Vs Log of Vertical Pressure (kPa)


Method: AS1289 6.6.1 / Inhouse Method

Client: **REC** Date Tested: 04/02/2025 Project: Bellevue TSF Testing 2025 EP Lab Job Number: **REC**

Sample ID: BH03-UDS02

Lab ID: BH03-UDS02_OED Lab: **EPLab**

5.00 - 5.45 Room Temperature at Test:

REC

CONSOLIDATION - ONE DIMENSION

Method: AS1289 6.6.1 / Inhouse Method

Client: REC Date Tested: 04/02/2025

Project: Bellevue TSF Testing 2025 EP Lab Job Number:

Sample ID: BH03-UDS02

Lab ID: BH03-UDS02_OED Lab: EPLab

Depth (m): 5.00 - 5.45 Room Temperature at Test: ~ 19°C

Test Results

*

Stages	Vert Disp (mm)	Cv (m²/yr)		Compressibility		Void Ratio	Vertical Strain
		*ts0	t 90	Mv (m²/kN)	K (m/s)	(e _f)	(%)
Stage 1 @ 12.5kPa	0.344	1.281	9	1.37E-03	5.4E-10	0.537	1.71
Stage 2 @ 25kPa	0.699	1.106	30	1.44E-03	4.9E-10	0.509	3.47
Stage 3 @ 50kPa	1.170	1.048	- 60	9.70E-04	3.2E-10	0.473	5.81
Stage 4 @ 100kPa	1.685	0.994		5.43E-04	1.7E-10	0.433	8.37
Stage 5 @ 200kPa	2.253	0.934	*	3.08E-04	8.9E-11	0.388	11.19
Stage 6 @ 400kPa	3.129	0.847		2.45E-04	6.5E-11	0.320	15.54
Stage 7 @ 800kPa	4.038	0.765		1.34E-04	3.2E-11	0.250	20.06
Stage 8 @ 1600kPa	4.898	0.682	2	6.68E-05	1.4E-11	0.183	24.33

Unload @ 400kPa 4.673 Unload @ 100kPa 4.436 Unload @ 25kPa 4.184

Comments: Samples collected from Shelby tubes

Cv values to be interpreted via Engineer

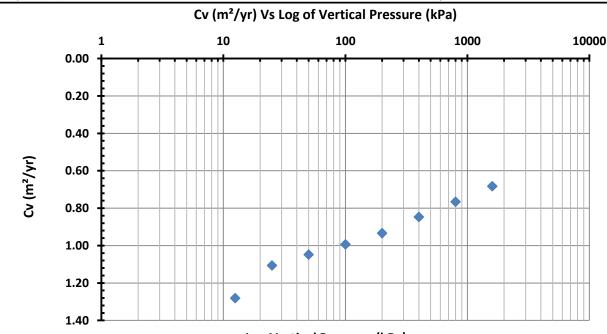
Samples supplied by the Client

Authorised Signatory (Geotechnical Engineer):

The results of tests performed apply only to the specific sample at time of test unless otherwise clearly stated. Reference should be made to E-Precision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431-559-578-87

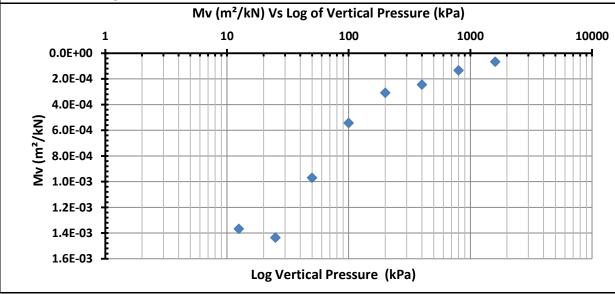
^{*} Values interpreted via lab only

Method: AS1289 6.6.1 / Inhouse Method


Client: **REC** Date Tested: 04/02/2025 EP Lab Job Number: **REC**

Project: Bellevue TSF Testing 2025 Sample ID:

BH03-UDS02


Lab ID: BH03-UDS02_OED Lab: **EPLab**

Depth (m): Room Temperature at Test: ~ 19°C 5.00 - 5.45

Log Vertical Pressure (kPa)

Method: AS1289 6.6.1 / Inhouse Method

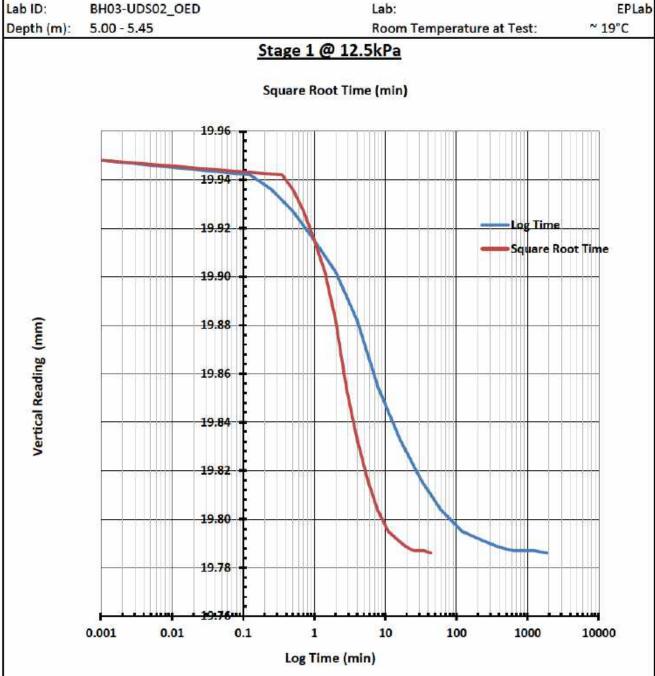
Client: REC Date Tested: 04/02/2025
Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC

Sample ID: BH03-UDS02

Lab ID: BH03-UDS02_OED Lab: EPLab

Depth (m): 5.00 - 5.45 Room Temperature at Test: ~ 19°C

TEST RESULTS PLEASE SEE PAGES BELOW

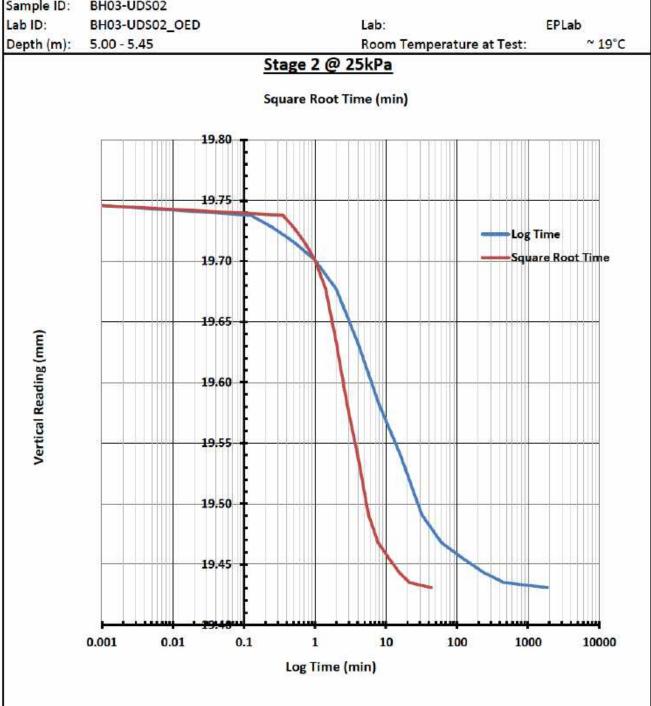


Method: AS1289 6.6.1 / Inhouse Method

Date Tested: Client: REC 04/02/2025 Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC

Sample ID: BH03-UDS02

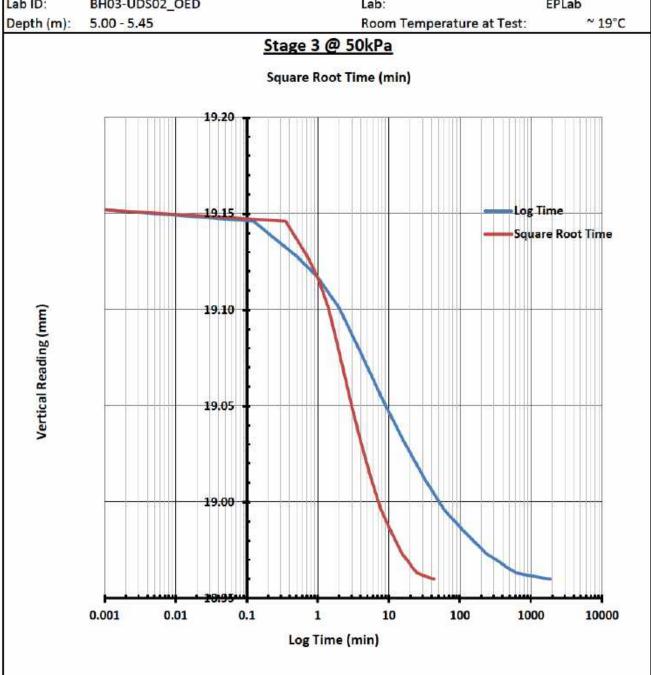
Lab ID: BH03-UDS02_OED Lab:



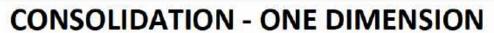
Method: AS1289 6.6.1 / Inhouse Method

Client: Date Tested: 04/02/2025 Project: EP Lab Job Number: Bellevue TSF Testing 2025 REC

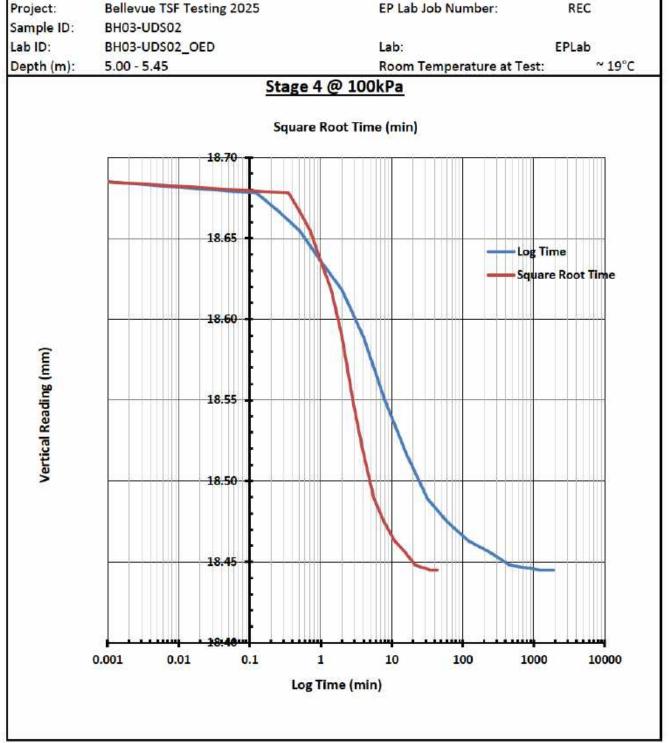
Sample ID: BH03-UDS02

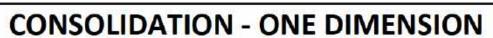

Method: AS1289 6.6.1 / Inhouse Method

Client: REC Date Tested: 04/02/2025

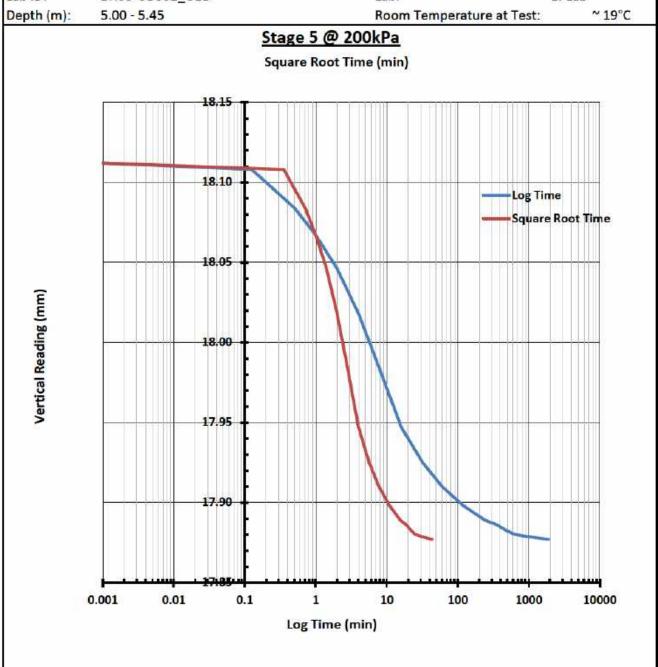

> Bellevue TSF Testing 2025 EP Lab Job Number: REC

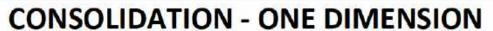
Sample ID: BH03-UDS02


Lab ID: **EPLab** BH03-UDS02_OED Lab:

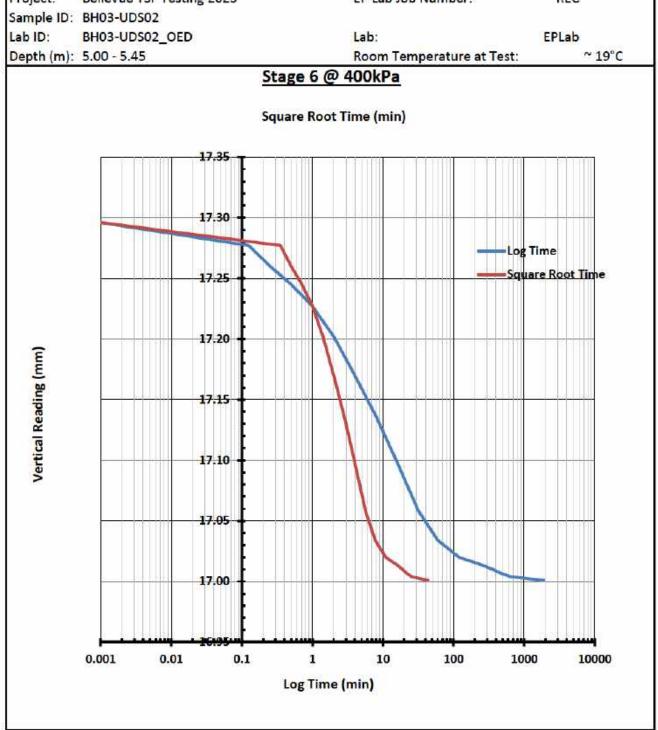


Client: REC Date Tested: 04/02/2025
Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC




Client: REC Date Tested: 04/02/2025
Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC

Sample ID: BH03-UDS02

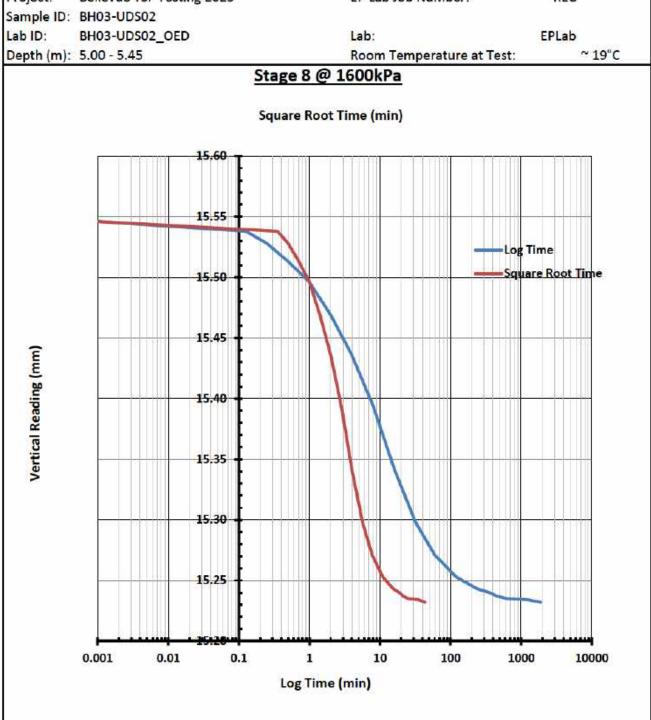

Lab ID: BH03-UDS02_OED Lab: EPLab

Client: REC Date Tested: 04/02/2025
Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC

Method: AS1289 6.6.1 / Inhouse Method

Client: REC Date Tested: 04/02/2025 Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC

Sample ID: BH03-UDS02

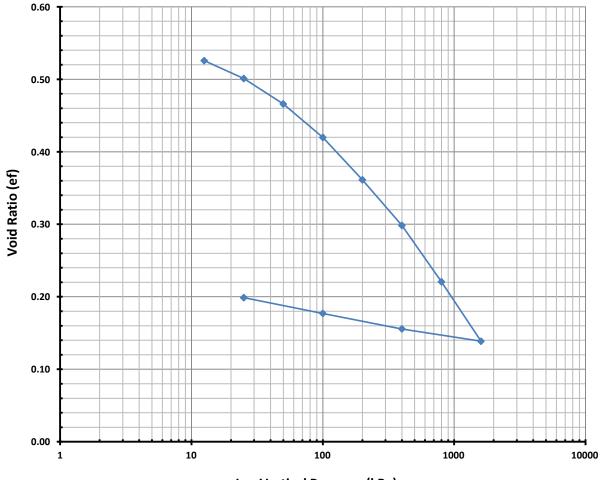

Lab ID: Lab: **EPLab** BH03-UDS02_OED

Method: AS1289 6.6.1 / Inhouse Method

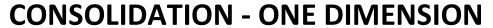
Client: REC Date Tested: 04/02/2025
Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC

Method: AS1289 6.6.1 / Inhouse Method

Client: REC Date Tested: 04/02/2025 Project: Bellevue TSF Testing 2025 EP Lab Job Number: **REC**

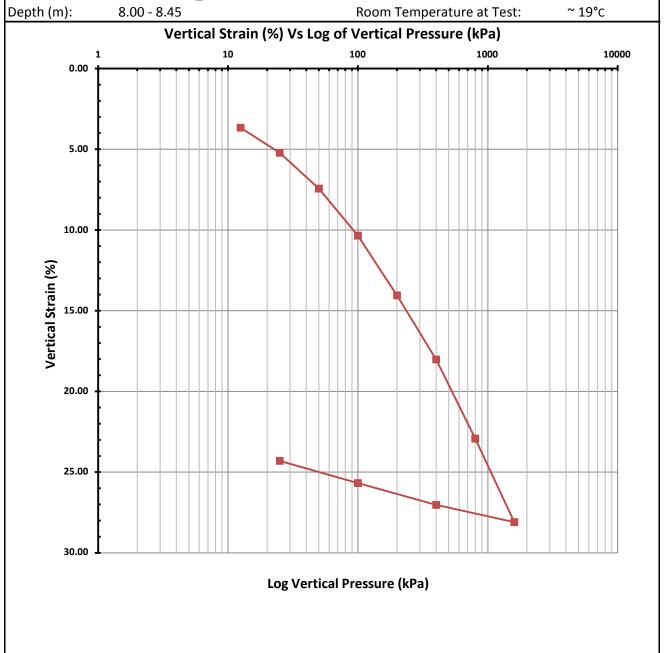

Sample ID: BH03-UDS04

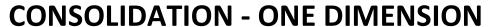
Lab ID: BH03-UDS04_OED Lab: **EPLab**


~ 19°C Room Temperature at Test: Depth (m): 8.00 - 8.45

Tested by: Phil 26.97 Initial Moisture (%): Test Condition: Undrained 35.16 Height (mm): 20.06 Final Moisture Content (%): Sample Condition: Saturated Diameter (mm): 61.80 Bulk Density (t/m³): 1.93 Particle Density (t/m³): 2.395 Dry Density (t/m³): Direction: Vertical 1.52 Initial Void Ratio (e_i): 0.577

Void Ratio (e_f) Vs Log of Vertical Pressure (kPa)




Client: REC Date Tested: 04/02/2025
Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC

Sample ID: BH03-UDS04

Lab ID: BH03-UDS04_OED Lab: EPLab

Client: REC Date Tested: 04/02/2025

Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC

Sample ID: BH03-UDS04

Lab ID: BH03-UDS04_OED Lab: EPLab

Depth (m): 8.00 - 8.45 Room Temperature at Test: $\sim 19^{\circ}$ C

Test Results

*

Stages	Vert Disp (mm)	Cv (m²/yr)		Compressibility	W ((-)	Void Ratio	Vertical Strain
		* t 50	t 90	Mv (m²/kN)	K (m/s)	(e _f)	(%)
Stage 1 @ 12.5kPa	0.735	1.234	-	2.93E-03	1.1E-09	0.526	3.66
Stage 2 @ 25kPa	1.047	1.188	-	1.29E-03	4.8E-10	0.501	5.22
Stage 3 @ 50kPa	1.492	1.136	-	9.36E-04	3.3E-10	0.466	7.44
Stage 4 @ 100kPa	2.077	1.072	-	6.30E-04	2.1E-10	0.420	10.35
Stage 5 @ 200kPa	2.818	0.993	-	4.12E-04	1.3E-10	0.361	14.05
Stage 6 @ 400kPa	3.615	0.916	-	2.31E-04	6.6E-11	0.298	18.02
Stage 7 @ 800kPa	4.599	0.805	-	1.50E-04	3.7E-11	0.221	22.93
Stage 8 @ 1600kPa	5.637	0.712	-	8.39E-05	1.9E-11	0.139	28.10

Unload @ 400kPa 5.422 Unload @ 100kPa 5.151 Unload @ 25kPa 4.875

Comments: Samples collected from Shelby tubes

Cv values to be interpreted via Engineer

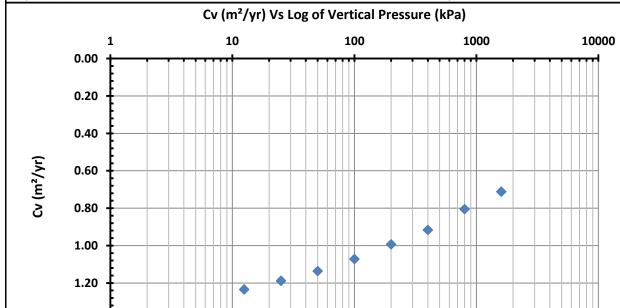
Samples supplied by the Client

Authorised Signatory (Geotechnical Engineer):

The results of tests performed apply only to the specific sample at time of test unless otherwise clearly stated. Reference should be made to E-Precision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431 559 578 87

^{*} Values interpreted via lab only

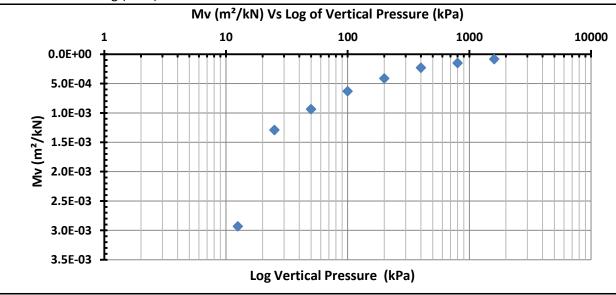
Method: AS1289 6.6.1 / Inhouse Method


Client: **REC** Date Tested: 04/02/2025 EP Lab Job Number: **REC**

Project: Bellevue TSF Testing 2025 Sample ID:

BH03-UDS04

Lab ID: BH03-UDS04_OED Lab: **EPLab**


Depth (m): 8.00 - 8.45 Room Temperature at Test: ~ 19°C

Log Vertical Pressure (kPa)

* Plot based on Log (time) data

1.40

Method: AS1289 6.6.1 / Inhouse Method

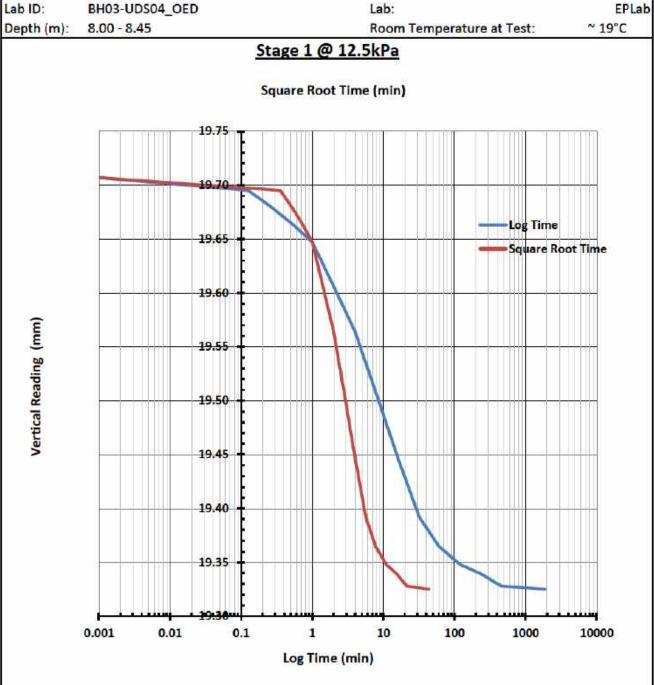
Client: REC Date Tested: 04/02/2025
Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC

Sample ID: BH03-UDS04

Lab ID: BH03-UDS04_OED Lab: EPLab

Depth (m): 8.00 - 8.45 Room Temperature at Test: ~ 19°C

TEST RESULTS PLEASE SEE PAGES BELOW

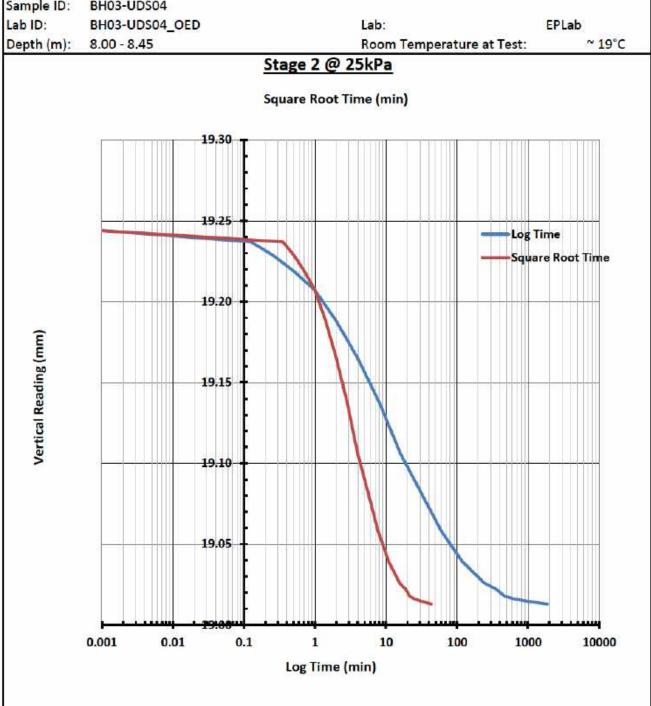


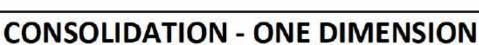
Method: AS1289 6.6.1 / Inhouse Method

Date Tested: Client: REC 04/02/2025 Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC

Sample ID: BH03-UDS04

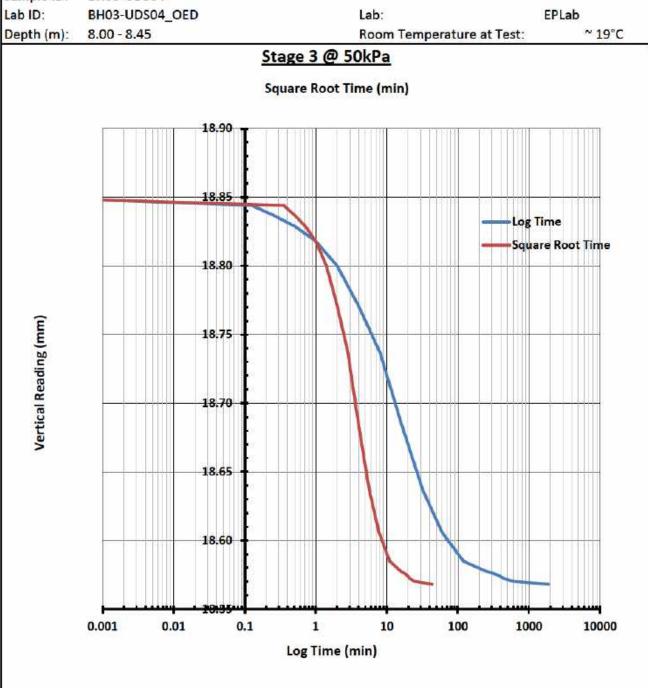
BH03-UDS04_OED Lab:




Method: AS1289 6.6.1 / Inhouse Method

Client: Date Tested: 04/02/2025 Project: EP Lab Job Number: Bellevue TSF Testing 2025 REC

Sample ID: BH03-UDS04

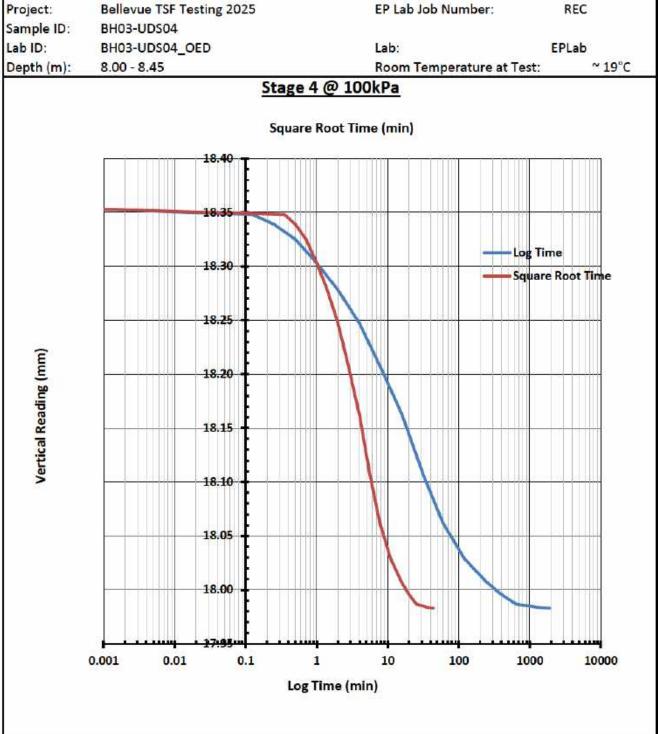


Client: REC Date Tested: 04/02/2025

EP Lab Job Number: REC

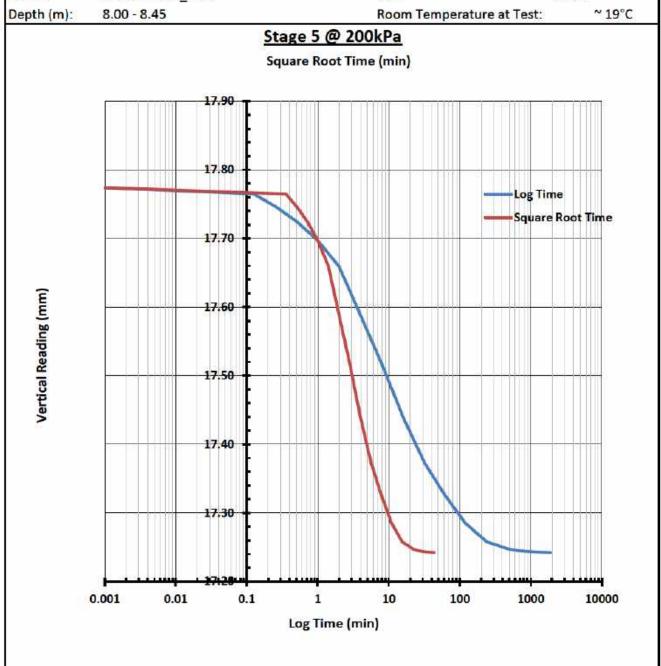
Sample ID: BH03-UDS04

Bellevue TSF Testing 2025



Method: AS1289 6.6.1 / Inhouse Method

Client: Date Tested: 04/02/2025

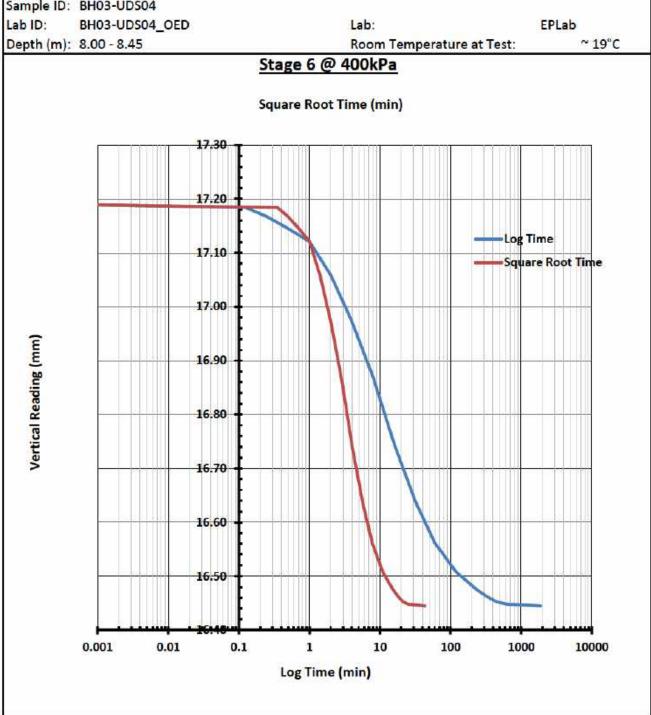


Method: AS1289 6.6.1 / Inhouse Method

Client: REC Date Tested: 04/02/2025
Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC

Sample ID: BH03-UDS04

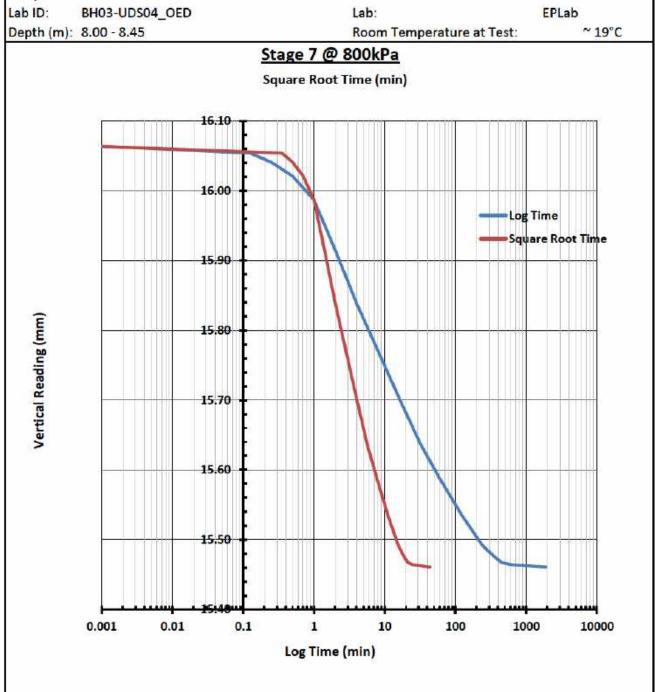
Lab ID: BH03-UDS04_OED Lab: EPLab



Method: AS1289 6.6.1 / Inhouse Method

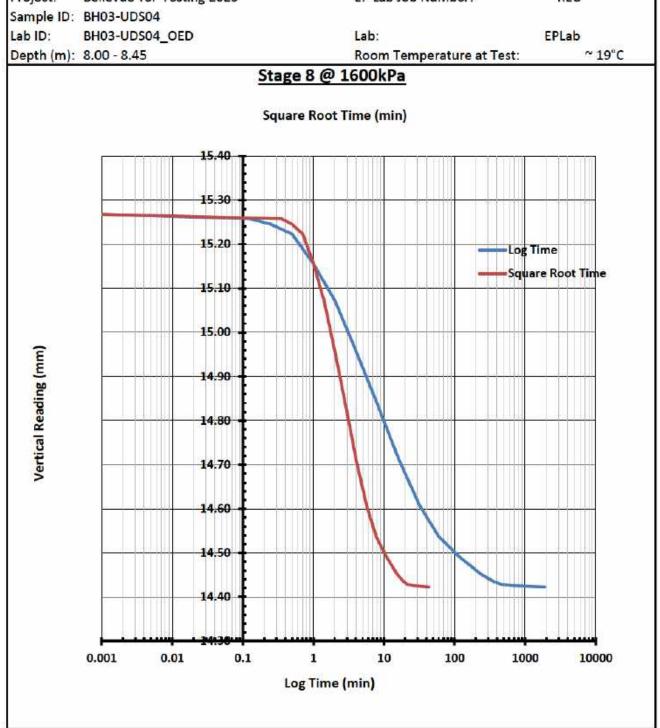
Client: Date Tested: 04/02/2025 Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC

Sample ID: BH03-UDS04



Method: AS1289 6.6.1 / Inhouse Method

Client: REC Date Tested: 04/02/2025
Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC

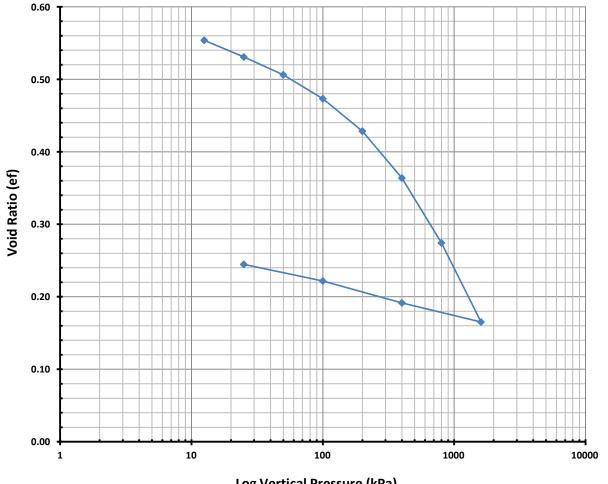

Sample ID: BH03-UDS04

Method: AS1289 6.6.1 / Inhouse Method

Client: REC Date Tested: 04/02/2025
Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC

Method: AS1289 6.6.1 / Inhouse Method

Client: REC Date Tested: 04/02/2025 Project: Bellevue TSF Testing 2025 EP Lab Job Number: **REC**

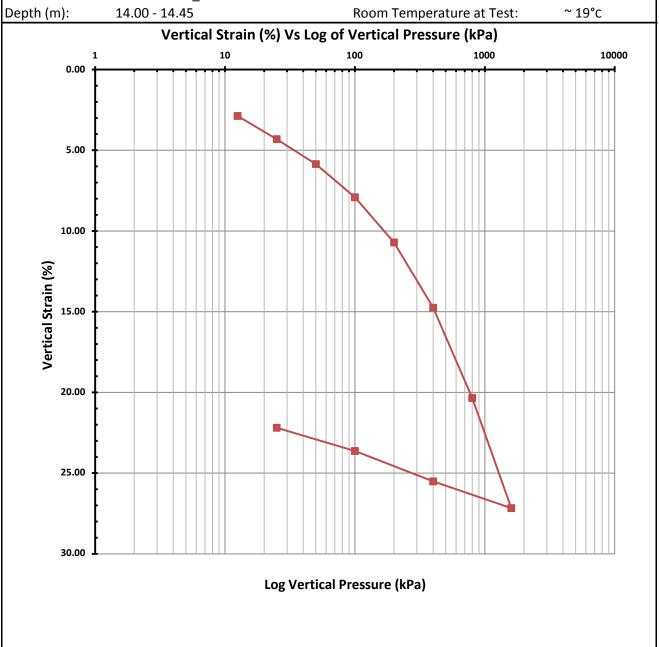

Sample ID: BH03-UDS08

Lab ID: BH03-UDS08_OED Lab: **EPLab**

~ 19°C Room Temperature at Test: Depth (m): 14.00 - 14.45

Tested by: Phil 33.71 Initial Moisture (%): Test Condition: Undrained 36.67 Height (mm): 20.15 Final Moisture Content (%): Sample Condition: Saturated Diameter (mm): 61.80 Bulk Density (t/m³): 1.99 Particle Density (t/m³): 2.382 Dry Density (t/m³): Direction: Vertical 1.48 Initial Void Ratio (e_i): 0.604

Void Ratio (e_f) Vs Log of Vertical Pressure (kPa)



Method: AS1289 6.6.1 / Inhouse Method

Client: REC Date Tested: 04/02/2025
Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC

Sample ID: BH03-UDS08

Lab ID: BH03-UDS08_OED Lab: EPLab

REC

CONSOLIDATION - ONE DIMENSION

Method: AS1289 6.6.1 / Inhouse Method

Client: REC Date Tested: 04/02/2025

Project: Bellevue TSF Testing 2025 EP Lab Job Number:

Sample ID: BH03-UDS08

Lab ID: BH03-UDS08_OED Lab: EPLab

Depth (m): 14.00 - 14.45 Room Temperature at Test: ~ 19°C

Test Results

*

Stages	Vert Disp (mm)	Cv (m²/yr)		Compressibility	w	Void Ratio	Vertical Strain
		*ts0	t 90	Mv (m²/kN)	K (m/s)	(e _f)	(%)
Stage 1 @ 12.5kPa	0.579	1.258	9	2.30E-03	9.0E-10	0.554	2.87
Stage 2 @ 25kPa	0.869	1.221	30	1.19E-03	4.5E-10	0.531	4.31
Stage 3 @ 50kPa	1.180	1.180	- 60	6.45E-04	2,4E-10	0.506	5.86
Stage 4 @ 100kPa	1.594	1.131		4.36E-04	1.5E-10	0.473	7.91
Stage 5 @ 200kPa	2.158	1.070		3.04E-04	1.0E-10	0.428	10.71
Stage 6 @ 400kPa	2.972	0.973		2.26E-04	6.9E-11	0.364	14.75
Stage 7 @ 800kPa	4.099	0.766		1.64E-04	3.9E-11	0.274	20.34
Stage 8 @ 1600kPa	5.474	0.582	3	1.07E-04	1.9E-11	0.165	27.17

Unload @ 400kPa	5.141			
Unload @ 100kPa	4.761			
Unload @ 25kPa	4.471			

^{*} Values interpreted via lab only

Comments: Samples collected from Shelby tubes

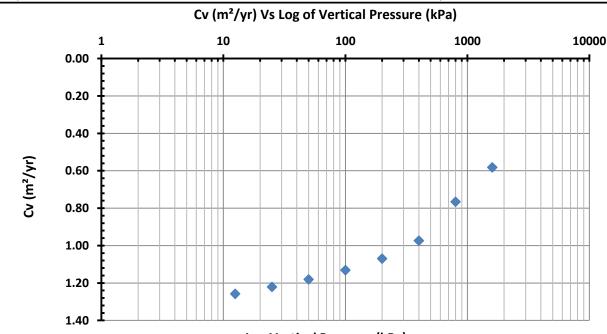
Cv values to be interpreted via Engineer

Samples supplied by the Client

Authorised Signatory (Geotechnical Engineer):

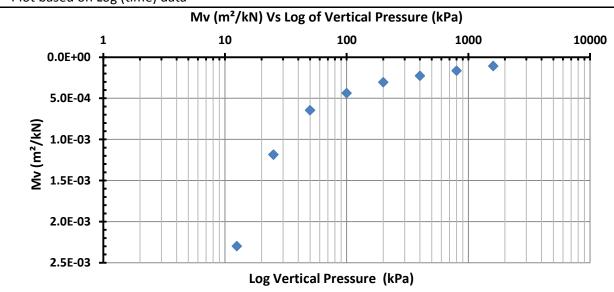
The results of tests performed apply only to the specific sample at time of test unless otherwise clearly stated. Reference should be made to E-Precision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431-559-578-87

Method: AS1289 6.6.1 / Inhouse Method


Client: **REC** Date Tested: 04/02/2025 EP Lab Job Number: **REC**

Project: Bellevue TSF Testing 2025 Sample ID:

BH03-UDS08


Lab ID: BH03-UDS08_OED Lab: **EPLab**

Depth (m): 14.00 - 14.45 Room Temperature at Test: ~ 19°C

Log Vertical Pressure (kPa)

Method: AS1289 6.6.1 / Inhouse Method

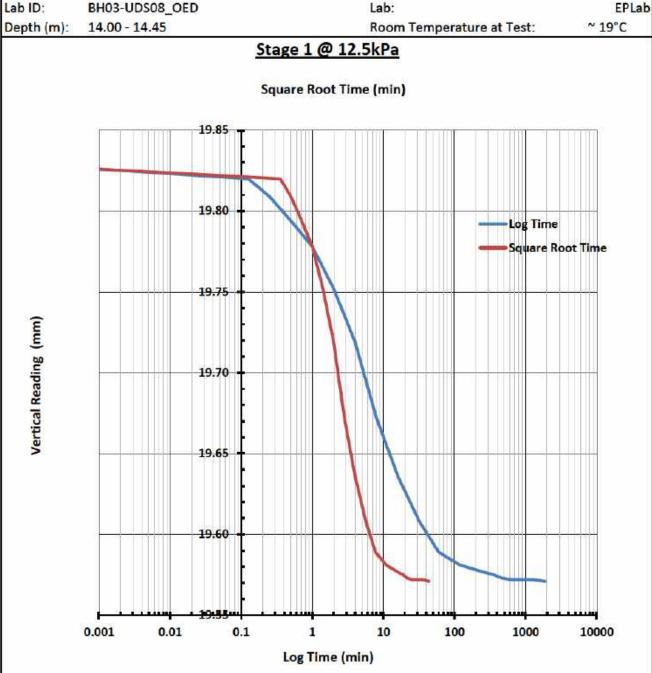
Client: REC Date Tested: 04/02/2025 Project: Bellevue TSF Testing 2025 EP Lab Job Number: **REC**

Sample ID: BH03-UDS08

Lab ID: BH03-UDS08_OED **EPLab** Lab:

Depth (m): 14.00 - 14.45 Room Temperature at Test: ~ 19°C

TEST RESULTS PLEASE SEE PAGES BELOW

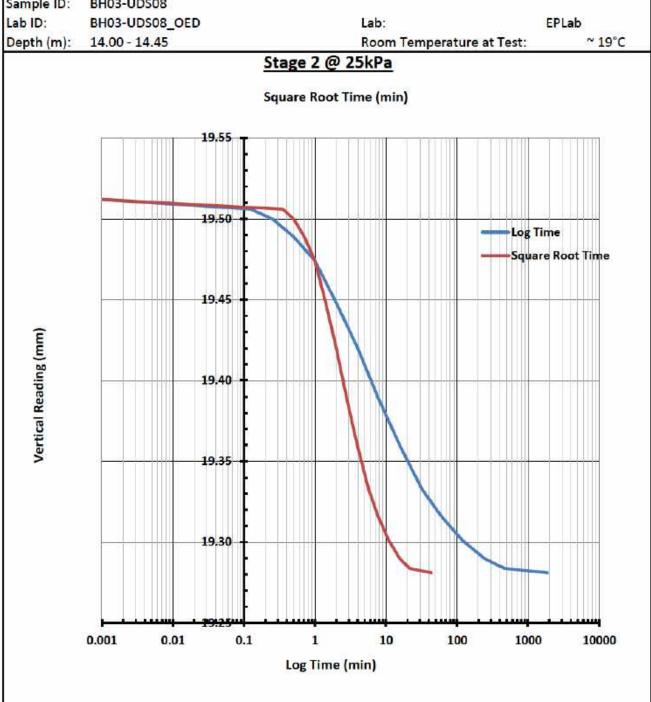

Method: AS1289 6.6.1 / Inhouse Method

Date Tested: Client: REC 04/02/2025 REC

Project: Bellevue TSF Testing 2025 EP Lab Job Number:

Sample ID: BH03-UDS08

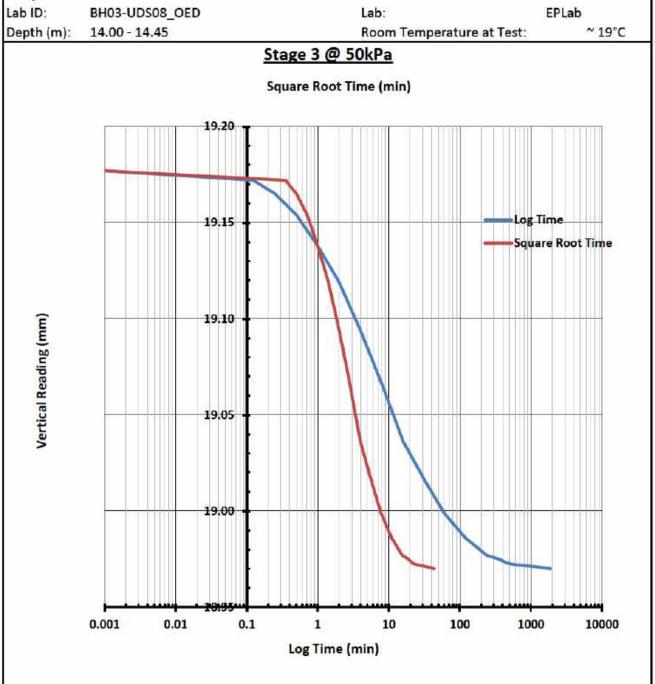
Lab ID: BH03-UDS08_OED Lab:



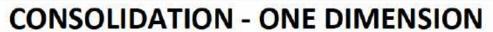
Method: AS1289 6.6.1 / Inhouse Method

Client: Date Tested: 04/02/2025 Project: EP Lab Job Number: Bellevue TSF Testing 2025 REC

Sample ID: BH03-UDS08

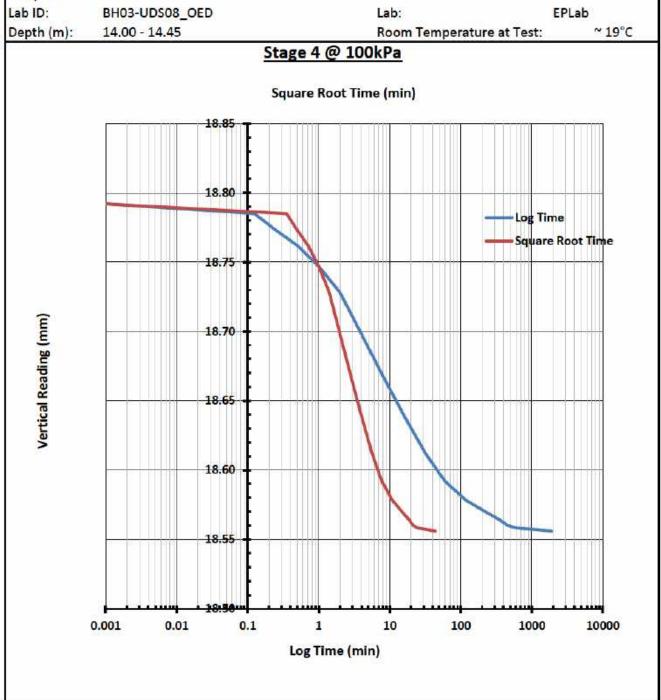

Method: AS1289 6.6.1 / Inhouse Method

Client: REC Date Tested: 04/02/2025


EP Lab Job Number: REC

Sample ID: BH03-UDS08

Bellevue TSF Testing 2025



Client: REC Date Tested: 04/02/2025
Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC

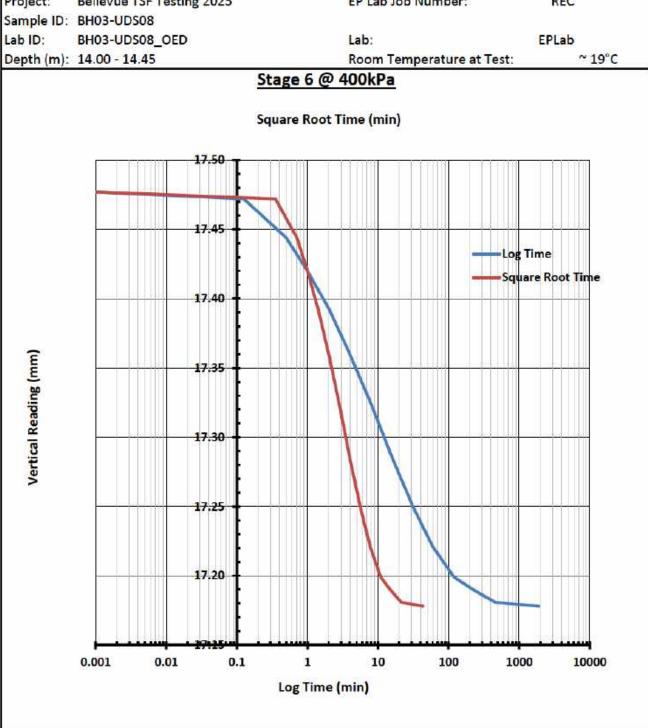
Sample ID: BH03-UDS08



Method: AS1289 6.6.1 / Inhouse Method

Client: REC Date Tested: 04/02/2025
Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC

Sample ID: BH03-UDS08


Lab ID: BH03-UDS08_OED Lab: EPLab

Method: AS1289 6.6.1 / Inhouse Method

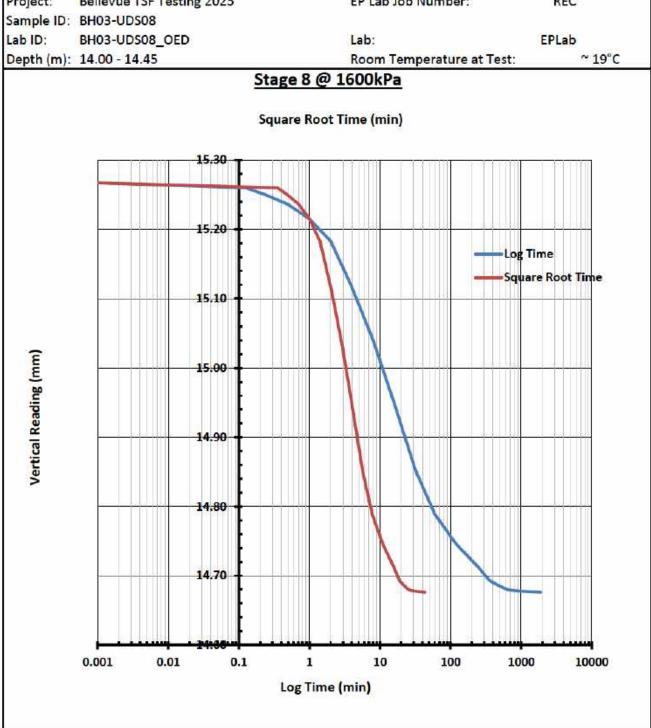
Client: REC Date Tested: 04/02/2025
Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC



Method: AS1289 6.6.1 / Inhouse Method

Client: REC Date Tested: 04/02/2025 Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC

Sample ID: BH03-UDS08


Lab ID: Lab: **EPLab** BH03-UDS08_OED

Method: AS1289 6.6.1 / Inhouse Method

Client: REC Date Tested: 04/02/2025
Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC

ATTERBERG LIMITS TEST REPORT

Test Method: AS1289.2.1.1 3.1.1 3.2.1 3.4.1

Client: REC Date Tested: 12/02/2025

 Project:
 Bellevue TSF Testing 2025
 Lab:
 EPLAB

 Sample No:
 BH01-CB3
 Job Number:
 REC

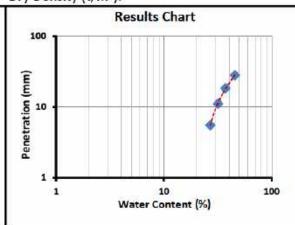
Lab ID: BH01-CB3 ATT

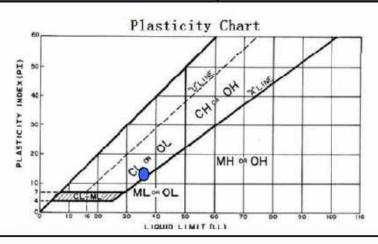
Depth (m): 8.60 - 8.80 Room Temperature at Test: 18°C

Tested by: Raymond Sample Description:

Moisture Content (%): - Wet Density (t/m²): -

Dry Density (t/m³):




Plasticity Index (%): 12.26

Liquidity Index (%):

Shrinkage Limit (%): 19.69

Linear Shrinkage(%): 6.21

Notes: The sample/s were tested oven dried, dry sieved and in a 125-250mm mould.

Stored and Tested the Sample as received

Samples supplied by the Client Authorised Signature:

The results of tests performed apply only to the specific sample at time of test unless otherwise clearly stated. Reference should be made to EPrecision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431 559 578 87

ATTERBERG LIMITS TEST REPORT

Test Method: AS1289.2.1.1 3.1.1 3.2.1 3.4.1

Client: REC Date Tested: 12/02/2025

Project: Bellevue TSF Testing 2025 Lab: EPLAB
Sample No: BH01-CB4 Job Number: REC

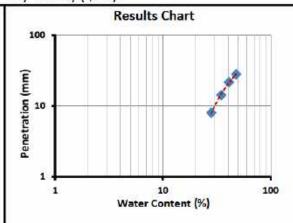
Lab ID: BH01-CB4_ATT

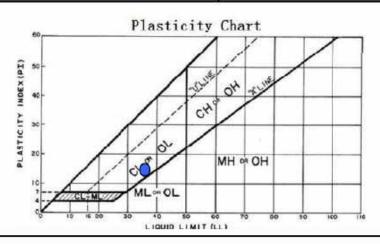
Depth (m): 11.00 - 12.00 Room Temperature at Test: 18°C

Tested by: Raymond Sample Description: -

Moisture Content (%): - Wet Density (t/m³): -

Dry Density (t/m³):


Liquid Limit (%): 36.95
Plastic Limit (%): 22.48


Plasticity Index (%): 14.46

Liquidity Index (%):

Shrinkage Limit (%): 17.86

Linear Shrinkage(%): 7.17

Notes: The sample/s were tested oven dried, dry sieved and in a 125-250

Stored and Tested the Sample as received

Samples supplied by the Client Authorised Signatu

The results of tests performed apply only to the specific sample at time of test unless otherwise clearly st

Precision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431 559 578 87

ATTERBERG LIMITS TEST REPORT Test Method: AS1289.2.1.1 3.1.1 3.2.1 3.4.1 Client: Date Tested: 12/02/2025 REC **Bellevue TSF Testing 2025** Project: Lab: **EPLAB BH01-CB5** REC Sample No: Job Number: Lab ID: BH01-CB5 ATT 14.00 - 24.00 @ 16.00m Depth (m): Room Temperature at Test: 18°C Tested by: Raymond Sample Description: Moisture Content (%): Wet Density (t/m³): Dry Density (t/m³): Liquid Limit (%): 54.32 **Results Chart** Plastic Limit (%): 22.97 100 Penetration (mm) Plasticity Index (%): 31.35 Liquidity Index (%): Shrinkage Limit (%): 14.93 Linear Shrinkage(%): 15.61 10 100 Water Content (%) Plasticity Chart PLASTICITY INDEX (PI) MH OP OH LIQUID LIMIT (LL) Notes: The sample/s were tested oven dried, dry sieved and in a 125-250mm mould. Stored and Tested the Sample as received

The results of tests performed apply only to the specific sample at time of test unless otherwise clearly stated. Reference should be made to E-Precision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431 559 578 87

Authorised Signature:

Samples supplied by the Client

ATTERBERG LIMITS TEST REPORT

Test Method: AS1289.2.1.1 3.1.1 3.2.1 3.4.1

Client: REC Date Tested: 09/02/2025

Project: Bellevue TSF Testing 2025 Lab: EPLAB
Sample No: BH01-SPT02 Job Number: REC

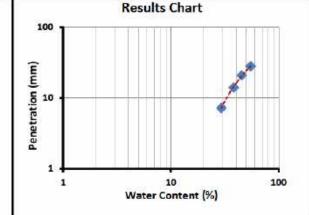
Lab ID: BH01-SPT02 ATT

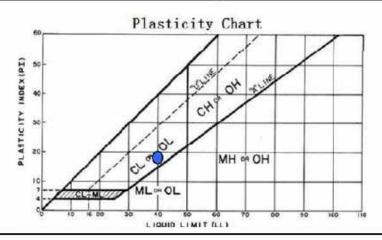
Depth (m): 3.00 - 3.45 Room Temperature at Test: 18°C

Tested by: Raymond Sample Description:

Moisture Content (%): - Wet Density (t/m²): -

Dry Density (t/m³):


Plastic Limit (%).


Plasticity Index (%): 18.19

Shrinkage Limit (%): 17.43

Liquidity Index (%):

Linear Shrinkage(%): 9.09

Notes: The sample/s were tested oven dried, dry sieved and in a 125-250mm mould.

Stored and Tested the Sample as received

Samples supplied by the Client Authorised Signature

The results of tests performed apply only to the specific sample at time of test unless otherwise clearly state

Precision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431 559 578 87

ATTERBERG LIMITS TEST REPORT Test Method: AS1289.2.1.1 3.1.1 3.2.1 3.4.1 Client: Date Tested: 09/02/2025 REC Project: Bellevue TSF Testing 2025 Lab: **EPLAB** BH01-UDS02 REC Sample No: Job Number: Lab ID: BH01-UDS02 ATT Depth (m): 4.95 - 5.30 Room Temperature at Test: 18°C Tested by: Sample Description: Raymond Moisture Content (%): Wet Density (t/m³): Dry Density (t/m³): Liquid Limit (%): 43.20 **Results Chart** Plastic Limit (%): 19.92 100 Plasticity Index (%): 23.28 Penetration (mm) Liquidity Index (%): Shrinkage Limit (%): 14.28 Linear Shrinkage(%): 11.66 10 100 Water Content (%) Plasticity Chart PLASTICITY INDEX (PI) CAY MH OP OH LIQUID LIMIT (LL)

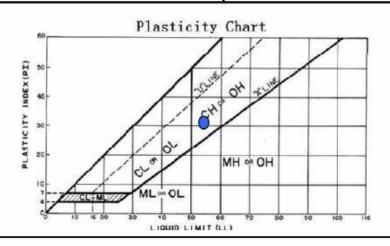
Notes: The sample/s were tested oven dried, dry sieved and in a 125-250mm

Stored and Tested the Sample as received

Samples supplied by the Client Authorised Signature:

The results of tests performed apply only to the specific sample at time of test unless otherwise clearly stated. Reference should be made to E-Precision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431 559 578 87

10


Water Content (%)

100

Test Method: AS1289.2.1.1 3.1.1 3.2.1 3.4.1 Client: Date Tested: 12/02/2025 REC Project: Bellevue TSF Testing 2025 Lab: **EPLAB** BH02-SPT10 REC Sample No: Job Number: Lab ID: BH02-SPT10 ATT Depth (m): 16.50 - 16.95 Room Temperature at Test: 18°C Tested by: Raymond Sample Description: Moisture Content (%): Wet Density (t/m³): Dry Density (t/m³): Liquid Limit (%): 54.49 **Results Chart** Plastic Limit (%): 23.38 100 Plasticity Index (%): 31.11 Penetration (mm) Liquidity Index (%): Shrinkage Limit (%): 15.21 Linear Shrinkage(%): 15.16

Notes: The sample/s were tested oven dried, dry sieved and in a 125-250mm mould.

Stored and Tested the Sample as received

Samples supplied by the Client Authorised Signature:

Test Method: AS1289.2.1.1 3.1.1 3.2.1 3.4.1

Client: REC Date Tested: 09/02/2025

 Project:
 Bellevue TSF Testing 2025
 Lab:
 EPLAB

 Sample No:
 BH02-UDS02
 Job Number:
 REC

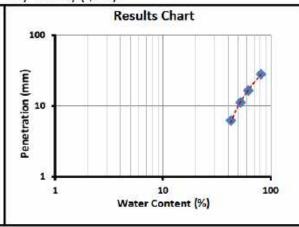
Lab ID: BH02-UDS02 ATT

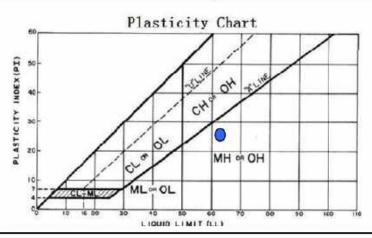
Depth (m): 9.50 - 9.79 Room Temperature at Test: 18°C

Tested by: Raymond Sample Description:

Moisture Content (%): - Wet Density (t/m³): -

Dry Density (t/m³):




Plasticity Index (%): 26.37

Liquidity Index (%):

Shrinkage Limit (%): 23.97

Linear Shrinkage(%): 13.14

Notes: The sample/s were tested oven dried, dry sieved and in a 125-250mm mould.

Stored and Tested the Sample as received

Samples supplied by the Client Authorised Signatu

Test Method: AS1289.2.1.1 3.1.1 3.2.1 3.4.1

Client: REC Date Tested: 12/02/2025

 Project:
 Bellevue TSF Testing 2025
 Lab:
 EPLAB

 Sample No:
 BH02-UDS03
 Job Number:
 REC

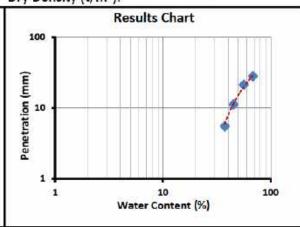
Lab ID: BH02-UDS03 ATT

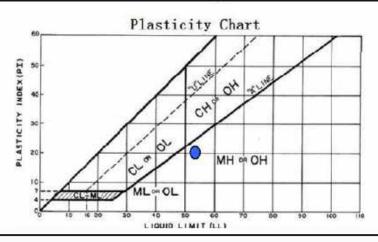
Depth (m): 11.00 - 11.39 Room Temperature at Test: 18°C

Tested by: Raymond Sample Description:

Moisture Content (%): - Wet Density (t/m³): -

Dry Density (t/m³):




Plasticity Index (%): 20.21

Liquidity Index (%):

Shrinkage Limit (%): 23.40

Linear Shrinkage(%): 10.54

Notes: The sample/s were tested oven dried, dry sieved and in a 125-250mm mould.

Stored and Tested the Sample as received

Samples supplied by the Client Authorised Signature:

Test Method: AS1289.2.1.1 3.1.1 3.2.1 3.4.1

Client: REC Date Tested: 12/02/2025

 Project:
 Bellevue TSF Testing 2025
 Lab:
 EPLAB

 Sample No:
 BH02-UDS04
 Job Number:
 REC

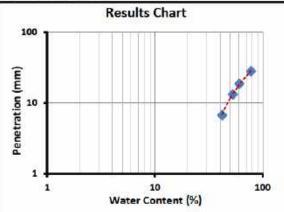
Lab ID: BH02-UDS04_ATT

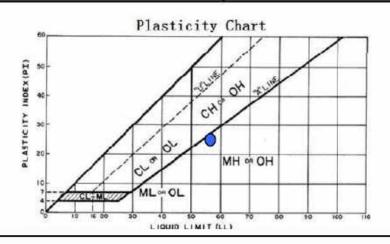
Depth (m): 12.50 - 12.95 Room Temperature at Test: 18°C

Tested by: Raymond Sample Description:

Moisture Content (%): - Wet Density (t/m³): -

Dry Density (t/m³):


Liquid Limit (%): 58.88


Plastic Limit (%): 33.76

Plasticity Index (%): 25.12 Liquidity Index (%):

Shrinkage Limit (%): 22.97

Linear Shrinkage(%): 12.56

Notes: The sample/s were tested oven dried, dry sieved and in a 125-250mm mould.

Stored and Tested the Sample as received

Samples supplied by the Client Authorised Signature:

ATTERBERG LIMITS TEST REPORT Test Method: AS1289.2.1.1 3.1.1 3.2.1 3.4.1 Client: Date Tested: 13/02/2025 REC Project: Bellevue TSF Testing 2025 Lab: **EPLAB** BH02-UDS05 Job Number: REC Sample No: Lab ID: BH02-UDS05 ATT Depth (m): 14.00 - 14.45 Room Temperature at Test: 18°C Tested by: Raymond Sample Description: Moisture Content (%): Wet Density (t/m³): Dry Density (t/m³): Liquid Limit (%): **Results Chart** 76.63 Plastic Limit (%): 34.62 100 Plasticity Index (%): 42.02 Penetration (mm) Liquidity Index (%): Shrinkage Limit (%): 19.61 Linear Shrinkage(%): 20.71 100 10 1000 1 Water Content (%) Plasticity Chart PLASTICITY INDEX (PI) Ch MH OP OH LIQUID LIMIT (LL) Notes: The sample/s were tested oven dried, dry sieved and in a 125-250 Stored and Tested the Sample as received Samples supplied by the Client **Authorised Signatur**

ATTERBERG LIMITS TEST REPORT Test Method: AS1289.2.1.1 3.1.1 3.2.1 3.4.1 Client: Date Tested: 13/02/2025 REC Project: Bellevue TSF Testing 2025 Lab: **EPLAB** BH03-UDS02 REC Sample No: Job Number: Lab ID: BH03-UDS02 ATT Depth (m): 5.00 - 5.45 Room Temperature at Test: 18°C Tested by: Sample Description: Raymond Moisture Content (%): Wet Density (t/m³): Dry Density (t/m³): Liquid Limit (%): 60.88 **Results Chart** Plastic Limit (%): 42.21 100 Plasticity Index (%): 18.67 Penetration (mm) Liquidity Index (%): Shrinkage Limit (%): 30.98 Linear Shrinkage(%): 9.17 10 100 Water Content (%) Plasticity Chart PLASTICITY INDEX (PI) Ch H OP OH LIQUID LIMIT (LL)

Notes: The sample/s were tested oven dried, dry sieved and in a 125-250mm mould.

Stored and Tested the Sample as received

Samples supplied by the Client

Authorised Signatur

Test Method: AS1289.2.1.1 3.1.1 3.2.1 3.4.1

Client: Date Tested: 13/02/2025 REC

Project: Bellevue TSF Testing 2025 Lab: **EPLAB** BH03-UDS04 Job Number: REC Sample No:

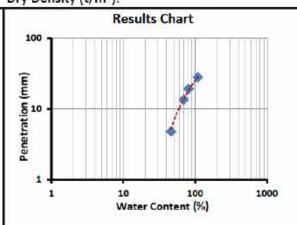
Lab ID: BH03-UDS04 ATT

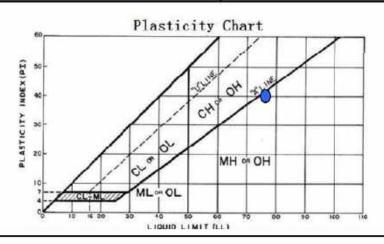
Depth (m): 8.00 - 8.45 Room Temperature at Test: 18°C

Tested by: Raymond Sample Description:

Moisture Content (%): Wet Density (t/m³):

Dry Density (t/m³):


Liquid Limit (%): 77.84 Plastic Limit (%): 37.67


Plasticity Index (%): 40.17

Liquidity Index (%):

Shrinkage Limit (%): 21.60

Linear Shrinkage(%): 20.42

Notes: The sample/s were tested oven dried, dry sieved and in a 125-250mm mould.

Stored and Tested the Sample as received

Samples supplied by the Client Authorised Signature:

Test Method: AS1289.2.1.1 3.1.1 3.2.1 3.4.1

Client: REC Date Tested: 09/02/2025

 Project:
 Bellevue TSF Testing 2025
 Lab:
 EPLAB

 Sample No:
 BH03-UDS06
 Job Number:
 REC

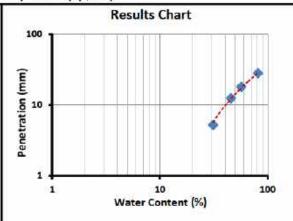
Lab ID: BH03-UDS06_ATT

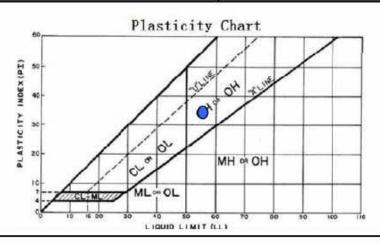
Depth (m): 11.00 - 11.25 Room Temperature at Test: 18°C

Tested by: Raymond Sample Description:

Moisture Content (%): - Wet Density (t/m³): -

Dry Density (t/m³):


Liquid Limit (%): 56.05
Plastic Limit (%): 23.04


Plasticity Index (%): 33.01

Liquidity Index (%):

Shrinkage Limit (%): 14.72

Linear Shrinkage(%): 16.45

Notes: The sample/s were tested oven dried, dry sieved and in a 125-250mm mould.

Stored and Tested the Sample as received

Samples supplied by the Client Authorised Signature

Test Method: AS1289.2.1.1 3.1.1 3.2.1 3.4.1

Client: REC Date Tested: 13/02/2025

 Project:
 Bellevue TSF Testing 2025
 Lab:
 EPLAB

 Sample No:
 BH03-UDS08
 Job Number:
 REC

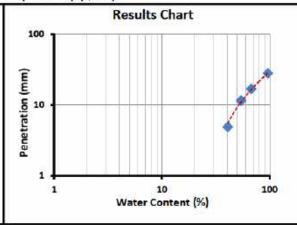
Lab ID: BH03-UDS08_ATT

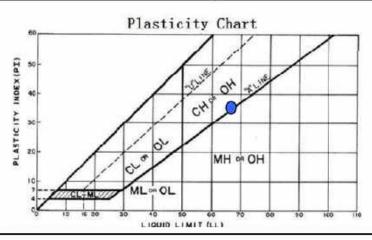
Depth (m): 14.00 - 14.45 Room Temperature at Test: 18°C

Tested by: Raymond Sample Description:

Moisture Content (%): - Wet Density (t/m³): -

Dry Density (t/m³):




Plasticity Index (%): 36.24

Liqu<mark>i</mark>dity Index (%):

Shrinkage Limit (%): 19.50

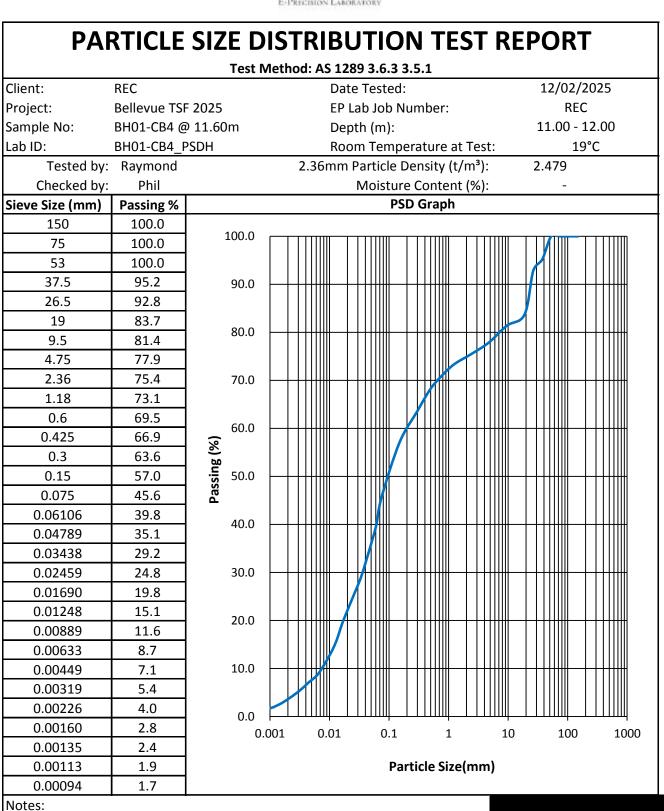
Linear Shrinkage(%): 18.39

Notes: The sample/s were tested oven dried, dry sieved and in a 125-250mm mould.

Stored and Tested the Sample as received

Samples supplied by the Client Authorised Signatur

PARTICLE SIZE DISTRIBUTION TEST REPORT Test Method: AS 1289 3.6.3 3.5.1 Client: **REC** Date Tested: 12/02/2025 Project: Bellevue TSF 2025 EP Lab Job Number: **REC** 8.60 - 8.80 Sample No: BH01-CB3 Depth (m): Lab ID: 19°C BH01-CB3_PSDH Room Temperature at Test: Tested by: Raymond 2.36mm Particle Density (t/m³): 2.465 Checked by: Phil Moisture Content (%): Passing % **PSD Graph** Sieve Size (mm) 150 100.0 100.0 75 100.0 53 100.0 37.5 100.0 90.0 26.5 100.0 19 100.0 80.0 9.5 93.9 4.75 78.7 2.36 65.0 70.0 1.18 54.3 0.6 47.1 60.0 0.425 43.7 Passing (%) 0.3 38.8 0.15 29.3 50.0 0.075 19.6 0.06135 17.4 40.0 0.04811 15.3 0.03454 12.8 0.02471 10.8 30.0 0.01698 8.6 0.01254 6.6 20.0 0.00894 5.0 0.00636 3.8 10.0 0.00451 3.1 0.00320 2.4 0.00227 1.7 0.0 1.5 0.00161 0.001 0.01 0.1 10 100 1000 1 0.00136 1.1 0.00113 1.0 Particle Size(mm) 0.00095 0.9


Notes:

Stored and Tested the Sample as received

Samples supplied by the Client

Authorized Signature:

Authorized Signature:

Stored and Tested the Sample as received

Samples supplied by the Client

PARTICLE SIZE DISTRIBUTION TEST REPORT Test Method: AS 1289 3.6.3 3.5.1 Client: **REC** Date Tested: 12/02/2025 Project: Bellevue TSF 2025 EP Lab Job Number: **REC** 14.00 - 24.00 Sample No: BH01-CB5 @ 16.00m Depth (m): Lab ID: BH01-CB5_PSDH 19°C Room Temperature at Test: Tested by: Raymond 2.36mm Particle Density (t/m³): 2.435 Checked by: Phil Moisture Content (%): **PSD Graph** Sieve Size (mm) Passing % 100.0 150 100.0 75 100.0 53 100.0 37.5 100.0 90.0 26.5 100.0 19 100.0 80.0 9.5 100.0 4.75 97.4 2.36 93.3 70.0 1.18 87.4 0.6 80.3 60.0 76.6 0.425 Passing (%) 0.3 69.6 55.8 50.0 0.15 0.075 43.8 0.06450 41.5 40.0 0.05026 37.5 0.03583 31.9 0.02551 26.3 30.0 0.01746 20.7 17.1 0.01281 20.0 0.00909 14.0 11.6 0.00645 10.0 0.00458 8.8 0.00325 6.8 0.00230 4.4 0.0 2.8 0.00163 0.001 0.01 0.1 100 1000 1 10 0.00138 2.0 0.00115 1.6 Particle Size(mm) 0.00096 1.2 Notes:

The results of tests performed apply only to the specific sample at time of test unless otherwise clearly sta

Stored and Tested the Sample as received

Samples supplied by the Client

Precision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431 559 578 87

Authorized Signatur

PARTICLE SIZE DISTRIBUTION TEST REPORT Test Method: AS 1289 3.6.3 3.5.1 Client: REC 12/02/2025 Date Tested: Project: Bellevue TSF 2025 EP Lab Job Number: REC BH01-SPT02 3.00 - 3.45 Sample No: Depth (m): Lab ID: BH01-SPT02 PSDH Room Temperature at Test: 19°C Tested by: Raymond 2.36mm Particle Density (t/m3): 2.556 Checked by: Phil Moisture Content (%): Passing % **PSD Graph** Sieve Size (mm) 150 100.0 100.0 75 100.0 53 100.0 37.5 100.0 90.0 26.5 100.0 19 100.0 80.0 9.5 100.0 4.75 94.5 2.36 89.3 70.0 1.18 83.3 0.6 76.9 60.0 0.425 73.7 assing (%) 0.3 69.1 55.0 0.15 50.0 0.075 37.2 0.05954 31.8 40.0 28.0 0.04669 0.03354 23.1 19.7 0.02398 30.0 0.01647 16.0 13.3 0.01213 20.0 10.3 0.00865 0.00615 8.1 10.0 0.00436 6.8 0.00310 5.5 0.00220 3.9 0.0 3.2 0.00156 0.001 0.01 0.1 1 10 100 1000 0.00132 2.6 0.00110 2.1 Particle Size(mm) 0.00092 1.7 Notes: Stored and Tested the Sample as received

The results of tests performed apply only to the specific sample at time of test unless otherwise clearly stated. Re Precision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431 559 578 87

Samples supplied by the Client

Authorized Signature:

PARTICLE SIZE DISTRIBUTION TEST REPORT Test Method: AS 1289 3.6.3 3.5.1 Client: REC 12/02/2025 Date Tested: Project: Bellevue TSF 2025 EP Lab Job Number: REC BH01-UDS02 4.95 - 5.30 Sample No: Depth (m): Lab ID: BH01-UDS02 PSDH Room Temperature at Test: 19°C Tested by: Raymond 2.36mm Particle Density (t/m3): 2.584 Checked by: Phil Moisture Content (%): **PSD Graph** Sieve Size (mm) Passing % 150 100.0 100.0 75 100.0 53 100.0 37.5 100.0 90.0 26.5 100.0 19 100.0 80.0 9.5 100.0 4.75 99.9 2.36 99.3 70.0 1.18 98.0 0.6 94.0 60.0 0.425 92.3 assing (%) 0.3 88.0 0.15 73.0 50.0 0.075 52.7 0.05864 46.8 40.0 41.5 0.04599 0.03302 35.0 0.02362 30.0 30.0 0.01629 23.0 18.3 0.01202 20.0 14.4 0.00857 0.00610 11.2 10.0 0.00433 9.4 0.00307 7.6 0.00218 5.5 0.0 4.4 0.00155 0.001 0.01 0.1 1 10 100 1000 3.7 0.00131 0.00109 2.9 Particle Size(mm) 0.00091 2.4 Notes: Stored and Tested the Sample as received

The results of tests performed apply only to the specific sample at time of test unless otherwise clearly stated. Reference should be made to E-Precision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431 559 578 87

Authorized Signature:

Samples supplied by the Client

PARTICLE SIZE DISTRIBUTION TEST REPORT Test Method: AS 1289 3.6.3 3.5.1 REC Client: Date Tested: 05/02/2025 Project: Bellevue TSF 2025 EP Lab Job Number: **REC** Sample No: BH02-SPT10 16.50 - 16.95 Depth (m): BH02-SPT10_PSDH Lab ID: 19°C Room Temperature at Test: Tested by: Raymond 2.36mm Particle Density (t/m³): 2.395 Checked by: Phil Moisture Content (%): Passing % **PSD Graph** Sieve Size (mm) 150 100.0 100.0 75 100.0 53 100.0 37.5 100.0 90.0 26.5 100.0 19 98.6 80.0 9.5 98.2 4.75 97.4 2.36 96.1 70.0 1.18 93.2 0.6 87.2 60.0 0.425 80.2 Passing (%) 0.3 71.7 0.15 50.0 53.4 0.075 38.1 0.06338 35.3 40.0 0.04961 31.4 0.03540 28.0 0.02526 24.6 30.0 0.01727 21.7 0.01271 19.0 20.0 0.00905 16.0 0.00644 13.3 10.0 0.00458 11.3 0.00324 10.2 0.00230 8.1 0.0 0.00164 6.6 0.001 0.01 0.1 1000 1 10 100 0.00138 5.9 0.00115 5.4 Particle Size(mm) 0.00096 5.0 Notes: Stored and Tested the Sample as received Samples supplied by the Client **Authorized Signature**

The results of tests performed apply only to the specific sample at time of test unless otherwise clearly stat

Precision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431 559 578 87

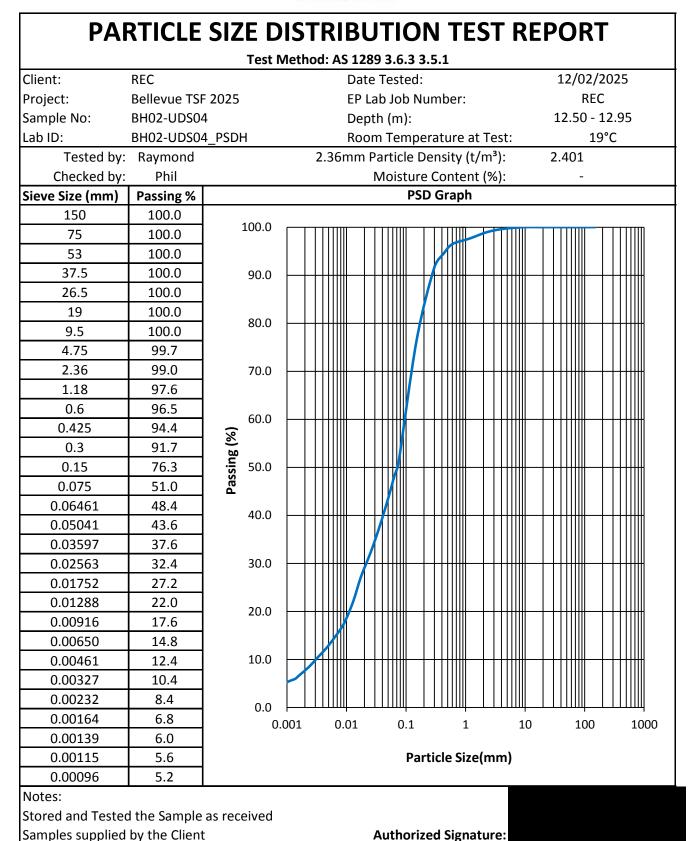
PARTICLE SIZE DISTRIBUTION TEST REPORT Test Method: AS 1289 3.6.3 3.5.1 REC Client: Date Tested: 12/02/2025 Project: Bellevue TSF 2025 EP Lab Job Number: **REC** Sample No: BH02-UDS02 9.50 - 9.79Depth (m): BH02-UDS02_PSDH Lab ID: 19°C Room Temperature at Test: Tested by: Raymond 2.36mm Particle Density (t/m³): 2.365 Checked by: Phil Moisture Content (%): Passing % **PSD Graph** Sieve Size (mm) 150 100.0 100.0 75 100.0 53 100.0 37.5 100.0 90.0 26.5 100.0 19 100.0 80.0 9.5 99.4 4.75 95.5 2.36 92.1 70.0 1.18 88.3 0.6 84.7 60.0 79.9 0.425 Passing (%) 0.3 70.9 49.9 50.0 0.15 0.075 36.0 0.06336 33.6 40.0 0.04954 30.7 0.03533 28.0 0.02516 25.7 30.0 0.01720 23.0 20.3 0.01268 20.0 0.00905 17.4 0.00646 14.7 10.0 0.00459 12.4 0.00326 10.6 0.00232 9.1 0.0 7.7 0.00164 0.001 0.01 0.1 100 1000 1 10 0.00139 7.1 0.00116 6.6 Particle Size(mm) 0.00097 6.4 Notes:

The results of tests performed apply only to the specific sample at time of test unless otherwise clearly stated. Reference should be made to E-Precision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431 559 578 87

Authorized Signatur

Stored and Tested the Sample as received

Samples supplied by the Client



PAI	PARTICLE SIZE DISTRIBUTION TEST REPORT						
		Test	Method: AS 1289 3.6.3 3.5.1				
Client:	REC		Date Tested: 12/02/2025				
Project:	Bellevue TSI	F 2025	EP Lab Job Number: REC				
Sample No:	BH02-UDS0	3	Depth (m): 11.00 - 11.39				
Lab ID:	BH02-UDS0	3_PSDH	Room Temperature at Test: 19°C				
Tested by:	Raymond		2.36mm Particle Density (t/m³): 2.347				
Checked by:	Phil		Moisture Content (%):				
Sieve Size (mm)	Passing %		PSD Graph				
150	100.0		·				
75	100.0	100.0					
53	100.0						
37.5	100.0	90.0					
26.5	100.0	33.3	_				
19	100.0						
9.5	100.0	80.0	- 				
4.75	100.0						
2.36	99.0	70.0					
1.18	97.6	7 0.0					
0.6	96.0						
0.425	94.9	60.0					
0.3	92.8	<u>%</u>					
0.15	75.9	Passing (%)					
0.075	54.4	ass	_				
0.06374	51.4						
0.04986	46.7	40.0	- 				
0.03565	41.4						
0.02547	36.4	30.0					
0.01744	31.7						
0.01285	27.6						
0.00918	23.2	20.0					
0.00654	18.8		_				
0.00465	15.0	10.0					
0.00331	11.7						
0.00235	9.4						
0.00167	6.8	0.0					
0.00141	5.6		0.001 0.01 0.1 1 10 100 1000				
0.00141	5.0		Particle Size(mm)				
0.00098	4.4						
Notes:	1	l					
Stored and Tester	d the Sample	as received					
Samples supplied	•		Authorized Signat				
Samples supplied	by the cheff		Addionated Signat				

Authorized Signature:

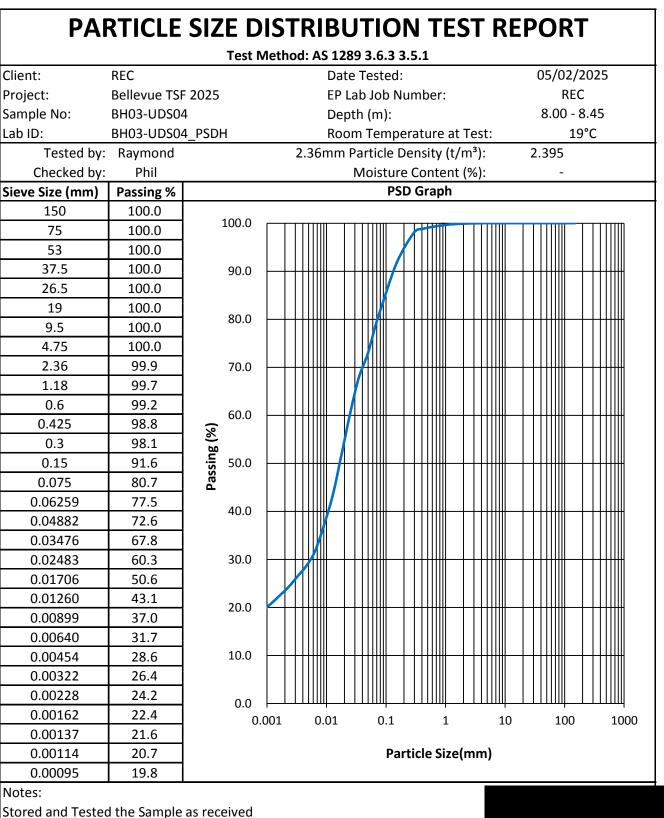
PARTICLE SIZE DISTRIBUTION TEST REPORT						
		Test N	Method: AS 1289 3.6.3 3.5.1			
Client:	REC		Date Tested: 12/02/2025			
Project:	Bellevue TSI	- 2025	EP Lab Job Number: REC			
Sample No:	BH02-UDS0	5	Depth (m): 14.00 - 14.45			
Lab ID:	BH02-UDS0	5_PSDH	Room Temperature at Test: 19°C			
Tested by:	Raymond		2.36mm Particle Density (t/m³): 2.378			
Checked by:	Phil		Moisture Content (%):			
Sieve Size (mm)	Passing %		PSD Graph			
150	100.0					
75	100.0	100.0				
53	100.0					
37.5	100.0	90.0				
26.5	100.0					
19	100.0	20.0	1			
9.5	100.0	80.0				
4.75	99.5					
2.36	97.3	70.0	 			
1.18	93.4					
0.6	88.7	50.0				
0.425	86.6	60.0				
0.3	84.2	Passing (%)				
0.15	70.4	50.0				
0.075	58.1	Pas				
0.06346	54.6	1				
0.04955	50.3	40.0				
0.03529	46.3					
0.02515	41.9	30.0				
0.01721	36.9					
0.01267	33.0	20.0				
0.00904	28.0	20.0				
0.00643	25.0		P111111 111111 111111 111111 111111 11111			
0.00456	22.6	10.0				
0.00324	20.0					
0.00230	18.3	2.5				
0.00163	16.6	0.0	001 0.01 0.1 1 10 100 1000			
0.00138	15.3	0.0	001 0.01 0.1 1 10 100 1000			
0.00114	14.6		Particle Size(mm)			
0.00096	14.3					
Notes:						
Stored and Tested	d the Sample	as received				

Authorized Signature

Samples supplied by the Client

PARTICLE SIZE DISTRIBUTION TEST REPORT Test Method: AS 1289 3.6.3 3.5.1 Client: **REC** Date Tested: 05/02/2025 Project: Bellevue TSF 2025 EP Lab Job Number: **REC** Sample No: BH03-UDS02 5.00 - 5.45Depth (m): BH03-UDS02_PSDH Lab ID: 19°C Room Temperature at Test: Tested by: Raymond 2.36mm Particle Density (t/m³): 2.404 Checked by: Phil Moisture Content (%): Passing % **PSD Graph** Sieve Size (mm) 150 100.0 100.0 75 100.0 53 100.0 37.5 100.0 90.0 26.5 100.0 19 100.0 80.0 9.5 100.0 4.75 99.7 2.36 99.5 70.0 1.18 99.0 0.6 94.0 60.0 0.425 88.3 Passing (%) 0.3 80.0 0.15 66.5 50.0 0.075 46.1 0.06267 42.4 40.0 0.04915 37.3 0.03509 33.3 0.02509 28.8 30.0 0.01724 23.6 0.01270 20.1 20.0 0.00904 17.0 0.00643 13.8 10.0 0.00458 11.0 0.00325 9.0 0.00231 7.3 0.0 5.3 0.00164 0.001 0.01 0.1 100 1000 1 10 0.00139 4.0 0.00115 3.5 Particle Size(mm) 0.00096 3.0 Notes:

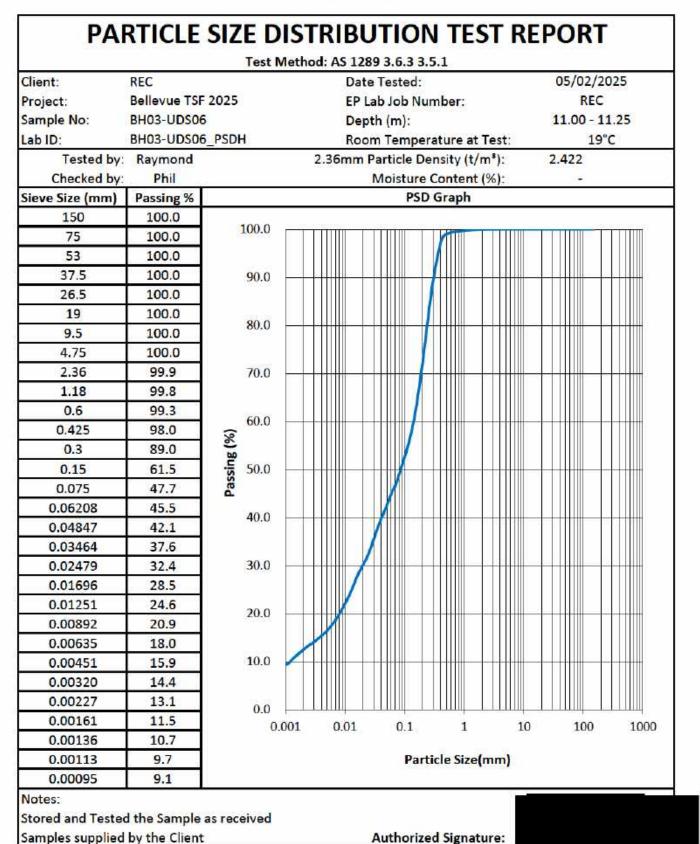
The results of tests performed apply only to the specific sample at time of test unless otherwise clearly sta


Precision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431 559 578 87

Stored and Tested the Sample as received

Samples supplied by the Client

Authorized Signatur



Authorized Signature

Samples supplied by the Client

PARTICLE SIZE DISTRIBUTION TEST REPORT Test Method: AS 1289 3.6.3 3.5.1 Client: **REC** Date Tested: 05/02/2025 Project: Bellevue TSF 2025 EP Lab Job Number: **REC** Sample No: BH03-UDS08 14.00 - 14.45 Depth (m): BH03-UDS08_PSDH Lab ID: 19°C Room Temperature at Test: Tested by: Raymond 2.36mm Particle Density (t/m³): 2.382 Checked by: Phil Moisture Content (%): Passing % **PSD Graph** Sieve Size (mm) 100.0 150 100.0 75 100.0 53 100.0 37.5 100.0 90.0 26.5 100.0 19 100.0 80.0 9.5 100.0 4.75 100.0 2.36 99.7 70.0 1.18 99.2 0.6 98.6 60.0 97.7 0.425 Passing (%) 0.3 95.7 50.0 0.15 83.0 0.075 69.2 0.06297 65.4 40.0 0.04917 60.5 0.03503 56.0 52.2 0.02492 30.0 0.01704 46.6 40.9 0.01257 20.0 0.00897 35.3 30.0 0.00640 10.0 0.00455 27.0 0.00322 24.8 0.00229 22.9 0.0 0.00162 21.4 0.001 0.01 0.1 100 1000 1 10 0.00137 20.3 0.00114 19.9 Particle Size(mm) 0.00095 19.5

Notes:

Stored and Tested the Sample as received

Samples supplied by the Client **Authorized Signature:**

	TRIAXIAI		ABILITY TE od: AS1289 6.7.3	ST REPORT	
Clien <mark>t:</mark> Project: Lab:	REC Bellevue TSF Tes EPLAB	ting 2025		Date Tested: Date Reported: EP Lab Job Number:	06/02/2025 18/02/2025 REC
Tested by: Checked by:	Phil Phil			9	
	Lab ID:	BGL25_TPERM_01	BGL25_TPERM_02	BGL25_TPERM_03	
	Client ID:	BH01/UDS02	Extract Core BH01- CB1	Extract Core BH01- CB3	
	Sample ID:	BH01	BH01	BH01	
	From Depth (m):	4.95	2.5	8.6	
	To Depth (m):		2.75	8.8	
Sample Conditions:		Insitu	Insitu	Insitu	
Ce	II Pressure (kPa):	75	30	125	
Inle	et Pressure (kPa):	50	25	75	
Outle	et Pressure (kPa):	25	10	25	
Initial Bul	lk Density (t/m³):	2.189	1.823	1.815	
Initial <mark>Moi</mark> st	ture Content (%):	16.32	22.06	13.11	
Initial Dr	ry D <mark>ensity (t/m³):</mark>	1.88	1.49	1.60	
Saturation (Skempton's B):		0.98	1.00	1.00	
	K ₂₀ (m/s):	7.58 x 10 ⁻⁸	2.03 x 10 ⁻⁷	1.81 x 10 ⁻⁸	

Authorised Signatory (Geotechnical Engineer):

Samples supplied by the Client

	TRIAXIAI		ABILITY TE	ST REPOR	XT.
Client: Project: Lab: Tested by: Checked by:	REC Bellevue TSF Tes EPLAB Phil Phil	ting 2025		Date Tested: Date Reported: EP Lab Job Numbe	06/02/2025 18/02/2025 r: REC
	Lab ID:	BGL25_TPERM_04	BGL25_TPERM_05	BGL25_TPERM_06	
	Client ID:	Extract Core BH01- CB5	BH02/UDS02	BH02/UDS03	
	Sample ID:	BH01	BH02	BH02	
F	From Depth (m):		9.5	11	
To Depth (m):		17	9.79	11.385	
Sample Conditions:		Insitu	Remolded	Insitu	
Cel	Cell Pressure (kPa):		125	150	
Inle	t Pressure (kPa):	50	75	75	
Outlet	t Pressure (kPa):	10	25	25	
Initial Bull	k Density (t/m³):	2.168	1.945	1.887	
Initial Moist	ure Content (%):	8.33	36.79	31.56	
Initial Dry	y Density (t/m³):	2.00	1.42	1.43	
Saturation	(Skempton's B):	1.00	0.99	0.99	
	K ₂₀ (m/s):	5.36 x 10 ⁻⁷	3.07 x 10 ⁻⁸	2.35 x 10 ⁻⁸	

Notes:

Stored and Tested the Sample as received

Samples supplied by the Client

Authorised Signatory (Geotechnical

TRIAXIAL PERMEABILITY TEST REPORT

Test Method: AS1289 6.7.3

 Client:
 REC
 Date Tested:
 06/02/2025

 Project:
 Bellevue TSF Testing 2025
 Date Reported:
 18/02/2025

 Lab:
 EPLAB
 EP Lab Job Number:
 REC

 Tested by:
 Phil

Tested by: Phil Checked by: Phil

K ₂₀ (m/s):	1.97 x 10 ⁻⁷	6.13 x 10 ⁻⁸	6.67 x 10 ⁻⁸	
Saturation (Skempton's B):	1.00	0.99	1.00	
Initial Dry Density (t/m³):	1.60	1.70	1.51	
Initial Moisture Content (%):	25.61	21.17	27.85	
Initial Bulk Density (t/m³):	2.013	2.065	1.933	
Outlet Pressure (kPa):	25	25	2 5	
Inlet Pressure (kPa):	50	85	50	
Cell Pressure (kPa):	175	1 75	75	
Sample Conditions:	Insitu	Insitu	Insitu	
To Depth (m):	12.95	14.45	5.45	
From Depth (m):	12.5	14	5	
Sample ID:	BH02	BH02	BH03	
Client ID:	BH02/UDS04	BH02/UDS05	BH03/UDS02	
Lab ID:	BGL25_TPERM_07	BGL25_TPERM_08	BGL25_TPERM_09	

Notes:

Stored and Tested the Sample as received

Samples supplied by the Client

Authorised Signatory (Geotechnical

TRIAXIAL PERMEABILITY TEST REPORT

Test Method: AS1289 6.7.3

Client: REC 06/02/2025 Date Tested: Project: **Bellevue TSF Testing 2025** Date Reported: 18/02/2025 EP Lab Job Number: REC Lab: **EPLAB** Phil Tested by: Checked by: Phil

Lab ID:	BGL25_TPERM_10	BGL25_TPERM_11	BGL25_TPERM_12	
Client ID:	BH03/UDS04	BH03/UDS06	BH03/UDS08	
Sample ID:	BH03	BH03	BH03	
From Depth (m):	8	11	14	
To Depth (m):	8.45	1 1.25	14.45	
Sample Conditions:	Insitu	Insitu	- Insitu	
Cell Pressure (kPa):	100	1 50	175	
Inlet Pressure (kPa):	50	7 5	75	
Outlet Pressure (kPa):	25	25	25	
Initial Bulk Density (t/m³):	1.936	1.833	1.979	
Initial Moisture Content (%):	28.91	34.95	35.62	
Initial Dry Density (t/m³):	1.50	1.36	1.46	
Saturation (Skempton's B):	1.00	1.00	0.99	
K ₂₀ (m/s):	3.23 x 10 ⁻⁸	0.96 x 10 ⁻⁸	2.45 x 10 ⁻⁸	

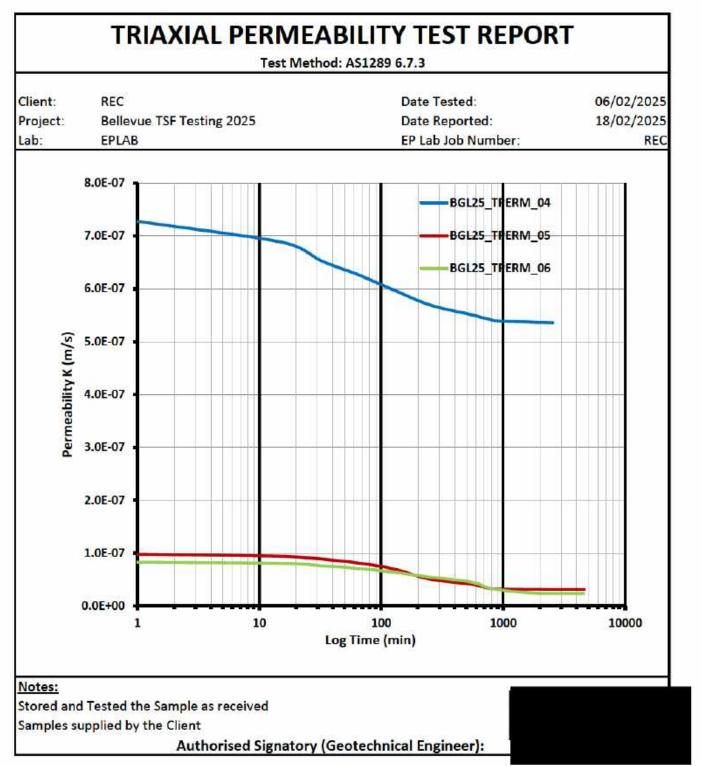
Notes:

Stored and Tested the Sample as received

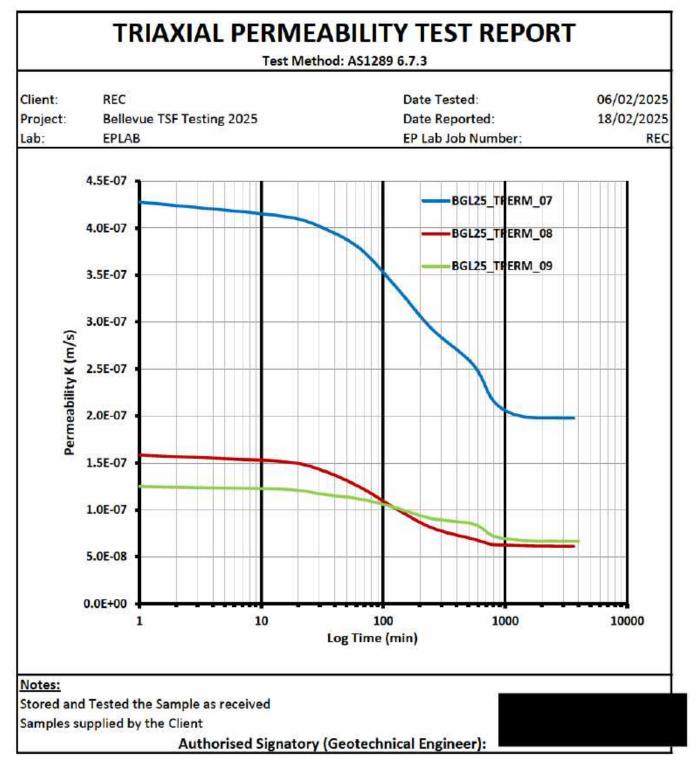
Samples supplied by the Client

Authorised Signatory (Geotechnical E

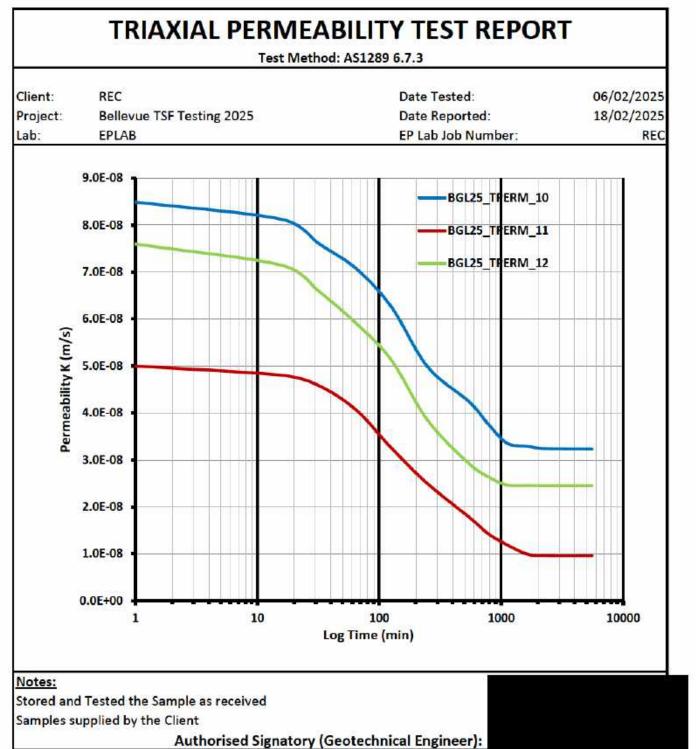
TRIAXIAL PERMEABILITY TEST REPORT Test Method: AS1289 6.7.3 Client: REC 06/02/2025 Date Tested: Project: Bellevue TSF Testing 2025 Date Reported: 18/02/2025 EP Lab Job Number: REC Lab: **EPLAB** 4.0E-07 BGL25_TPERM_01 BGL25 TPERM 02 3.5E-07 BGL25_TPERM_03 3.0E-07 Permeability K (m/s) 2.5E-07 2.0E-07 1.5E-07 1.0E-07 5.0E-08 0.0E+00 10 100 1 1000 10000 Log Time (min)

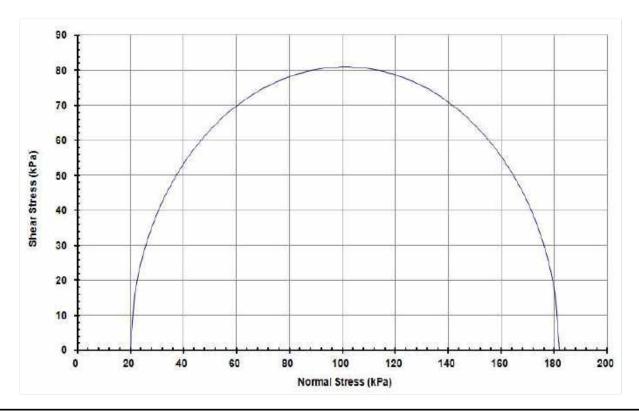

Notes:

Stored and Tested the Sample as received


Samples supplied by the Client

Authorised Signatory (Geotechnical Engineer):





		ctilou. As i w B2030 / II	mouse mi	ciioa			
Client:	REC		Date Test	ed:	08/02/2025		
Project:	Bellevue TSF Test	ing 2025	EP Lab Jo	b Number:	REC		
Sample No:	BH01-CB1		Lab:		EPLAB		
Sample ID:	BH01-CB1_UU						
Depth (m):	2.00 - 3.00		Room Ter	mperature at	Test:	~ 18°C	
Tested by:	PHIL	Initial Moisture (%):	20.94	Strain Ra	te (mm/min):		0.05
Height (mm):	126.05	Final Moisture (%):	20.94	Sk	empton's (B):		-
Diameter (mm):	60.19	Bulk Density (t/m³):	1.83		Geology:	-	
L/D Ratio:	2.09	Dry Density (t/m³):	1.51				

Failure Criteria used: Peak Deviator Stress

Mohr Circle Diagram (Effective Stress)

Interpretation from Mohr Circle: Stage 1 & 2 Stage 1 & 3 Stage 2 & 3

Cohesion C' (kPa): - - - -

Angle of Shear Resistance Φ' (Degrees) : - - -

Method: ASTM D2850 / Inhouse Method

Client:RECDate Tested:08/02/2025Project:Bellevue TSF Testing 2025EP Lab Job Number:RECSample No:BH01-CB1Lab:EPLAB

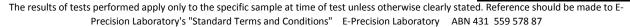
Sample ID: BH01-CB1_UU

Depth (m): 2.00 - 3.00 Room Temperature at Test: ~ 18°C

Photo After Test

 Sample ID:
 BH01-CB1
 Depth (m):
 2.00 - 3.00

 Lab ID:
 BH01-CB1_UU
 Date Tested:
 08/02/2025

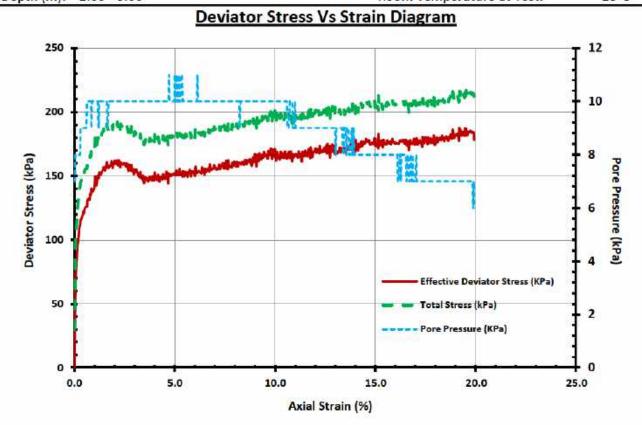


Failure Mode: Bulging Failure

Notes:

Stored and Tested the Sample as received Samples supplied by the Client

Authorised Signatory (Geotechnical Engineer):



Method: ASTM D2850 / Inhouse Method

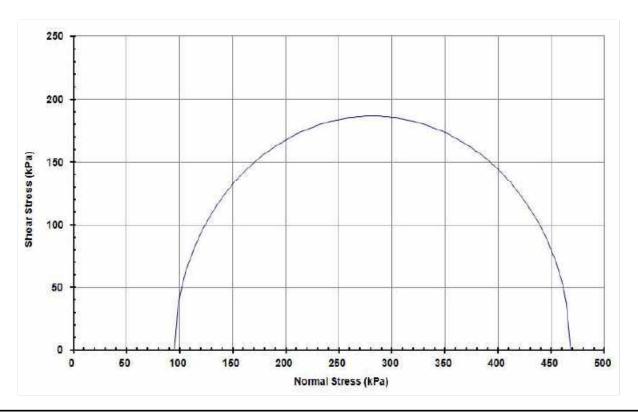
Client: REC Date Tested: 08/02/2025
Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC
Sample No: BH01-CB1 Lab: EPLab

Sample ID: BH01-CB1_UU

Depth (m): 2.00 - 3.00 Room Temperature at Test: ~ 18°C

SHEAR STAGE DATA AND STRESS MEASUREMENTS (kPa)

Shear Stage	Confining	11.0	110.	Principal Effective Stresses			_1, _1,	c
	Pressure		U'f	σ'1	σ'3	σ'1/σ'3	01-03	Strain (%)
1	30	7	10	182	20	9.10	162	2.00



Method: ASTM D2850	/ Inhouse Method
--------------------	------------------

	1010	ctilou. Astivi beoso / ii	mouse ivid	ciioa			
Client:	REC		Date Test	ed:	08/02/2025		
Project:	Bellevue TSF Test	ing 2025	EP Lab Jol	b Number:	REC		
Sample No:	BH01-CB3		Lab:		EPLAB		
Sample ID:	BH01-CB3_UU						
Depth (m):	8.60 - 8.80		Room Ter	nperature at	t Test:	~ 18°C	
Tested by:	PHIL	Initial Moisture (%):	12.25	Strain Ra	te (mm/min):		0.05
Height (mm):	126.29	Final Moisture (%):	12.25	Sk	empton's (B):		-
Diameter (mm):	60.32	Bulk Density (t/m³):	1.83		Geology:	-	
L/D Ratio:	2.09	Dry Density (t/m³):	1.63				

Failure Criteria used: Peak Deviator Stress

Mohr Circle Diagram (Effective Stress)

Interpretation from Mohr Circle: Stage 1 & 2 Stage 1 & 3 Stage 2 & 3

Cohesion C' (kPa): - - - - Angle of Shear Resistance Φ' (Degrees) : - - - -

EPLAB

SINGLE-STAGE UNCONSOLIDATED UNDRAINED TRIAXIAL TEST

Method: ASTM D2850 / Inhouse Method

Client: REC Date Tested: 08/02/2025 Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC Lab:

BH01-CB3 Sample No:

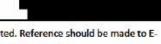
BH01-CB3 UU

Sample ID:

Depth (m): 8.60 - 8.80 Room Temperature at Test: ~ 18°C

Photo After Test

Depth (m): Sample ID: BH01-CB3 8.60 - 8.80 Lab ID: BH01-CB3_UU **Date Tested:** 08/02/2025

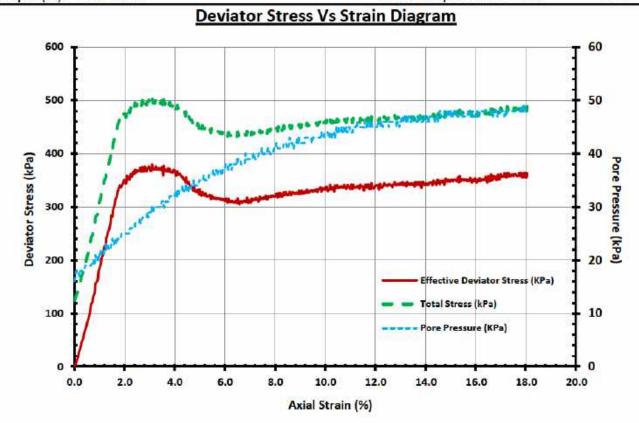


Failure Mode: Bulging Failure

Notes:

Stored and Tested the Sample as received Samples supplied by the Client

Authorised Signatory (Geotechnical Engineer):



Method: ASTM D2850 / Inhouse Method

Client: REC Date Tested: 08/02/2025
Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC
Sample No: BH01-CB3 Lab: EPLab

Sample ID: BH01-CB3_UU

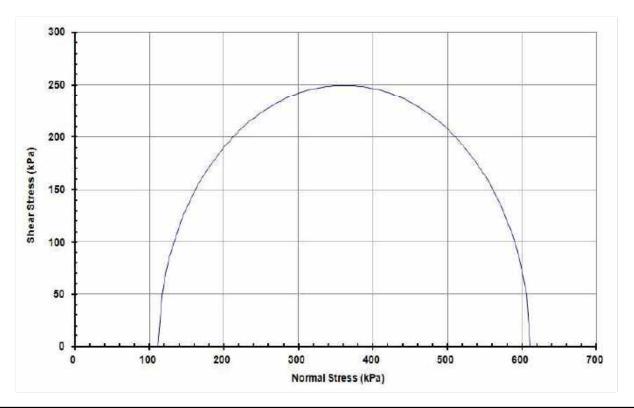
Depth (m): 8.60 - 8.80 Room Temperature at Test: ~ 18°C

Shear Stage	Confining	11% 114	116	Princip	al Effectiv	e Stresses	_1, _1,	Strain (%)
	Pressure	U'o	U'f	σ'1	σ'3	σ'1/σ'3	01-03	
1	125	16	30	468	95	4.93	373	3.09
						4		
	10.							

Geology:

SINGLE-STAGE UNCONSOLIDATED UNDRAINED TRIAXIAL TEST

Client:	REC		Date Teste	ed: C	08/02/2025		
Project:	Bellevue TSF Testing	g 2025	EP Lab Job	Number:	REC		
Sample No:	BH01-CB5		Lab:		EPLAB		
Sample ID:	BH01-CB5_UU						
Depth (m):	16		Room Ten	nperature at T	est:	~ 18°C	
Tested by:	PHIL	Initial Moisture (%):	6.15	Strain Rate	(mm/min):		0.05
Height (mm):	165.99	Final Moisture (%):	6.15	Sken	npton's (B):		-


L/D Ratio: Dry Density (t/m³): 2.02 2.02 Failure Criteria used: Peak Deviator Stress

82.09

Mohr Circle Diagram (Effective Stress)

2.14

Bulk Density (t/m³):

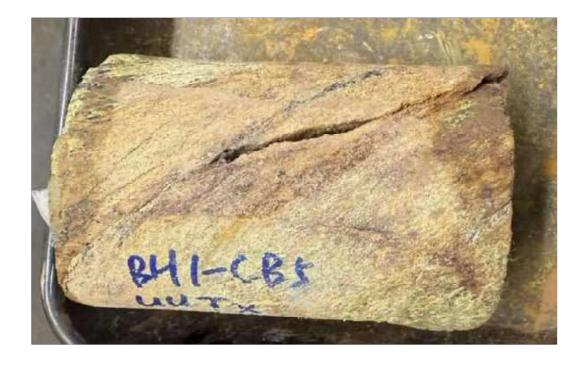
Interpretation from Mohr Circle: Stage 1 & 2 Stage 1 & 3 Stage 2 & 3 Cohesion C' (kPa):

Angle of Shear Resistance Φ' (Degrees):

Diameter (mm):

Method: ASTM D2850 / Inhouse Method

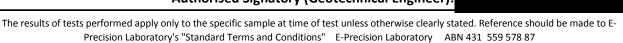
Client:RECDate Tested:08/02/2025Project:Bellevue TSF Testing 2025EP Lab Job Number:RECSample No:BH01-CB5Lab:EPLAB


Sample ID: BH01-CB5_UU

Depth (m): 16 Room Temperature at Test: ~ 18°C

Photo After Test

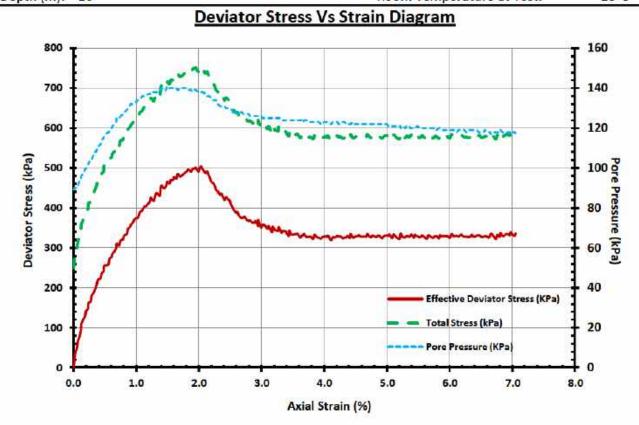
 Sample ID:
 BH01-CB5
 Depth (m):
 16.00


 Lab ID:
 BH01-CB5_UU
 Date Tested:
 08/02/2025

Failure Mode: Intact Shear @ 36.2°

Notes:

Stored and Tested the Sample as received Samples supplied by the Client



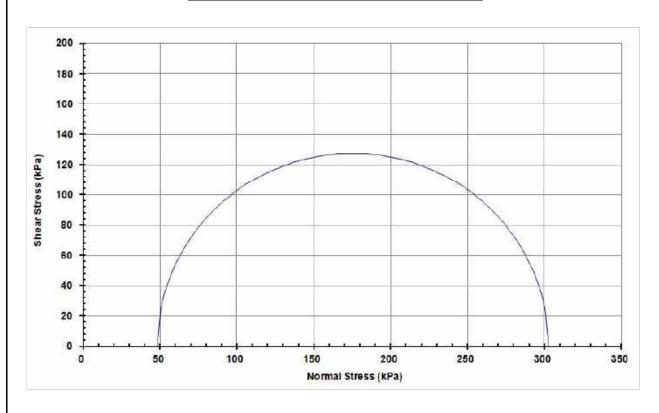
Method: ASTM D2850 / Inhouse Method

Client: REC Date Tested: 08/02/2025
Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC
Sample No: BH01-CB5 Lab: EPLab

Sample ID: BH01-CB5_UU

Depth (m): 16 Room Temperature at Test: ~ 18°C

Shear Stage	Confining	ru.	U'f	Principal Effective Stresses			-11-	c:
	Pressure	U'o		σ'1	σ'3	σ'1/σ'3	01-03	Strain (%)
1	250	89	138	611	112	5.45	499	1.90
						1		



Method:	ΔSTΜ	D2850	/ Inhouse	Method
wietilou.	A3	UZ 030 .	/ IIIIIOuse	IVICUIUU

	INIC	tilou. ASTIVI DZ830 / II	illouse ivid	etilou			
Client:	REC		Date Test	ed:	08/02/2025		
Project:	Bellevue TSF Testi	ng 2025	EP Lab Jo	b Number:	REC		
Sample No:	BH01-UDS02		Lab:		EPLAB		
Sample ID:	BH01-UDS02_UU						
Depth (m):	4.95 - 5.30		Room Tei	mperature at	Test:	~ 18°C	
Tested by:	PHIL	Initial Moisture (%):	27.55	Strain Ra	te (mm/min):		0.05
Height (mm):	126.53	Final Moisture (%):	27.55	Sk	empton's (B):		-
Diameter (mm):	63.85	Bulk Density (t/m³):	2.17		Geology:	-	
L/D Ratio:	1.98	Dry Density (t/m³):	1.70				

Failure Criteria used: Peak Deviator Stress

Mohr Circle Diagram (Effective Stress)

Interpretation from Mohr Circle: Stage 1 & 2 Stage 1 & 3 Stage 2 & 3

Cohesion C' (kPa):

Angle of Shear Resistance Φ' (Degrees) : - - -

Method: ASTM D2850 / Inhouse Method

Client:RECDate Tested:08/02/2025Project:Bellevue TSF Testing 2025EP Lab Job Number:RECSample No:BH01-UDS02Lab:EPLAB

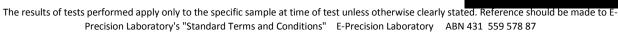
Sample ID: BH01-UDS02_UU

Depth (m): 4.95 - 5.30 Room Temperature at Test: ~ 18°C

Photo After Test

 Sample ID:
 BH01-UDS02
 Depth (m):
 4.95 - 5.30

 Lab ID:
 BH01-UDS02_UU
 Date Tested:
 08/02/2025

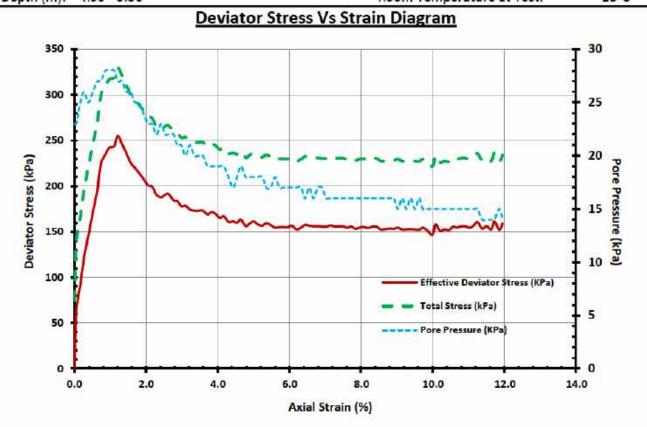


Failure Mode: Intact Shear @ 26.5°

Notes: Sample extruded from Shelby Tube

Stored and Tested the Sample as received

Samples supplied by the Client



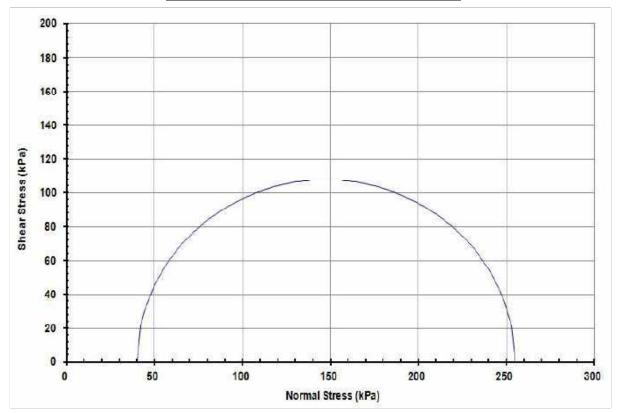
Method: ASTM D2850 / Inhouse Method

Client: REC Date Tested: 08/02/2025
Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC
Sample No: BH01-UDS02 Lab: EPLab

Sample ID: BH01-UDS02_UU

Depth (m): 4.95 - 5.30 Room Temperature at Test: ~ 18°C

CL	Confining	11.0	10%	Principal Effective Stresses			_11.	c: : (0()
Shear Stage	Pressure		U'f	σ'1	σ'3	σ'1/σ'3	01-03	Strain (%)
1	75	23	27	303	48	6.31	255	1.21



Method: ASTM D2850	/ Inhouse Method
--------------------	------------------

Client:	REC		Date Tes	ted:	08/02/2025		
Project:	Bellevue TSF Testin	ng 2025	EP Lab Jo	b Number:	REC		
Sample No:	BH02-UDS02		Lab:		EPLAB		
Sample ID:	BH02-UDS02_UU						
Depth (m):	9.50 - 9.79		Room Te	mperature at	Test:	~ 18°C	
Tested by:	PHIL	Initial Moisture (%):	35.71	Strain Ra	te (mm/min):		0.05
Height (mm):	126.55	Final Moisture (%):	35.71	Sk	empton's (B):		-
Diameter (mm):	60.76	Bulk Density (t/m³):	1.93		Geology:	-	

Dry Density (t/m³): 1.43 Failure Criteria used: Peak Deviator Stress

Mohr Circle Diagram (Effective Stress)

Interpretation from Mohr Circle: Stage 1 & 2 Stage 1 & 3 Stage 2 & 3

Cohesion C' (kPa): - - -

Angle of Shear Resistance Φ' (Degrees) : - - -

L/D Ratio:

2.08

Method: ASTM D2850 / Inhouse Method

Client:RECDate Tested:08/02/2025Project:Bellevue TSF Testing 2025EP Lab Job Number:RECSample No:BH02-UDS02Lab:EPLAB

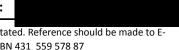
Sample ID: BH02-UDS02_UU

Depth (m): 9.50 - 9.79 Room Temperature at Test: ~ 18°C

Photo After Test

 Sample ID:
 BH02-UDS02
 Depth (m):
 9.50 - 9.79

 Lab ID:
 BH02-UDS02_UU
 Date Tested:
 08/02/2025

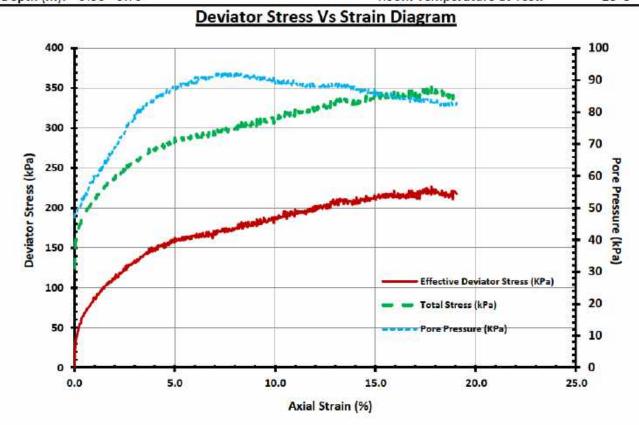


Failure Mode: Intact Shear @ 24.7°

Notes: Sample extruded from Shelby Tube

Stored and Tested the Sample as received

Samples supplied by the Client



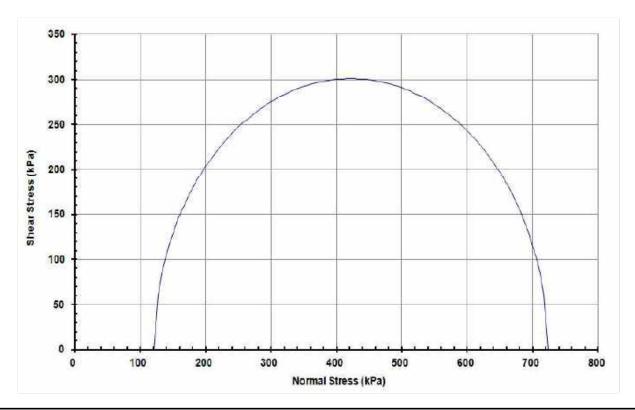
Method: ASTM D2850 / Inhouse Method

Client: REC Date Tested: 08/02/2025
Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC
Sample No: BH02-UDS02 Lab: EPLab

Sample ID: BH02-UDS02_UU

Depth (m): 9.50 - 9.79 Room Temperature at Test: ~ 18°C

Ch	Confining	Confining	11%	III.	Principal Effective Stresses			-11-	Ch - 1 - 10/1
Shear Stage	Pressure	U'o	U'f	σ'1	σ'3	σ'1/σ'3	01-03	Strain (%)	
1	125	47	85	255	40	6.37	215	15.92	
								5	



Method: ASTM D2850	/ Inhouse Method
--------------------	------------------

Client:	REC		Date Test	ed:	08/02/2025		
Project:	Bellevue TSF Testin	g 2025	EP Lab Jo	b Number:	REC		
Sample No:	BH02-UDS03		Lab:		EPLAB		
Sample ID:	BH02-UDS03_UU						
Depth (m):	11.00 - 11.39		Room Ter	mperature at	t Test:	~ 18°C	
Tested by:	PHIL	Initial Moisture (%):	29.45	Strain Ra	te (mm/min):		0.05
Height (mm):	127.31	Final Moisture (%):	29.45	Sk	empton's (B):		-
Diameter (mm):	63.85	Bulk Density (t/m³):	1.89		Geology:	-	
L/D Ratio:	1.99	Dry Density (t/m³):	1.46				

Failure Criteria used: Peak Deviator Stress

Mohr Circle Diagram (Effective Stress)

Stage 1 & 3 **Interpretation from Mohr Circle:** Stage 1 & 2 Stage 2 & 3 Cohesion C' (kPa):

Angle of Shear Resistance Φ' (Degrees):

Method: ASTM D2850 / Inhouse Method

 Client:
 REC
 Date Tested:
 08/02/2025

 Project:
 Bellevue TSF Testing 2025
 EP Lab Job Number:
 REC

 Sample No:
 BH02-UDS03
 Lab:
 EPLAB

Sample ID: BH02-UDS03_UU

Depth (m): 11.00 - 11.39 Room Temperature at Test: ~ 18°C

Photo After Test

 Sample ID:
 BH02-UDS03
 Depth (m):
 11.00 - 11.39

 Lab ID:
 BH02-UDS03_UU
 Date Tested:
 08/02/2025

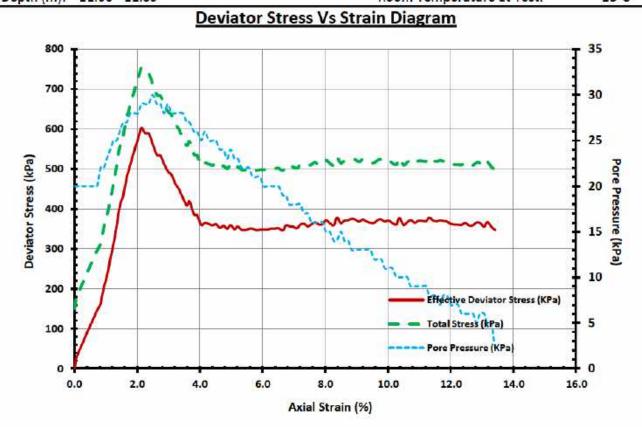
Failure Mode: Intact Shear @ 46.1°

Notes:

Stored and Tested the Sample as received Samples supplied by the Client

Authorised Signatory (Geotechnical Engineer):

The results of tests performed apply only to the specific sample at time of test unless otherwise clearly stat



Method: ASTM D2850 / Inhouse Method

Client: REC Date Tested: 08/02/2025
Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC
Sample No: BH02-UDS03 Lab: EPLab

Sample ID: BH02-UDS03_UU

Depth (m): 11.00 - 11.39 Room Temperature at Test: ~ 18°C

Ch	Confining	Confining U'0	U'f	Principal Effective Stresses			وابع وابع	Ch ! (0/)
Shear Stage	Pressure	0 0		σ'1	σ'3	σ'1/σ'3	01-03	Strain (%)
1	150	20	29	723	121	5.98	602	2.14
						i i		

Method: ASTM D2850	/ Inhouse Method
--------------------	------------------

Client:	REC		Date Test	ed:	08/02/2025		
Project:	Bellevue TSF Testin	ng 2025	EP Lab Jo	b Number:	REC		
Sample No:	BH02-UDS04		Lab:		EPLAB		
Sample ID:	BH02-UDS04_UU						
Depth (m):	12.50 - 12.95		Room Ter	mperature at	Test:	~ 18°C	
Tested by:	PHIL	Initial Moisture (%):	26.63	Strain Ra	te (mm/min):		0.05
Height (mm):	125.65	Final Moisture (%):	26.63	Sk	empton's (B):		-
Diameter (mm):	61.80	Bulk Density (t/m³):	2.02		Geology:	-	
L/D Ratio:	2.03	Dry Density (t/m³):	1.59				

Failure Criteria used: Peak Deviator Stress

Mohr Circle Diagram (Effective Stress)

Interpretation from Mohr Circle: Stage 1 & 2 Stage 1 & 3 Stage 2 & 3

Cohesion C' (kPa):

Angle of Shear Resistance Φ' (Degrees) : - - -

Method: ASTM D2850 / Inhouse Method

Client: **REC** Date Tested: 08/02/2025 Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC Sample No: BH02-UDS04 **EPLAB** Lab:

Sample ID: BH02-UDS04_UU

Depth (m): 12.50 - 12.95 Room Temperature at Test: ~ 18°C

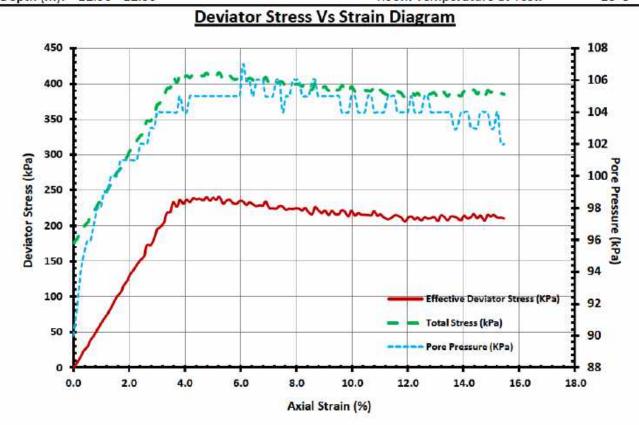
Photo After Test

12.50 - 12.95 Sample ID: BH02-UDS04 Depth (m): Lab ID: BH02-UDS04_UU **Date Tested:** 08/02/2025

Failure Mode: Intact Shear @ 29°

Notes:

Stored and Tested the Sample as received Samples supplied by the Client



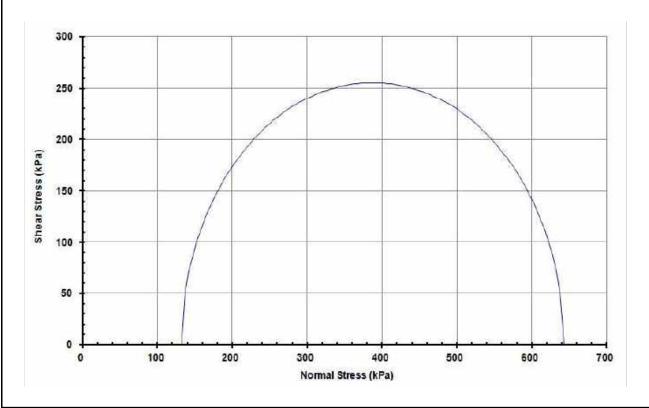
Method: ASTM D2850 / Inhouse Method

Client: REC Date Tested: 08/02/2025
Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC
Sample No: BH02-UDS04 Lab: EPLab

Sample ID: BH02-UDS04_UU

Depth (m): 12.50 - 12.95 Room Temperature at Test: ~ 18°C

Cl	Confining	111.	1114	Principal Effective		e Stresses		C+
Shear Stage	Pressure	0 0	U'o U'f	σ'1	σ'3	σ'1/σ'3	01-03	Strain (%)
1	175	90	105	310	70	4.43	240	4.78
						d s		



Method: ASTM D2850	/ Inhouse Method
--------------------	------------------

Client:	REC		Date Test	ed:	08/02/2025		
Project:	Bellevue TSF Testin	g 2025	EP Lab Jo	b Number:	REC		
Sample No:	BH02-UDS05		Lab:		EPLAB		
Sample ID:	BH02-UDS05_UU						
Depth (m):	14.00 - 14.45		Room Ter	mperature at	t Test:	~ 18°C	
Tested by:	PHIL	Initial Moisture (%):	21.78	Strain Ra	te (mm/min):		0.05
Height (mm):	126.54	Final Moisture (%):	21.78	Sk	empton's (B):		-
Diameter (mm):	63.57	Bulk Density (t/m³):	2.07		Geology:	-	
L/D Ratio:	1.99	Dry Density (t/m³):	1.70				

Failure Criteria used: Peak Deviator Stress

Mohr Circle Diagram (Effective Stress)

Interpretation from Mohr Circle: Stage 1 & 2 Stage 1 & 3 Stage 2 & 3

Cohesion C' (kPa): - - -

Angle of Shear Resistance Φ' (Degrees) : - - -

Method: ASTM D2850 / Inhouse Method

Client:RECDate Tested:08/02/2025Project:Bellevue TSF Testing 2025EP Lab Job Number:RECSample No:BH02-UDS05Lab:EPLAB

Sample ID: BH02-UDS05_UU

Depth (m): 14.00 - 14.45 Room Temperature at Test: ~ 18°C

Photo After Test

 Sample ID:
 BH02-UDS05
 Depth (m):
 14.00 - 14.45

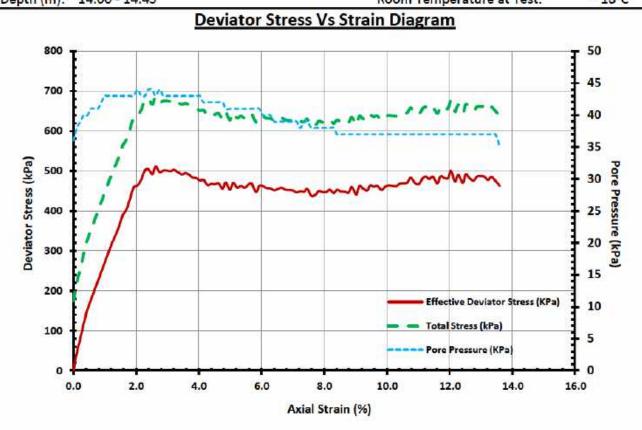
 Lab ID:
 BH02-UDS05_UU
 Date Tested:
 08/02/2025

Failure Mode: Intact Shear @ 37.3°

Notes:

Stored and Tested the Sample as received Samples supplied by the Client

Method: ASTM D2850 / Inhouse Method


 Client:
 REC
 Date Tested:
 08/02/2025

 Project:
 Bellevue TSF Testing 2025
 EP Lab Job Number:
 REC

 Sample No:
 BH02-UDS05
 Lab:
 EPLab

Sample ID: BH02-UDS05_UU

Depth (m): 14.00 - 14.45 Room Temperature at Test: ~ 18°C

Ch	Confining	uta uta	Principal Effective Stresses				Charles (0/)	
Shear Stage	Pressure	U'o	U'0 U'f	σ'1	σ'3	σ'1/σ'3	01-03	Strain (%)
1	175	36	43	643	132	4.87	511	2.62

Method: ASTM D2850	/ Inhouse Method
--------------------	------------------

		11104171011111 22000 7 11					
Client:	REC		Date Test	ted:	12/02/2025		
Project:	Bellevue TSF Testi	ing 2025	EP Lab Jo	b Number:	REC		
Sample No:	BH03-UDS02		Lab:		EPLAB		
Sample ID:	BH03-UDS02_UU						
Depth (m):	5.00 - 5.45		Room Te	mperature at	Test:	~ 18°C	
Tested by:	PHIL	Initial Moisture (%):	27.22	Strain Rat	te (mm/min):		0.05
Height (mm):	118.76	Final Moisture (%):	27.22	Ske	empton's (B):		-
Diameter (mm):	63.11	Bulk Density (t/m³):	1.91		Geology:	-	
L/D Ratio:	1.88	Dry Density (t/m³):	1.50				

Failure Criteria used: Peak Deviator Stress

Mohr Circle Diagram (Effective Stress)

Interpretation from Mohr Circle: Stage 1 & 2 Stage 1 & 3 Stage 2 & 3

Cohesion C' (kPa): - - -

Angle of Shear Resistance Φ' (Degrees) : - - -

Method: ASTM D2850 / Inhouse Method

Client:RECDate Tested:12/02/2025Project:Bellevue TSF Testing 2025EP Lab Job Number:RECSample No:BH03-UDS02Lab:EPLAB

Sample ID: BH03-UDS02_UU

Depth (m): 5.00 - 5.45 Room Temperature at Test: ~ 18°C

Photo After Test

 Sample ID:
 BH03-UDS02
 Depth (m):
 5.00 - 5.45

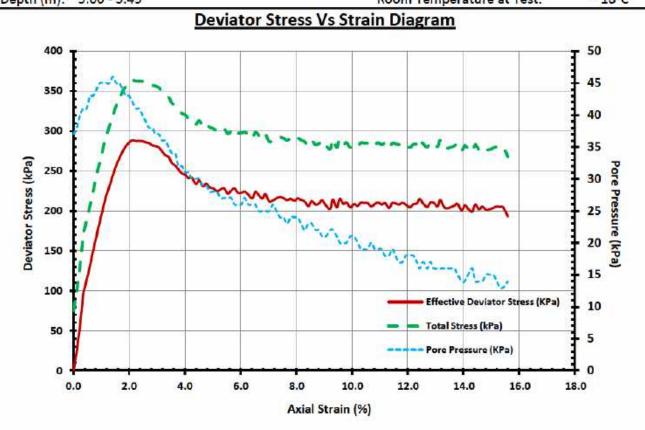
 Lab ID:
 BH03-UDS02_UU
 Date Tested:
 12/02/2025

Failure Mode: Intact Shear @ 35.8°

Notes:

Stored and Tested the Sample as received Samples supplied by the Client

Method: ASTM D2850 / Inhouse Method


 Client:
 REC
 Date Tested:
 12/02/2025

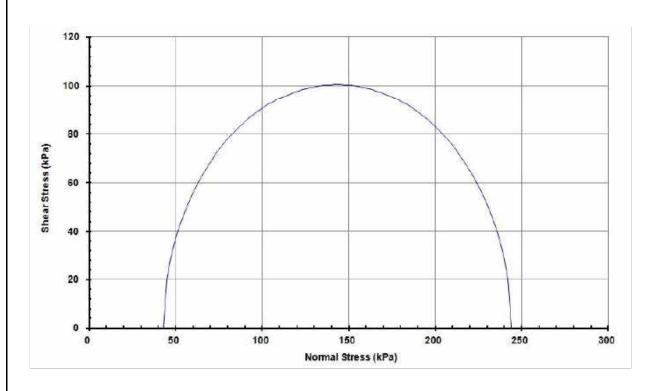
 Project:
 Bellevue TSF Testing 2025
 EP Lab Job Number:
 REC

 Sample No:
 BH03-UDS02
 Lab:
 EPLab

Sample ID: BH03-UDS02_UU

Depth (m): 5.00 - 5.45 Room Temperature at Test: ~ 18°C

Ch	Confining	ru.	Ula Ula	Principal Effective Stresses			el. els	Charles (0/)
Shear Stage	Pressure	Pressure U'0	U'f	σ'1	σ'3	σ'1/σ'3	01-03	Strain (%)
1	75	37	41	322	34	9.46	288	2.36
						d s		



Method: ASTM D2850	/ Inhouse Method
--------------------	------------------

Client:	REC		Date Test	ed:	12/02/2025		
Project:	Bellevue TSF Test	ing 2025	EP Lab Jo	b Number:	REC		
Sample No:	BH03-UDS04		Lab:		EPLAB		
Sample ID:	BH03-UDS04_UU						
Depth (m):	8.00 - 8.45		Room Tei	mperature at	Test:	~ 18°C	
Tested by:	PHIL	Initial Moisture (%):	29.01	Strain Rat	e (mm/min):		0.05
Height (mm):	126.85	Final Moisture (%):	29.01	Ske	empton's (B):		-
Diameter (mm):	63.61	Bulk Density (t/m³):	1.93		Geology:	-	
L/D Ratio:	1.99	Dry Density (t/m³):	1.50				

Failure Criteria used: Peak Deviator Stress

Mohr Circle Diagram (Effective Stress)

Interpretation from Mohr Circle: Stage 1 & 2 Stage 1 & 3 Stage 2 & 3

Cohesion C' (kPa):

Angle of Shear Resistance Φ' (Degrees) : - - -

Method: ASTM D2850 / Inhouse Method

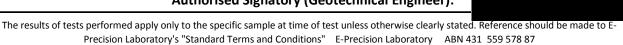
Client: REC Date Tested: 12/02/2025
Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC
Sample No: BH03-UDS04 Lab: EPLAB

Sample ID: BH03-UDS04_UU

Depth (m): 8.00 - 8.45 Room Temperature at Test: ~ 18°C

Photo After Test

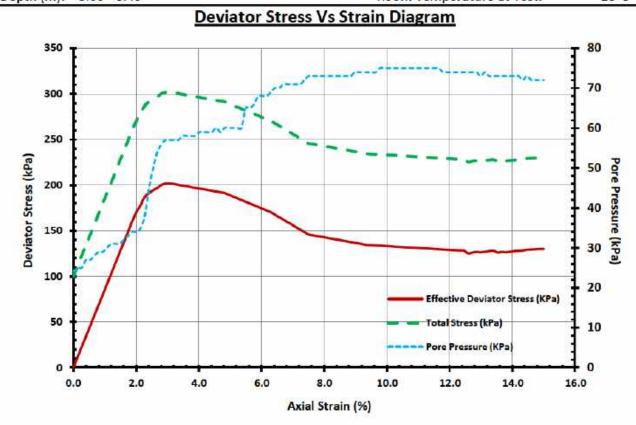
 Sample ID:
 BH03-UDS04
 Depth (m):
 8.00 - 8.45


 Lab ID:
 BH03-UDS04_UU
 Date Tested:
 12/02/2025

Failure Mode: Intact Shear @ 36.6°

Notes:

Stored and Tested the Sample as received Samples supplied by the Client



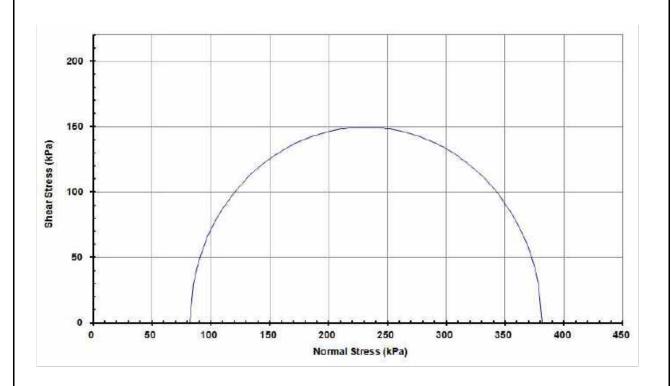
Method: ASTM D2850 / Inhouse Method

Client: REC Date Tested: 12/02/2025
Project: Bellevue TSF Testing 2025 EP Lab Job Number: REC
Sample No: BH03-UDS04 Lab: EPLab

Sample ID: BH03-UDS04_UU

Depth (m): 8.00 - 8.45 Room Temperature at Test: ~ 18°C

Ch	Confining	U'o	ru.	Princip	al Effectiv	_1, _1,	C1	
Shear Stage	Pressure		U'f	σ'1	σ'3	σ'1/σ'3	01-03	Strain (%)
1	100	24	57	244	43	5.68	201	3.22
						4		į.
	9,							



Method: ASTM D2850	/ Inhouse Method
--------------------	------------------

Client:	REC		Date Test	ed:	12/02/2025		
Project:	Bellevue TSF Testir	ng 2025	EP Lab Jo	b Number:	REC		
Sample No:	BH03-UDS06		Lab:		EPLAB		
Sample ID:	BH03-UDS06_UU						
Depth (m):	11.00 - 11.25		Room Ter	mperature at	Test:	~ 18°C	
Tested by:	PHIL	Initial Moisture (%):	32.15	Strain Ra	te (mm/min):		0.05
Height (mm):	126.82	Final Moisture (%):	32.15	Sk	empton's (B):		-
Diameter (mm):	63.18	Bulk Density (t/m³):	1.84		Geology:	-	
L/D Ratio:	2.01	Dry Density (t/m³):	1.39				

Failure Criteria used: Peak Deviator Stress

Mohr Circle Diagram (Effective Stress)

Interpretation from Mohr Circle: Stage 1 & 2 Stage 1 & 3 Stage 2 & 3

Cohesion C' (kPa):

Angle of Shear Resistance Φ' (Degrees):

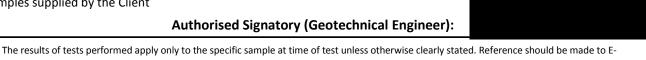
Method: ASTM D2850 / Inhouse Method

Client: **REC** Date Tested: 12/02/2025 Project: Bellevue TSF Testing 2025 EP Lab Job Number: **REC** Sample No: **BH03-UDS06 EPLAB** Lab:

Sample ID: BH03-UDS06_UU

Depth (m): 11.00 - 11.25 Room Temperature at Test: ~ 18°C

Photo After Test

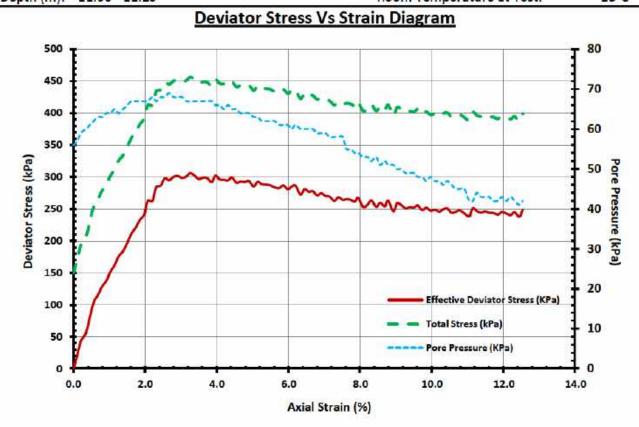

Sample ID: BH03-UDS06 Depth (m): 11.00 - 11.25 Lab ID: BH03-UDS06_UU **Date Tested:** 12/02/2025

Failure Mode: Intact Shear @ 32.5°

Notes:

Stored and Tested the Sample as received Samples supplied by the Client

Method: ASTM D2850 / Inhouse Method


 Client:
 REC
 Date Tested:
 12/02/2025

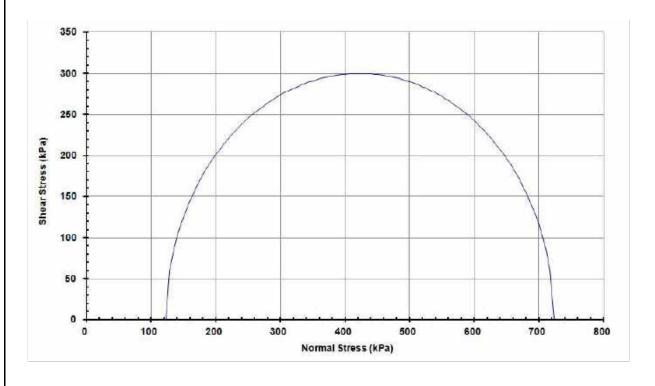
 Project:
 Bellevue TSF Testing 2025
 EP Lab Job Number:
 REC

 Sample No:
 BH03-UDS06
 Lab:
 EPLab

Sample ID: BH03-UDS06_UU

Depth (m): 11.00 - 11.25 Room Temperature at Test: ~ 18°C

CL	Confining	117.	U'f	Princip	al Effectiv	_1, _1,	c	
Shear Stage	Pressure	U'o		σ'1	σ'3	σ'1/σ'3	01-03	Strain (%)
1	150	56	68	381	82	4.64	299	3.04



Method: ASTM D2850	/ Inhouse Method
--------------------	------------------

Client:	REC		Date Teste	ed:	12/02/2025		
Project:	Bellevue TSF Testir	ng 2025	EP Lab Job	Number:	REC		
Sample No:	BH03-UDS08		Lab:		EPLAB		
Sample ID:	BH03-UDS08_UU						
Depth (m):	14.00 - 14.45		Room Ten	nperature at	Test:	~ 18°C	
Tested by:	PHIL	Initial Moisture (%):	30.60	Strain Ra	te (mm/min):		0.05
Height (mm):	126.95	Final Moisture (%):	30.60	Sk	empton's (B):		-
Diameter (mm):	64.57	Bulk Density (t/m³):	2.00		Geology:	-	
L/D Ratio:	1.97	Dry Density (t/m³):	1.53				

Failure Criteria used: Peak Deviator Stress

Mohr Circle Diagram (Effective Stress)

Interpretation from Mohr Circle: Stage 1 & 2 Stage 1 & 3 Stage 2 & 3

Cohesion C' (kPa): - - -

Angle of Shear Resistance Φ' (Degrees) : - - -

Method: ASTM D2850 / Inhouse Method

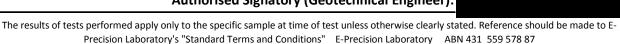
Client:RECDate Tested:12/02/2025Project:Bellevue TSF Testing 2025EP Lab Job Number:RECSample No:BH03-UDS08Lab:EPLAB

Sample ID: BH03-UDS08_UU

Depth (m): 14.00 - 14.45 Room Temperature at Test: ~ 18°C

Photo After Test

 Sample ID:
 BH03-UDS08
 Depth (m):
 14.00 - 14.45

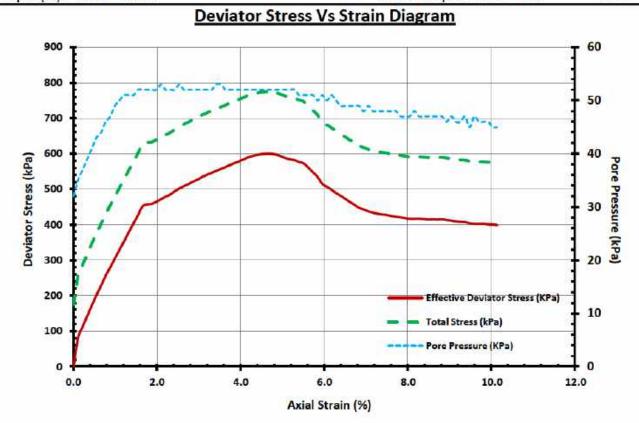

 Lab ID:
 BH03-UDS08_UU
 Date Tested:
 12/02/2025

Failure Mode: Intact Shear @ 37.6°

Notes:

Stored and Tested the Sample as received Samples supplied by the Client

Method: ASTM D2850 / Inhouse Method


 Client:
 REC
 Date Tested:
 12/02/2025

 Project:
 Bellevue TSF Testing 2025
 EP Lab Job Number:
 REC

 Sample No:
 BH03-UDS08
 Lab:
 EPLab

Sample ID: BH03-UDS08_UU

Depth (m): 14.00 - 14.45 Room Temperature at Test: ~ 18°C

CL	Confining	117.	1114	Princip	al Effectiv	_1, _1,	Strain (%)	
Shear Stage	Pressure	U'o	U'f	σ'1 σ'3		σ'1/σ'3		01-03
1	175	32	52	723	123	5.88	600	4.63
						4 5		

Appendix E

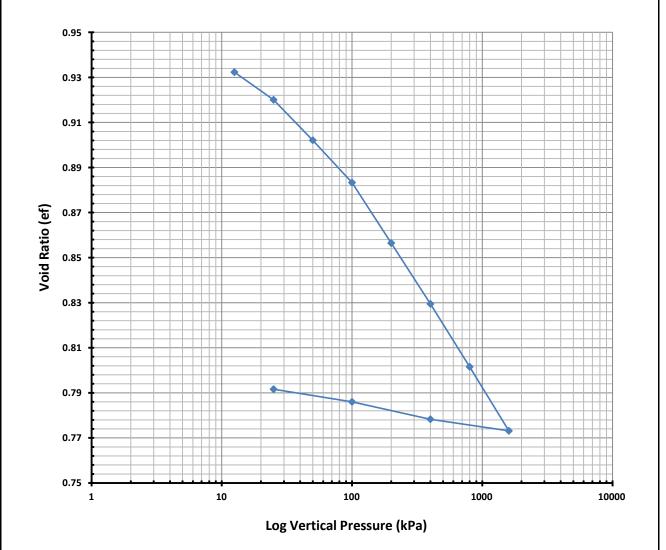
Tailings Laboratory Test Results

Reference: P19-11-PR-29-R0° Client: Bellevue Gold Limited

CONSOLIDATION - ONE DIMENSION

Method: AS1289 6.6.1 / Inhouse Method

Client: REC Tailings Date Tested: 18/11/2020
Project: Bellevue Tailings Testing 2020 EP Lab Job Number: REC


Sample ID: 55% Tailings W/W%

Lab ID: BELLEVUE_55%_2020_SETTLEMENT Lab: EPLab

Depth (m): - Room Temperature at Test: ~ 19°C

Tested by: Phil Initial Moisture (%): 34.94 **Test Condition:** Undrained 44.12 55% Solids Height (mm): 37.26 Final Moisture Content (%): Sample Condition: Bulk Density (t/m³): Diameter (mm): 2.996 61.80 2.05 Particle Density (t/m³): Dry Density (t/m³): 1.52 Initial Void Ratio (e_i): 0.973 Direction: Vertical

Void Ratio (e_f) Vs Log of Vertical Pressure (kPa)

CONSOLIDATION - ONE DIMENSION


Method: AS1289 6.6.1 / Inhouse Method

Client: **REC Tailings** Date Tested: 18/11/2020 Project: Bellevue Tailings Testing 2020 EP Lab Job Number: **REC**

55% Tailings W/W% Sample ID:

Lab ID: BELLEVUE_55%_2020_SETTLEMENT Lab: **EPLab**

~ 19°C Depth (m): Room Temperature at Test:

REC

CONSOLIDATION - ONE DIMENSION

Method: AS1289 6.6.1 / Inhouse Method

Client: 18/11/2020 **REC Tailings** Date Tested:

Project: Bellevue Tailings Testing 2020 EP Lab Job Number:

Sample ID: 55% Tailings W/W%

Lab ID: BELLEVUE_55%_2020_SETTLEMENT Lab: **EPLab**

Room Temperature at Test: ~ 19°C Depth (m):

Test Results

Stages	Vert Disp	Cv (m	²/yr)	Compressibility	K (m/s)	o. (40 ⁻³)	Void Ratio	Vertical Strain	
Stages	(mm)	* t 50	t 90	Mv (m²/kN)	K (111/5)	Cα (10 ⁻³)	(e _f)	(%)	
Stage 1 @ 12.5kPa	0.71	46.373	-	1.52E-03	1.3E-06	0.11	0.932	1.90	
Stage 2 @ 25kPa	0.94	45.822	-	5.10E-04	4.4E-07	0.05	0.920	2.52	
Stage 3 @ 50kPa	1.28	44.962	-	3.73E-04	3.1E-07	0.24	0.902	3.43	
Stage 4 @ 100kPa	1.63	44.155	-	1.97E-04	1.6E-07	0.11	0.883	4.39	
Stage 5 @ 200kPa	2.14	43.036	-	1.43E-04	1.1E-07	0.46	0.856	5.75	
Stage 6 @ 400kPa	2.65	41.743	-	7.28E-05	5.7E-08	0.35	0.829	7.12	
Stage 7 @ 800kPa	3.18	40.415	-	3.81E-05	2.9E-08	0.08	0.802	8.54	
Stage 8 @ 1600kPa	3.72	39.195	-	1.97E-05	1.4E-08	0.05	0.773	9.98	

Unload @ 400kPa 3.62 Unload @ 100kPa 3.48 Unload @ 12.5kPa 3.37

* Values interpreted via lab only

Comments: Sample collected from Settlement Drained Test

Cv values to be interpreted via Engineer

Samples supplied by the Client

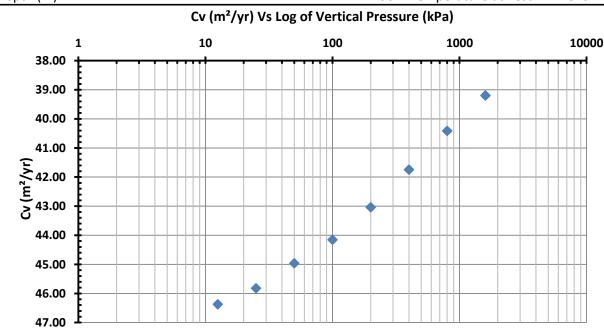
Authorised Signatory (Geotechnical Engineer):

The results of tests performed apply only to the specific sample at time of test unle

Precision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431 559 578 87

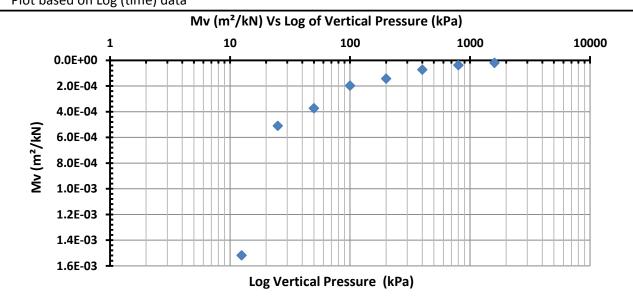
CONSOLIDATION - ONE DIMENSION

Method: AS1289 6.6.1 / Inhouse Method


Client: REC Tailings Date Tested: 18/11/2020

Project: Bellevue Tailings Testing 2020 EP Lab Job Number: REC

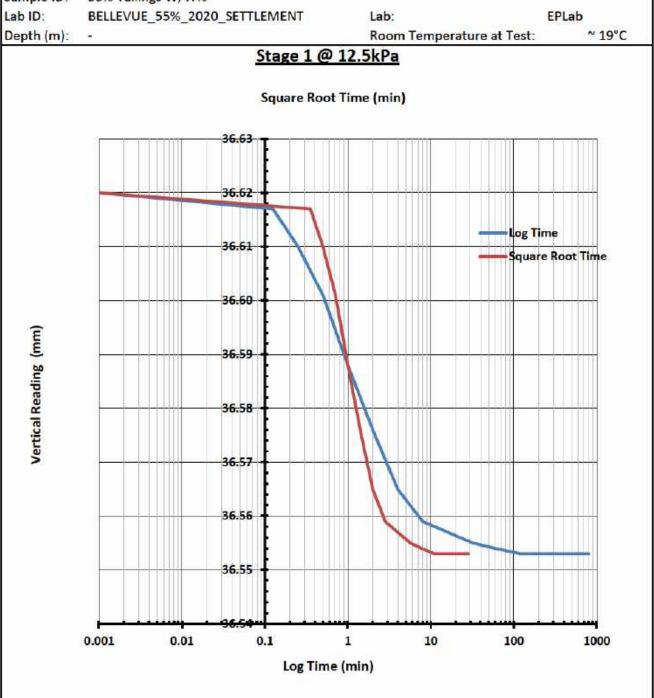
Sample ID: 55% Tailings W/W%


Lab ID: BELLEVUE_55%_2020_SETTLEMENT Lab: EPLab

Depth (m): - Room Temperature at Test: ~ 19°C

Log Vertical Pressure (kPa)

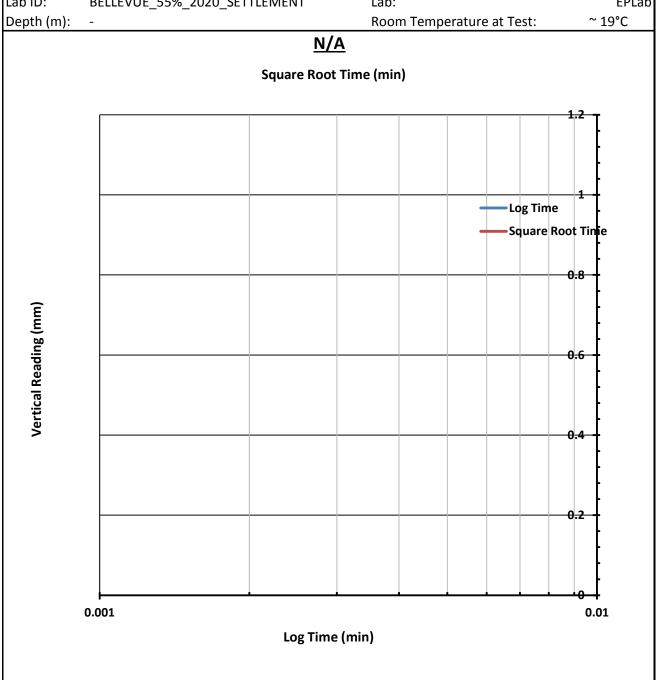
* Plot based on Log (time) data



Method: AS1289 6.6.1 / Inhouse Method

Client: REC Tailings Date Tested: 18/11/2020
Project: Bellevue Tailings Testing 2020 EP Lab Job Number: REC

Sample ID: 55% Tailings W/W%

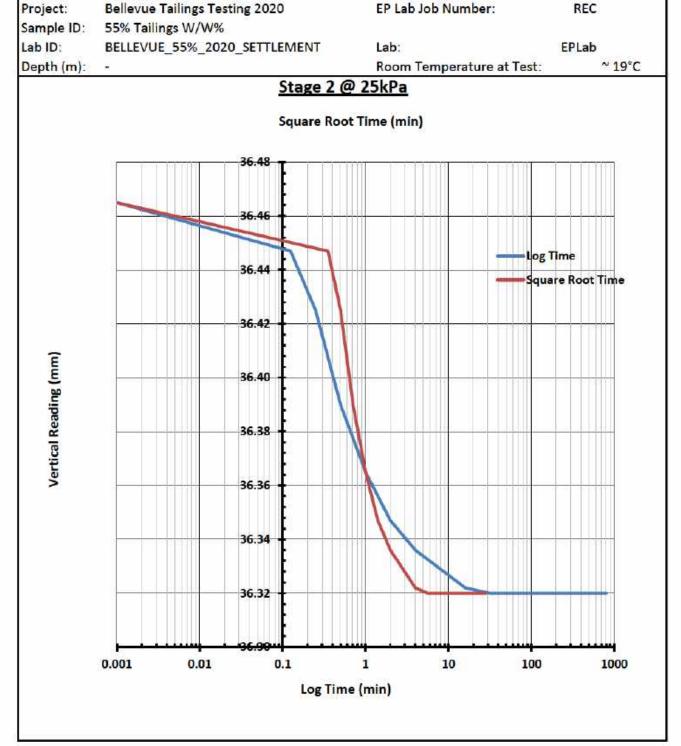

Method: AS1289 6.6.1 / Inhouse Method

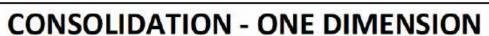
REC Tailings 18/11/2020 Client: Date Tested:

Project: Bellevue Tailings Testing 2020 EP Lab Job Number: **REC**

55% Tailings W/W% Sample ID:

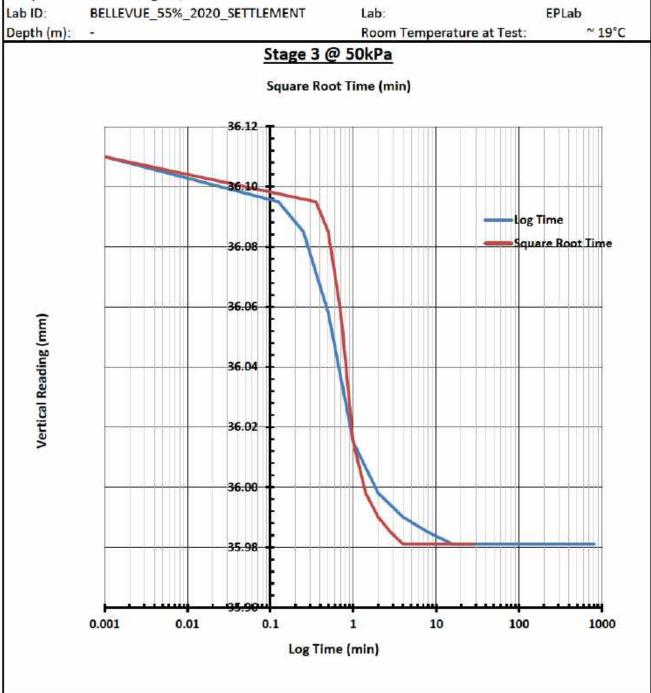
Lab ID: BELLEVUE_55%_2020_SETTLEMENT **EPLab** Lab:

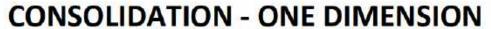




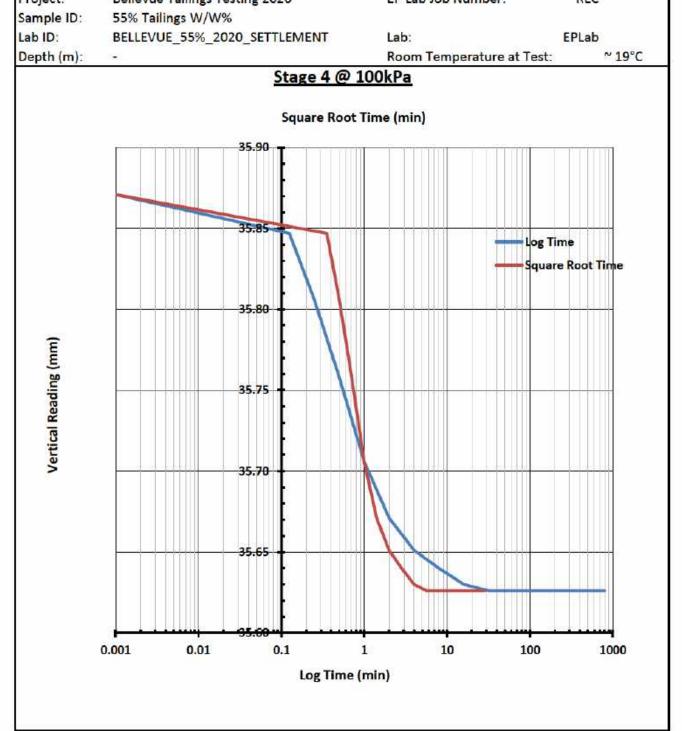
Method: AS1289 6.6.1 / Inhouse Method

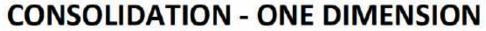
Client: **REC Tailings** Date Tested: 18/11/2020



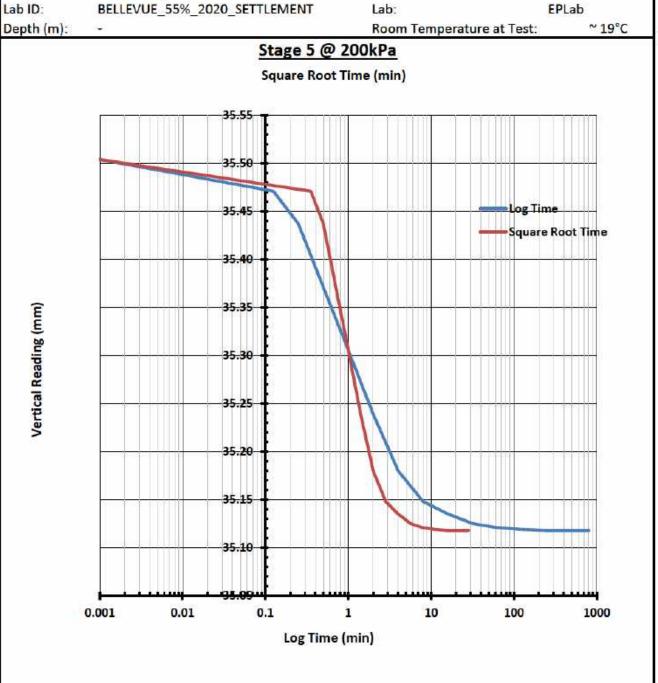

Client: REC Tailings Date Tested: 18/11/2020

Bellevue Tailings Testing 2020 EP Lab Job Number: REC


Sample ID: 55% Tailings W/W%



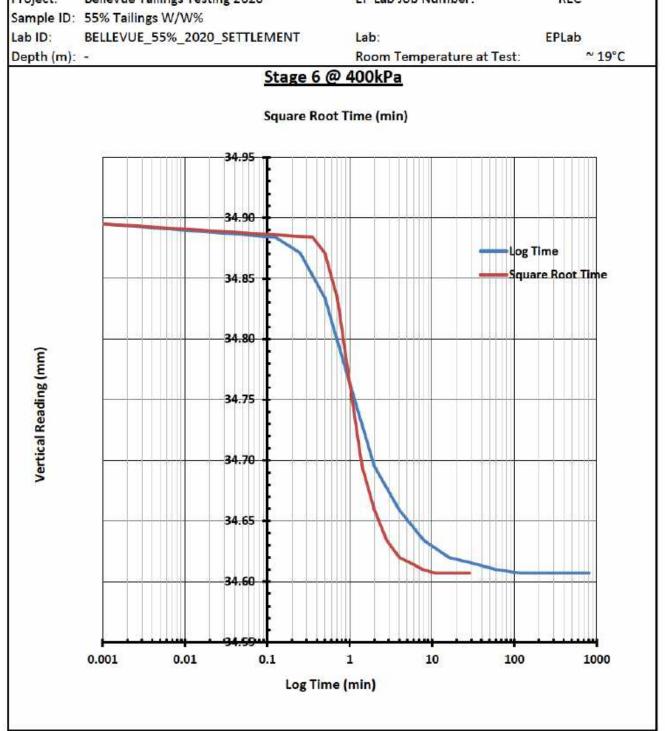
Client: REC Tailings Date Tested: 18/11/2020
Project: Bellevue Tailings Testing 2020 EP Lab Job Number: REC



REC Tailings Date Tested: 18/11/2020 Client: Project: Bellevue Tailings Testing 2020 EP Lab Job Number: REC

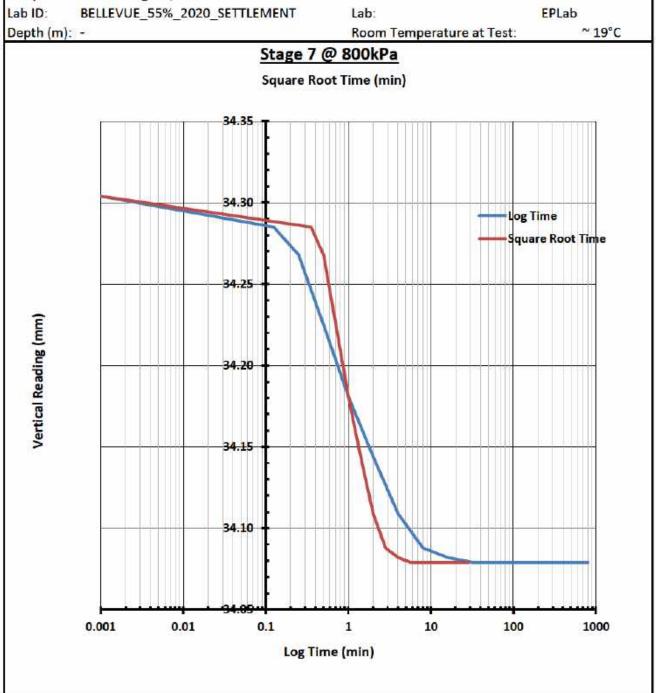
Sample ID: 55% Tailings W/W%

Lab ID: BELLEVUE_55%_2020_SETTLEMENT Lab:



Method: AS1289 6.6.1 / Inhouse Method

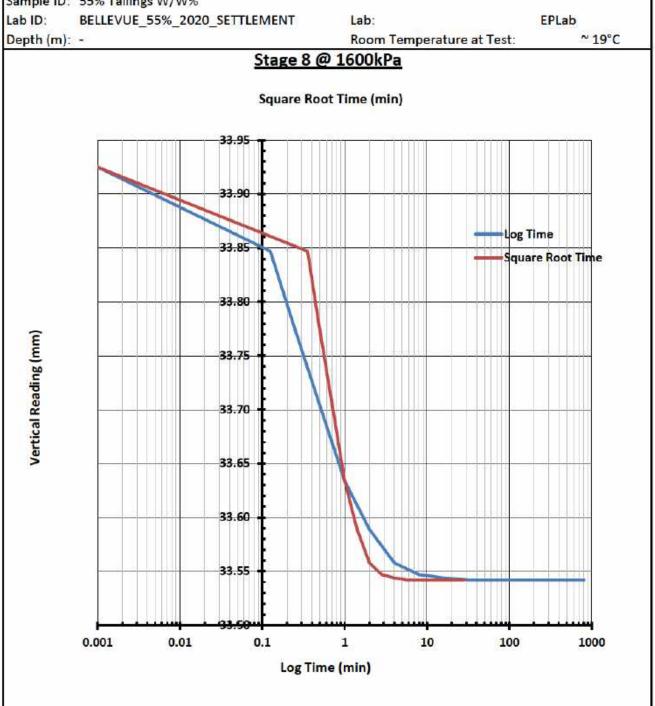
Client: Date Tested: **REC Tailings** 18/11/2020 Project: Bellevue Tailings Testing 2020 EP Lab Job Number: REC



Method: AS1289 6.6.1 / Inhouse Method

Client: **REC Tailings** Date Tested: 18/11/2020 REC Project: Bellevue Tailings Testing 2020 EP Lab Job Number:

Sample ID: 55% Tailings W/W%



Method: AS1289 6.6.1 / Inhouse Method

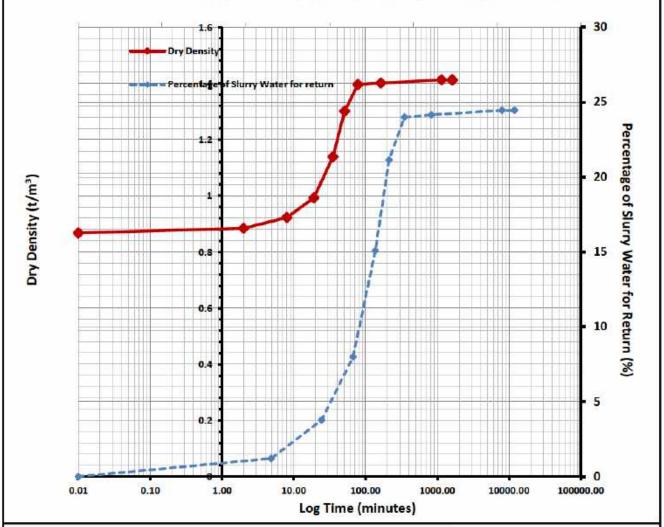
Client: Date Tested: **REC Tailings** 18/11/2020 Project: Bellevue Tailings Testing 2020 EP Lab Job Number: REC

Sample ID: 55% Tailings W/W%

METHOD: IN-HOUSE METHOD

Client: REC Tailings Date Tested: 15/11/2020
Project: Bellevue Tailings Testing 2020 EP Lab Job Number: REC

Sample No: 55% Tailings W/W%


Lab ID: BELLEVUE_55%_2020_SETTLEMENT Room Temperature at Test: 19°

Tested by: Phil Initial Dry Density (t/m³): 0.868

Type of Test: Settlement Testing Particle Density (t/m³): 2.996

Sample Preparation: as instructed @ 55% Solids Initial Bulk Density (t/m³): 1.577

Undrained Dry Density (t/m³) Vs Log Time (minutes)

Comments:

Authorised Signature (Geotechnical Engineer):

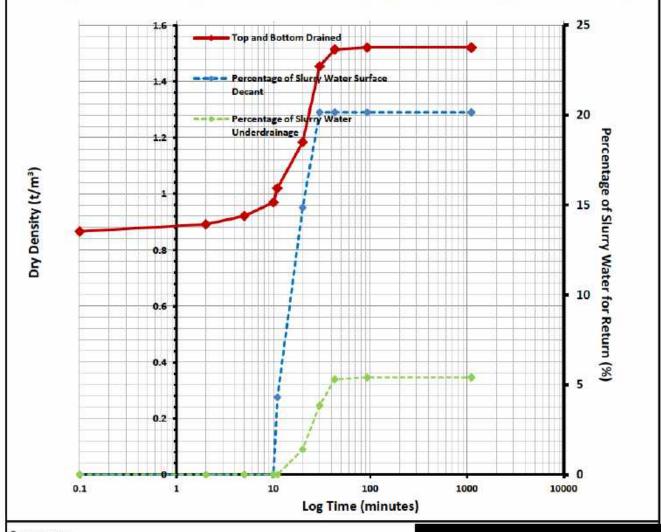
The results of tests performed apply only to the specific sample at time of test unless otherwise cle

Precision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431 559 578 87

METHOD: IN-HOUSE METHOD

Client: REC Tailings Date Tested: 15/11/2020
Project: Bellevue Tailings Testing 2020 EP Lab Job Number: REC

Sample No: 55% Tailings W/W%


Lab ID: BELLEVUE_55%_2020_SETTLEMENT Room Temperature at Test: 19°

Tested by: Phil Initial Dry Density (t/m³): 0.866

Type of Test: Settlement Testing Particle Density (t/m³): 2.996

Sample Preparation: as instructed @ 55% Solids Initial Bulk Density (t/m³): 1.574

Top and Bottom Drained Dry Density (t/m³) Vs Log Time (minutes)

Comments:

Authorised Signature (Geotechnical Engineer):

The results of tests performed apply only to the specific sample at time of test unless othe

Precision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431 559 578 87

METHOD: IN-HOUSE METHOD

Client: REC Tailings Date Tested: 15/11/2020
Project: Bellevue Tailings Testing 2020 EP Lab Job Number: REC

Sample No: 55% Tailings W/W%

Lab ID: BELLEVUE_55%_2020_SETTLEMENT Room Temperature at Test: 19°

Tested by: Phil Initial Dry Density (t/m³):
Type of Test: Settlement Testing Particle Density (t/m³):
Sample Preparation: as instructed @ 55% Solids Initial Bulk Density (t/m3): -

Photo of Test Setup

Undrained

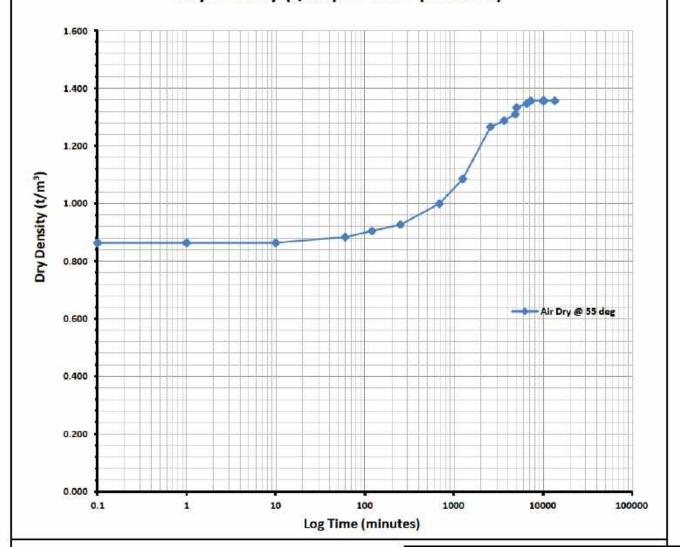
Drained

Comments:

Authorised Signature (Geotechnical Engineer):

The results of tests performed apply only to the specific sample at time of test unless otherwise clearly stated. Reference should be made to E-Precision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431 559 578 87

METHOD: Supplied by Client SRC-WF-100 / SRC-RF-100


Client: 14/11/2020 **REC Tailings** Date Tested: REC Project: **Bellevue Tailings Testing** EP Lab Job Number: Sample No: 55% Solids **EPLab** Lab: Lab ID: BELLEVUE_55%_SOLIDS 21° Room Temperature at Test:

Tested by: Phil Initial Bulk Density (t/m³): 1.583

Type of Test: Air Dry Testing Particle Density (t/m³): 2.996

Sample Preparation: 55% Dry Solids* Moisture Content Initial (%): 83.486

Dry Density (t/m3) Vs Time (minutes)

Comments:

Authorised Signature (Geotechnical Engineer)

The results of tests performed apply only to the specific sample at time of test unless otherwise clearly stated. Reference should be made to EPrecision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431-559-578-87

AIR DRYING SETTLING TEST

METHOD: Supplied by Client SRC-WF-100 / SRC-RF-100

Client: 14/11/2020 **REC Tailings** Date Tested: Project: **Bellevue Tailings Testing** EP Lab Job Number: **REC** Sample No: 55% Solids Lab: **EPLab** Lab ID: BELLEVUE_55%_SOLIDS Room Temperature at Test: 19°

Tested by: Phil Initial Bulk Density (t/m³): 1.583

Type of Test: Air Dry Testing Particle Density (t/m³): 2.996

Sample Preparation: 55% Dry Solids*

Moisture Content Initial (%): 83.486

Photo after Testing

* sample oven dried @ 55deg

Comments:

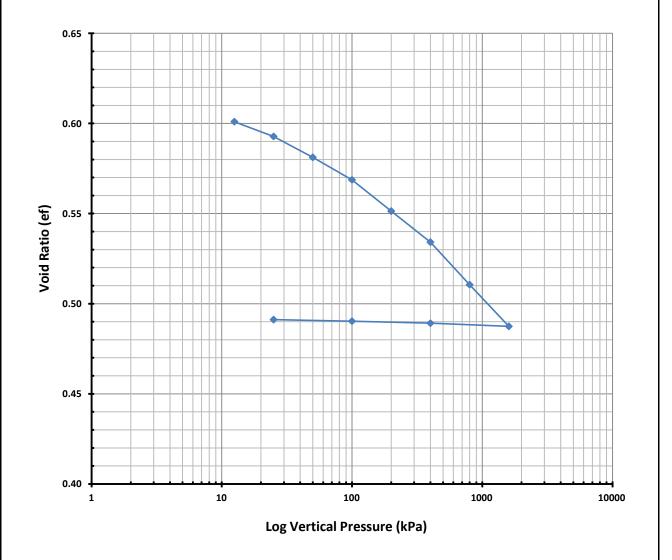
Authorised Signature (Geotechnical Engineer):

The results of tests performed apply only to the specific sample at time of test unless oth

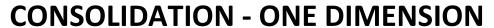
Precision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431 559 578 87

Method: AS1289 6.6.1 / Inhouse Method

Client: **REC Tailings** Date Tested: 18/11/2020 Project: Bellevue Tailings Testing 2020 EP Lab Job Number: REC

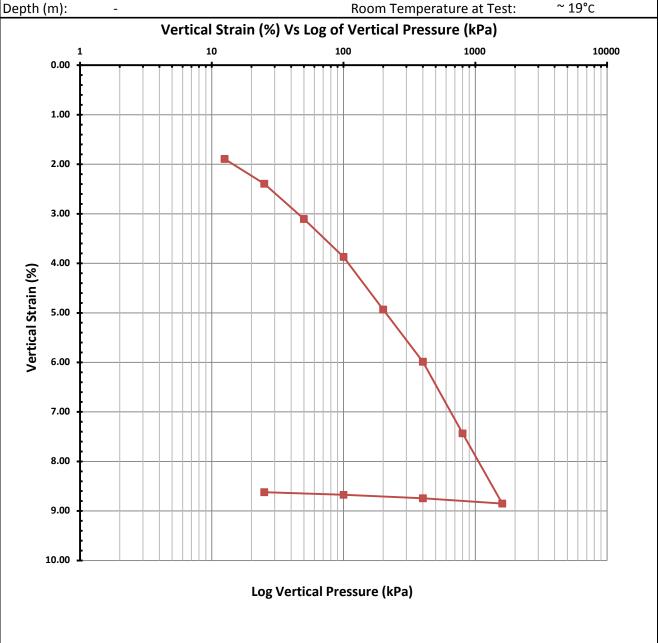

Sample ID: 60% Tailings W/W%

Lab ID: BELLEVUE_60%_2020_SETTLEMENT Lab: **EPLab**


Room Temperature at Test: ~ 19°C Depth (m):

Tested by: Phil Initial Moisture (%): 33.02 **Test Condition:** Undrained 38.46 60% Solids Height (mm): 40.13 Final Moisture Content (%): Sample Condition: Bulk Density (t/m³): Diameter (mm): 2.996 61.80 2.43 Particle Density (t/m³): Dry Density (t/m³): 1.83 Initial Void Ratio (e_i): 0.637 Direction: Vertical

Void Ratio (e_f) Vs Log of Vertical Pressure (kPa)



Client: **REC Tailings** Date Tested: 18/11/2020 Project: Bellevue Tailings Testing 2020 EP Lab Job Number: **REC**

Sample ID: 60% Tailings W/W%

Lab ID: BELLEVUE_60%_2020_SETTLEMENT Lab: **EPLab**

Room Temperature at Test:

Method: AS1289 6.6.1 / Inhouse Method

Client: REC Tailings Date Tested: 18/11/2020

Project: Bellevue Tailings Testing 2020 EP Lab Job Number:

REC

Sample ID: 60% Tailings W/W%

Lab ID: BELLEVUE_60%_2020_SETTLEMENT Lab: EPLab

Depth (m): - Room Temperature at Test: ~ 19°C

Test Results

7	1	ς	

Stages	Vert Disp	Cv (m²/yr)		Compressibility	V (/-)	- (3)	Void Ratio	Vertical Strain
	(mm)	* t 50	t 90	Mv (m²/kN)	K (m/s)	Cα (10 ⁻³)	(e _f)	(%)
Stage 1 @ 12.5kPa	0.76	53.828	-	1.52E-03	1.5E-06	0.27	0.601	1.89
Stage 2 @ 25kPa	0.96	53.269	-	4.08E-04	4.1E-07	0.10	0.593	2.39
Stage 3 @ 50kPa	1.25	52.556	-	2.91E-04	2.9E-07	1.02	0.581	3.10
Stage 4 @ 100kPa	1.55	51.713	-	1.58E-04	1.5E-07	0.20	0.569	3.87
Stage 5 @ 200kPa	1.98	50.616	-	1.11E-04	1.0E-07	0.50	0.551	4.93
Stage 6 @ 400kPa	2.40	49.475	-	5.54E-05	5.1E-08	0.20	0.534	5.99
Stage 7 @ 800kPa	2.98	48.091	-	3.84E-05	3.4E-08	0.32	0.511	7.43
Stage 8 @ 1600kPa	3.55	46.567	-	1.91E-05	1.7E-08	0.27	0.487	8.85

 Unload @ 400kPa
 3.51

 Unload @ 100kPa
 3.48

 Unload @ 12.5kPa
 3.46

Comments: Sample collected from Settlement Drained Test

Cv values to be interpreted via Engineer

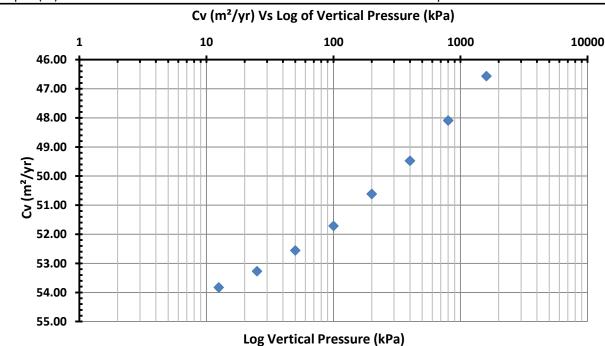
Samples supplied by the Client

Authorised Signatory (Geotechnical Engineer):

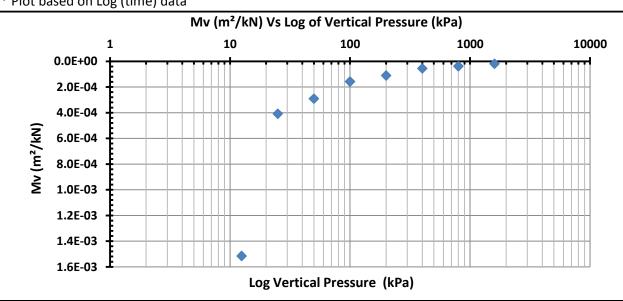
The results of tests performed apply only to the specific sample at time of test unless otherwise clearly stated. Reference should be made to E-Precision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431 559 578 87

^{*} Values interpreted via lab only

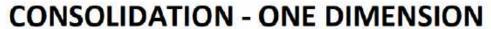
Method: AS1289 6.6.1 / Inhouse Method


Client: REC Tailings Date Tested: 18/11/2020

Project: Bellevue Tailings Testing 2020 EP Lab Job Number: REC


Sample ID: 60% Tailings W/W%

Lab ID: BELLEVUE_60%_2020_SETTLEMENT Lab: EPLab

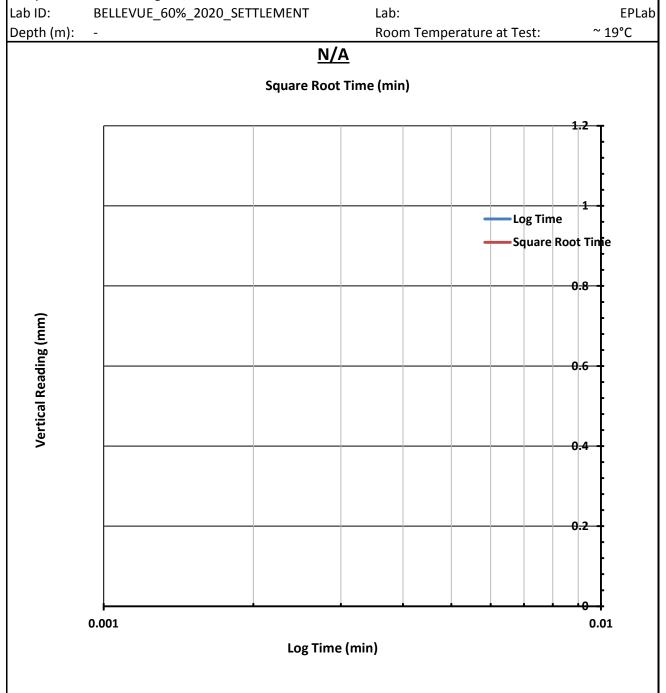

Depth (m): - Room Temperature at Test: ~ 19°C

* Plot based on Log (time) data



Client: **REC Tailings** Date Tested: 18/11/2020 Project: Bellevue Tailings Testing 2020 EP Lab Job Number: REC

Sample ID: 60% Tailings W/W%

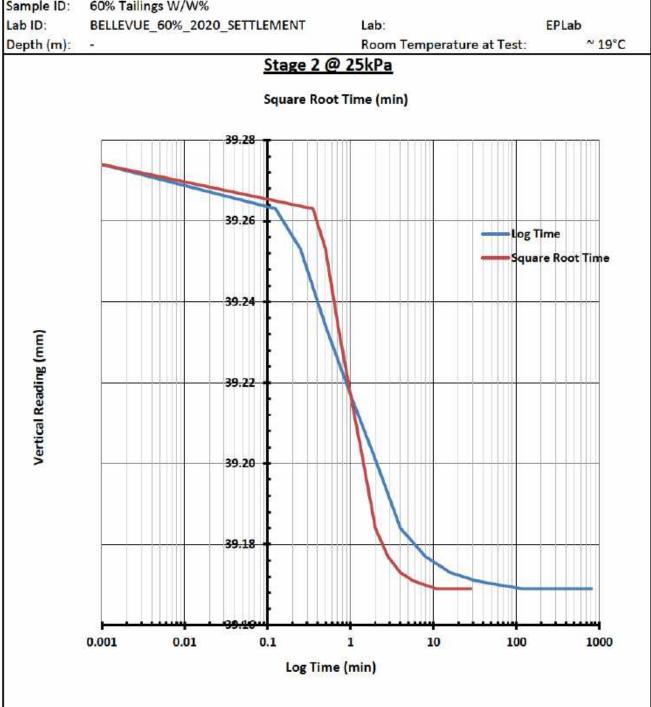


Method: AS1289 6.6.1 / Inhouse Method

Client: REC Tailings Date Tested: 18/11/2020

Project: Bellevue Tailings Testing 2020 EP Lab Job Number: REC

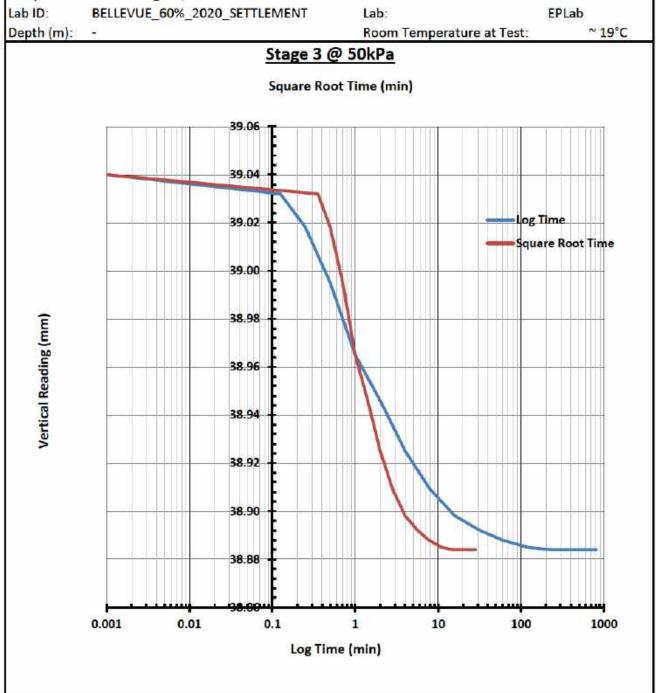
Sample ID: 60% Tailings W/W%



Method: AS1289 6.6.1 / Inhouse Method

Client: **REC Tailings** Date Tested: 18/11/2020 Project: Bellevue Tailings Testing 2020 EP Lab Job Number: REC

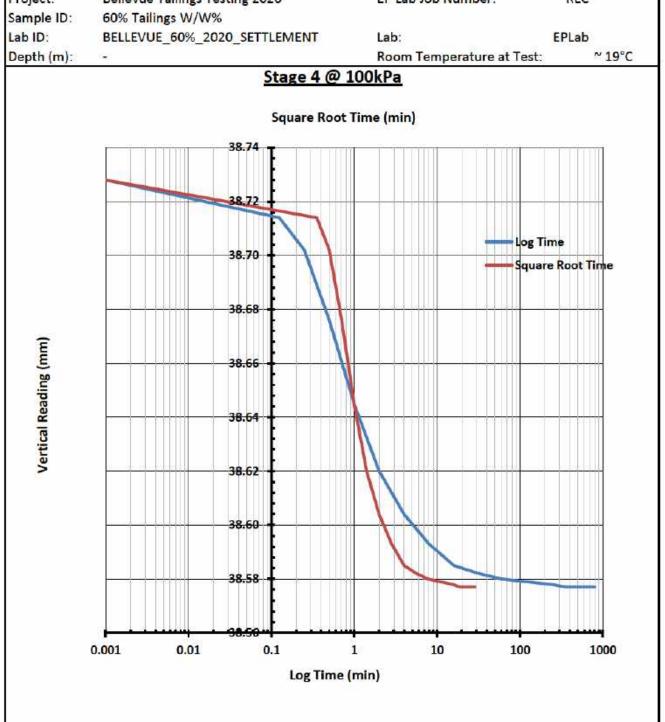
Sample ID: 60% Tailings W/W%

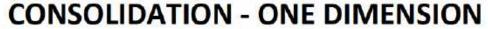


Client: REC Tailings Date Tested: 18/11/2020

Bellevue Tailings Testing 2020 EP Lab Job Number: REC

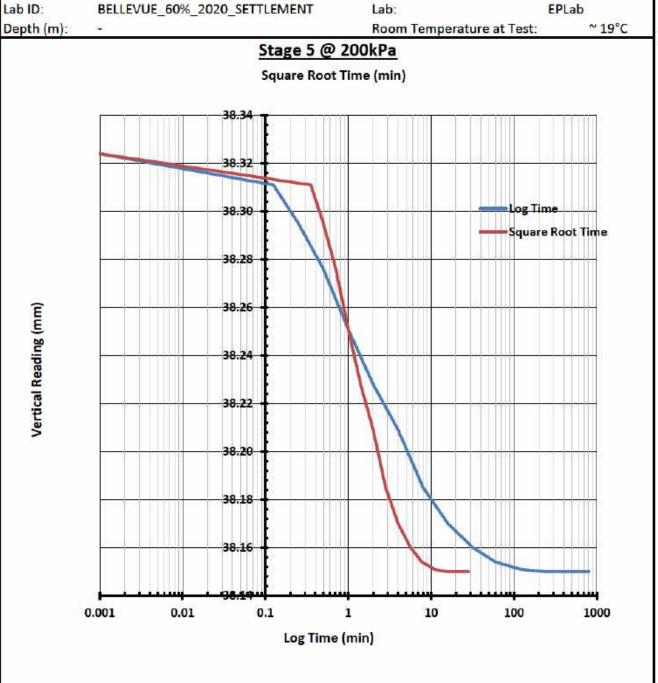
Sample ID: 60% Tailings W/W%





Method: AS1289 6.6.1 / Inhouse Method

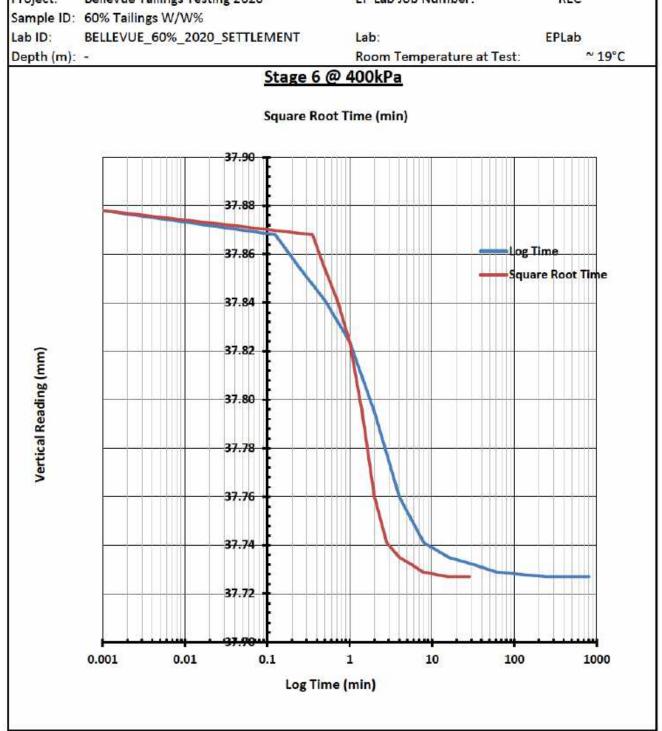
Client: REC Tailings Date Tested: 18/11/2020
Project: Bellevue Tailings Testing 2020 EP Lab Job Number: REC



REC Tailings Date Tested: 18/11/2020 Client: Project: Bellevue Tailings Testing 2020 EP Lab Job Number: REC

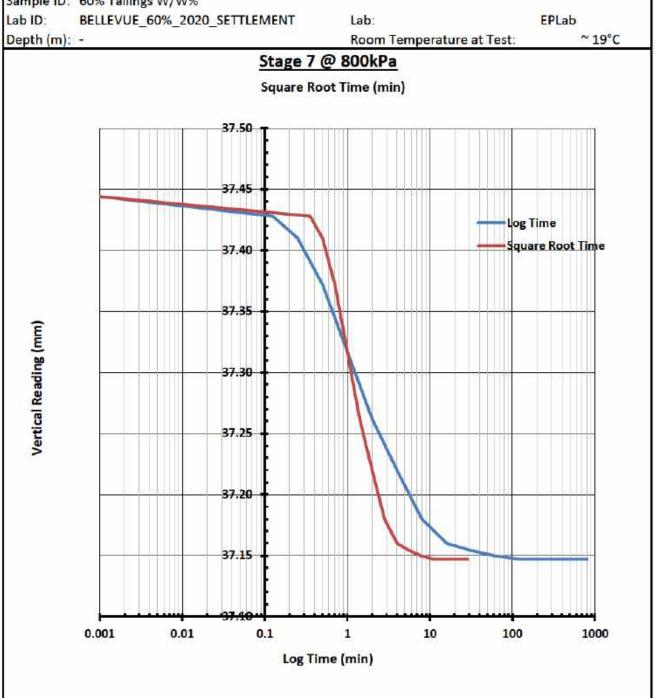
Sample ID: 60% Tailings W/W%

Lab ID: BELLEVUE_60%_2020_SETTLEMENT Lab:



Method: AS1289 6.6.1 / Inhouse Method

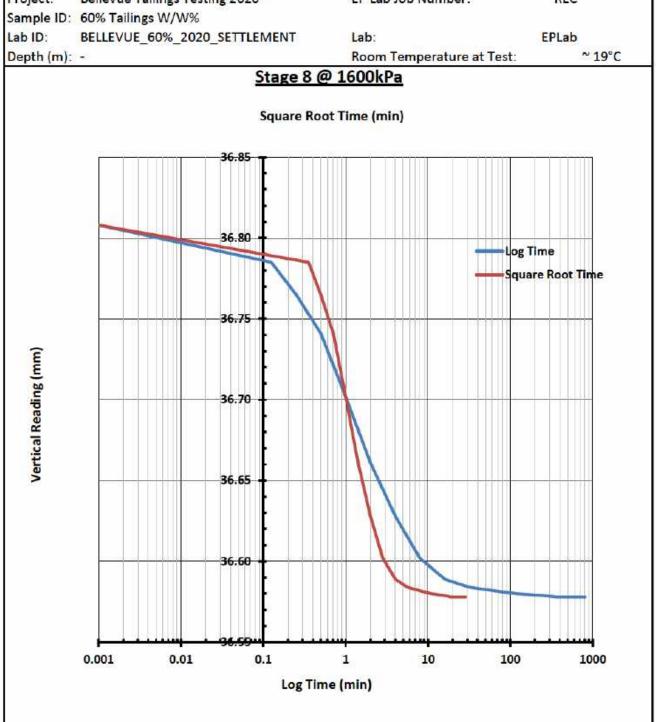
Client: REC Tailings Date Tested: 18/11/2020
Project: Bellevue Tailings Testing 2020 EP Lab Job Number: REC



Method: AS1289 6.6.1 / Inhouse Method

Client: REC Tailings Date Tested: 18/11/2020
Project: Bellevue Tailings Testing 2020 EP Lab Job Number: REC

Sample ID: 60% Tailings W/W%



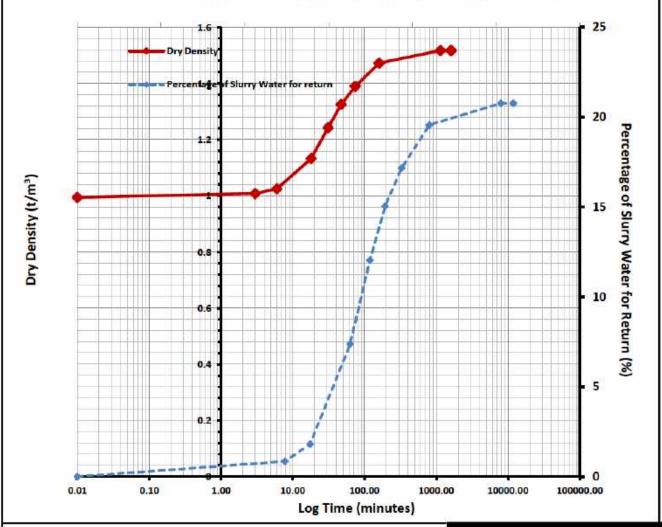
Method: AS1289 6.6.1 / Inhouse Method

Client: REC Tailings Date Tested: 18/11/2020
Project: Bellevue Tailings Testing 2020 EP Lab Job Number: REC

METHOD: IN-HOUSE METHOD

Client: REC Tailings Date Tested: 15/11/2020
Project: Bellevue Tailings Testing 2020 EP Lab Job Number: REC

Sample No: 60% Tailings W/W%


Lab ID: BELLEVUE_60%_2020_SETTLEMENT Room Temperature at Test: 19°

Tested by: Phil Initial Dry Density (t/m³): 0.994

Type of Test: Settlement Testing Particle Density (t/m³): 2.996

Sample Preparation: as instructed @ 60% Solids Initial Bulk Density (t/m³): 1.661

Undrained Dry Density (t/m³) Vs Log Time (minutes)

Comments:

Authorised Signature (Geotechnical Engineer):

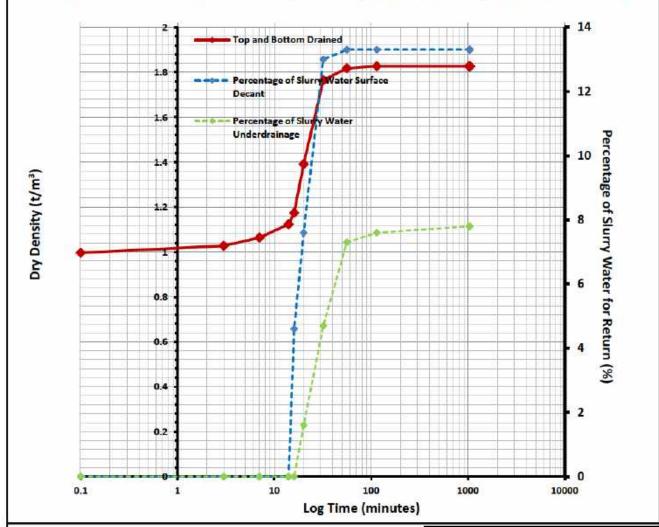
The results of tests performed apply only to the specific sample at time of test unless otherwise cl

Precision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431 559 578 87

METHOD: IN-HOUSE METHOD

Client: REC Tailings Date Tested: 15/11/2020
Project: Bellevue Tailings Testing 2020 EP Lab Job Number: REC

Sample No: 60% Tailings W/W%


Lab ID: BELLEVUE_60%_2020_SETTLEMENT Room Temperature at Test: 19°

Tested by: Phil Initial Dry Density (t/m³): 0.996

Type of Test: Settlement Testing Particle Density (t/m³): 2.996

Sample Preparation: as instructed @ 60% Solids Initial Bulk Density (t/m³): 1.660

Top and Bottom Drained Dry Density (t/m³) Vs Log Time (minutes)

Comments:

Authorised Signature (Geotechnical Engineer):

The results of tests performed apply only to the specific sample at time of test unless otherwise clearly stated. Reference should be made to E-Precision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431-559 578-87

METHOD: IN-HOUSE METHOD

Client: REC Tailings Date Tested: 15/11/2020
Project: Bellevue Tailings Testing 2020 EP Lab Job Number: REC

Sample No: 60% Tailings W/W%

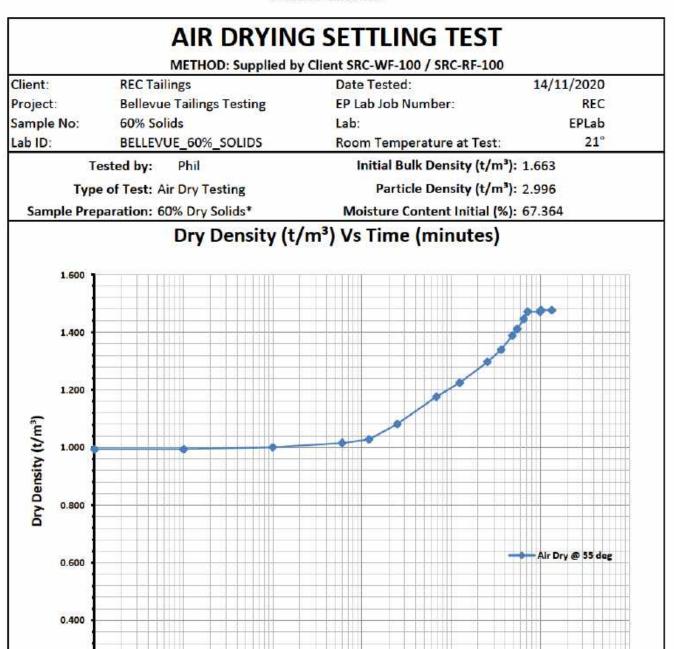
Lab ID: BELLEVUE_60%_2020_SETTLEMENT Room Temperature at Test: 19°

Tested by: Phil Initial Dry Density (t/m³): Type of Test: Settlement Testing Particle Density (t/m³): Sample Preparation: as instructed @ 60% Solids Initial Bulk Density (t/m3): -

Photo of Test Setup

Undrained

Drained


Comments:

Authorised Signature (Geotechnical Engineer):

The results of tests performed apply only to the specific sample at time of test unless

Precision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431 559 578 87

Comments:

0.200

0.000

0.1

1

Authorised Signature (Geotechnical Engineer):

10

The results of tests performed apply only to the specific sample at time of test unless otherwise clearly stated. Reference should be made to E-Precision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431-559-578-87

100

Log Time (minutes)

1000

10000

100000

AIR DRYING SETTLING TEST

METHOD: Supplied by Client SRC-WF-100 / SRC-RF-100


Client: 14/11/2020 **REC Tailings** Date Tested: Project: EP Lab Job Number: REC **Bellevue Tailings Testing** Sample No: 60% Solids **EPLab** Lab: Lab ID: BELLEVUE_60%_SOLIDS 19° Room Temperature at Test:

Tested by: Phil Initial Bulk Density (t/m³): 1.663

Type of Test: Air Dry Testing Particle Density (t/m³): 2.996

Sample Preparation: 60% Dry Solids* Moisture Content Initial (%): 67.364

Photo after Testing

* sample oven dried @ 55deg

Comments:

Authorised Signature (Geotechnical Engineer)

The results of tests performed apply only to the specific sample at time of test unless

Precision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431 559 578 87

ATTERBERG LIMITS TEST REPORT

Test Method: BS1377 AS1289.2.1.1 7.1.1 3.1.1 3.2.1 3.4.1

Client: Date Tested: 14/11/2020 **REC Tailings**

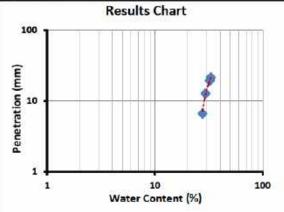
Project: **Bellevue Tailings** Lab: **EPLAB** Job Number: REC Sample No: Tailings Sample received

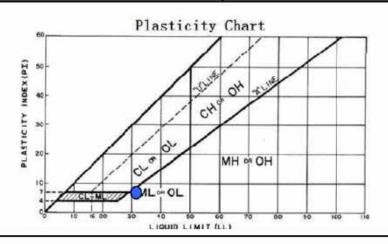
Lab ID: TAILINGS BELLEVUE 112020 ATT

Depth(m): Room Temperature at Test: 20°C

Tested by: Raymond Sample Description: Moisture Content (%):

Wet Density (t/m³):


Dry Density (t/m³): Liquid Limit (%): 31.27


Plastic Limit (%): 25.68

Plasticity Index (%): 5.59 Liquidity Index (%):

Shrinkage Limit (%): 23.25

Linear Shrinkage(%): 1.72

Notes: The sample/s were tested oven dried, dry sieved and in a 125-250m

Stored and Tested the Sample as received

Authorised Signature Samples supplied by the Client

The results of tests performed apply only to the specific sample at time of test unless otherwise clearly state Precision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431 559 578 87

PARTICLE SIZE DISTRIBUTION TEST REPORT Test Method: AS 1289 3.6.3, 3.5.1 Client: **REC Tailings** Date Tested: 15/11/2020 Project: **REC Bellevue Tailings** EP Lab Job Number: Sample No: Tailings Sample received Depth(m): Lab ID: TAILINGS_BELLEVUE_112020_PSD Room Temperature at Test: 19°C 2.36mm Particle Density (t/m³): Tested by: Kohei 2.99 Checked by: Phil **PSD Graph** Sieve Size (mm) Passing % 150 100.0 100.0 75 100.0 53 100.0 37.5 100.0 90.0 26.5 100.0 19 100.0 80.0 9.5 100.0 4.75 100.0 2.36 100.0 70.0 1.18 100.0 100.0 0.6 60.0 0.425 100.0 Passing (%) 0.3 100.0 0.15 98.3 50.0 0.075 84.7 0.05008 78.6 40.0 75.1 0.04202 0.02993 66.8 0.02127 60.6 30.0 0.01453 52.9 0.01069 43.9 20.0 0.00760 35.6 0.00541 27.3 10.0 0.00385 19.7 0.00274 12.1 0.00194 7.2 0.0 0.00138 3.7 0.001 0.01 0.1 10 100 1000 1 0.00114 2.4 0.00100 1.7 Particle Size(mm) 0.00091 1.0

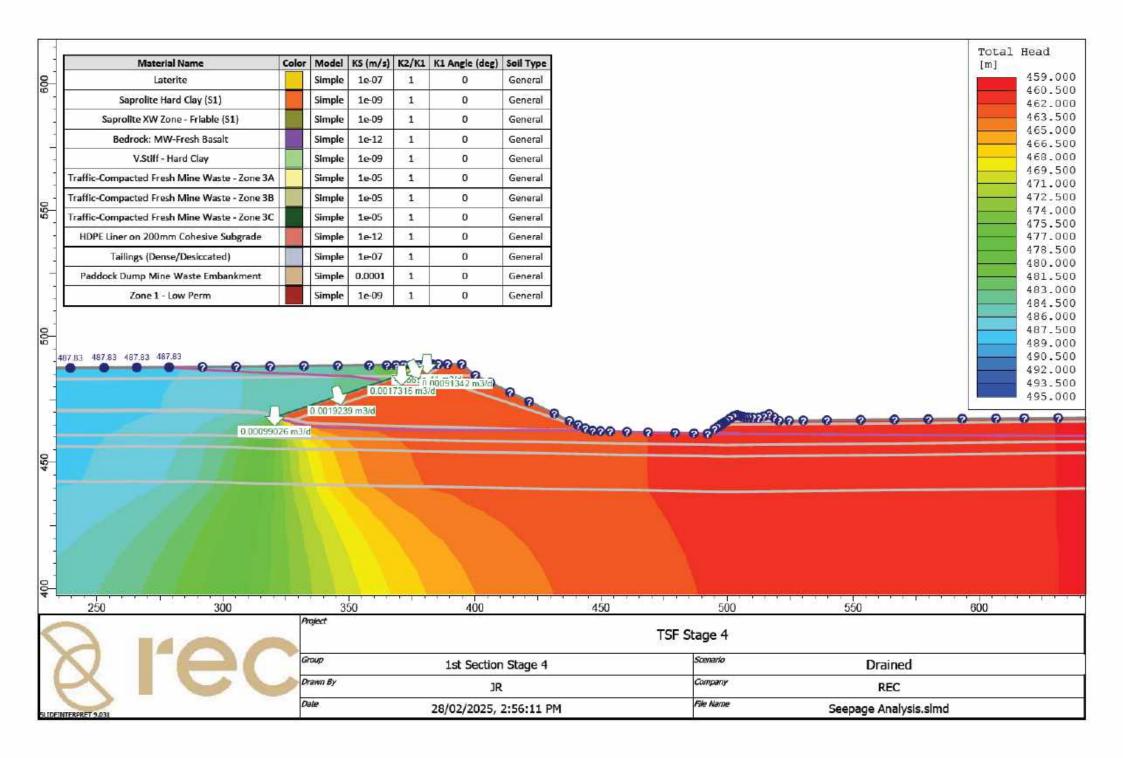
The results of tests performed apply only to the specific sample at time of test unless otherwise clearly stated. Reference should be made to E-Precision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431 559 578 87

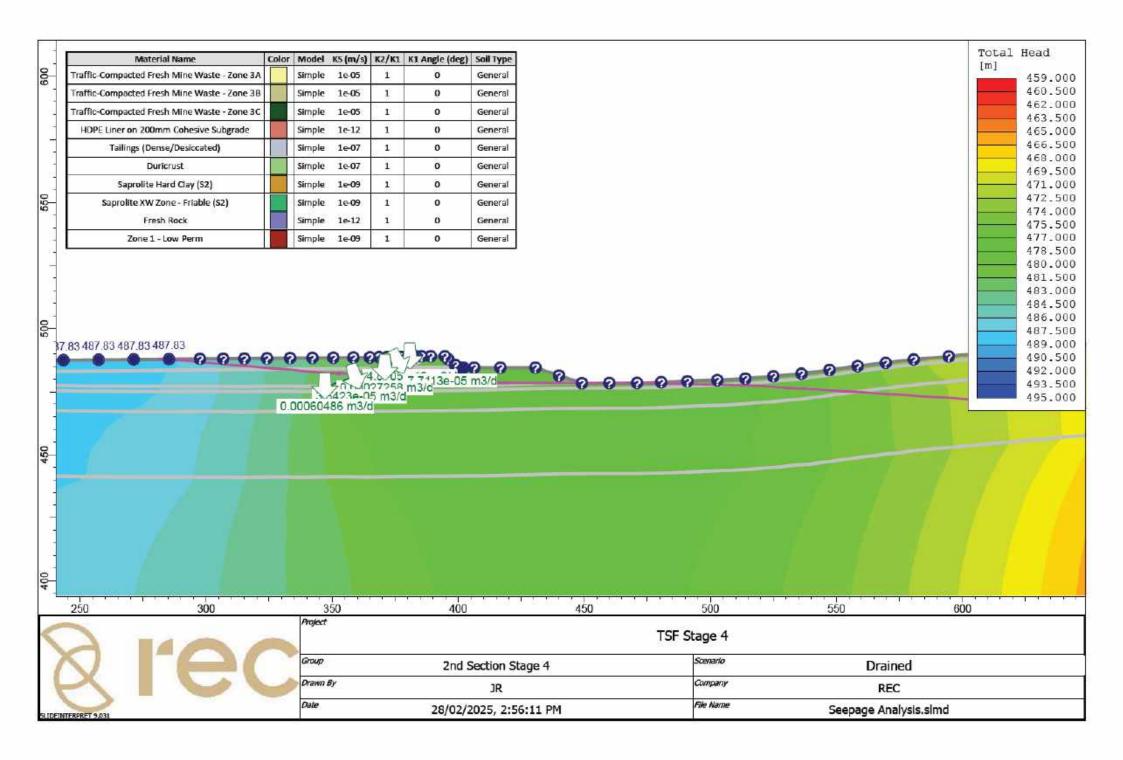
Authorized Signatu

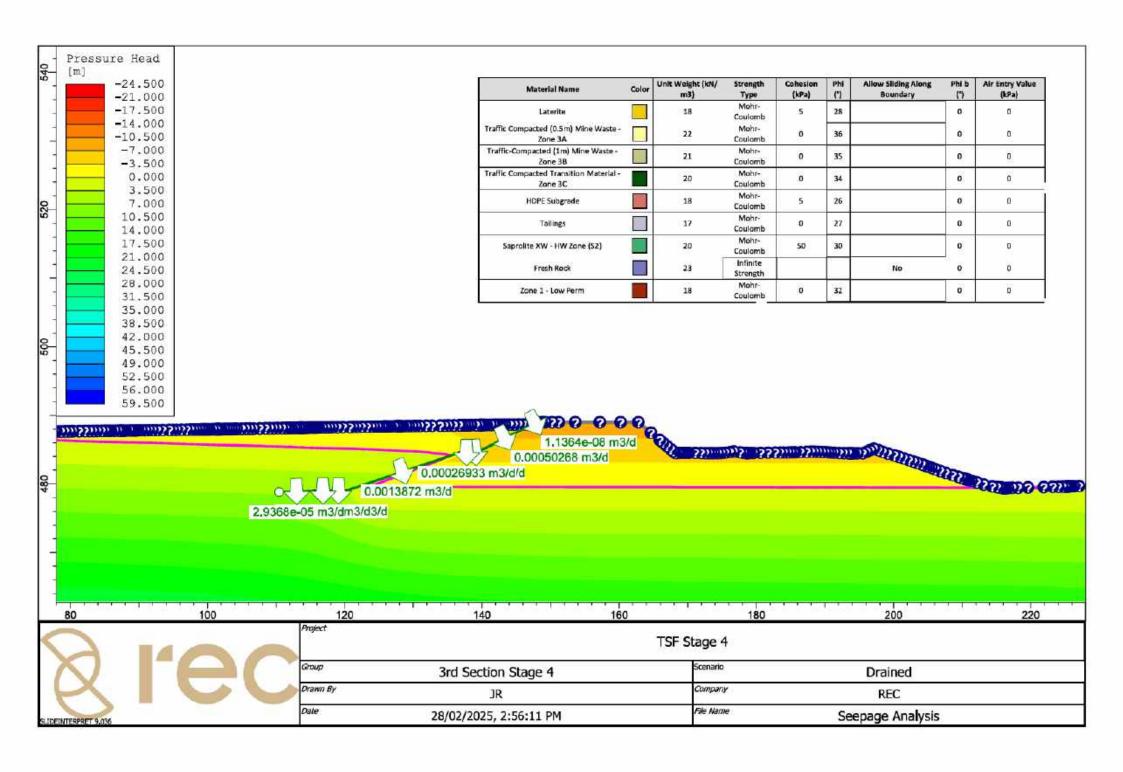
Sample oven dried at 55deg

Stored and Tested the Sample as received

Samples supplied by the Client

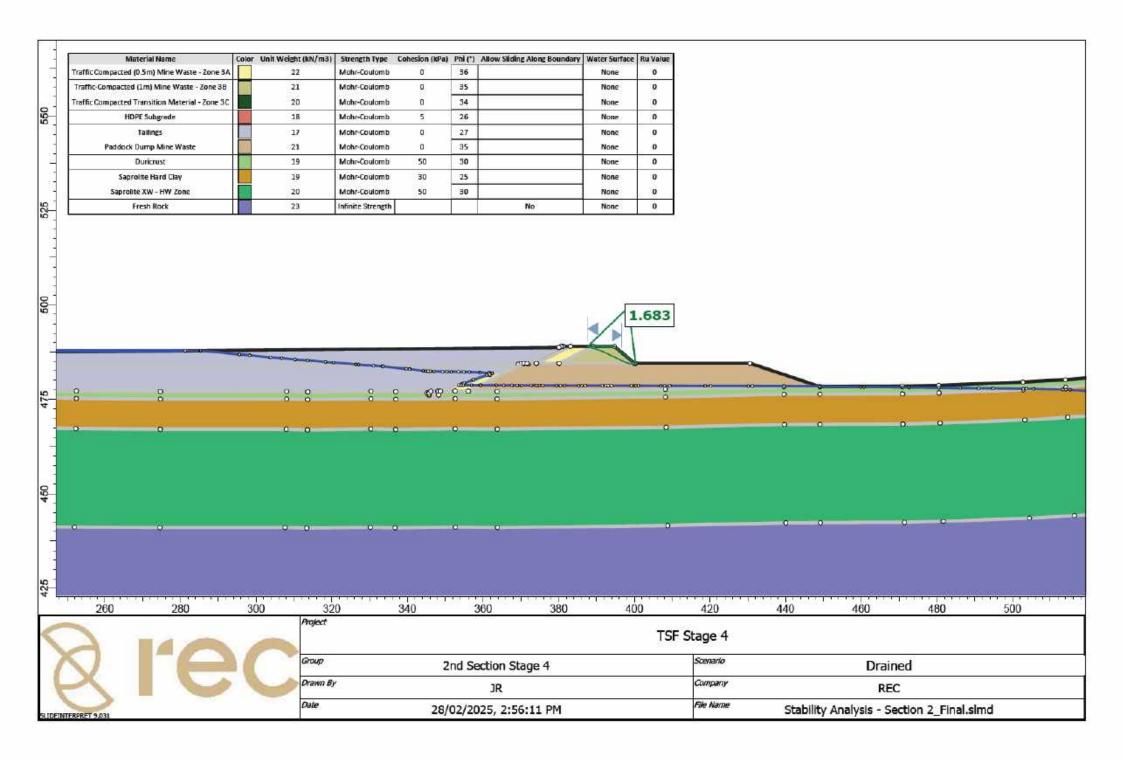

Notes:

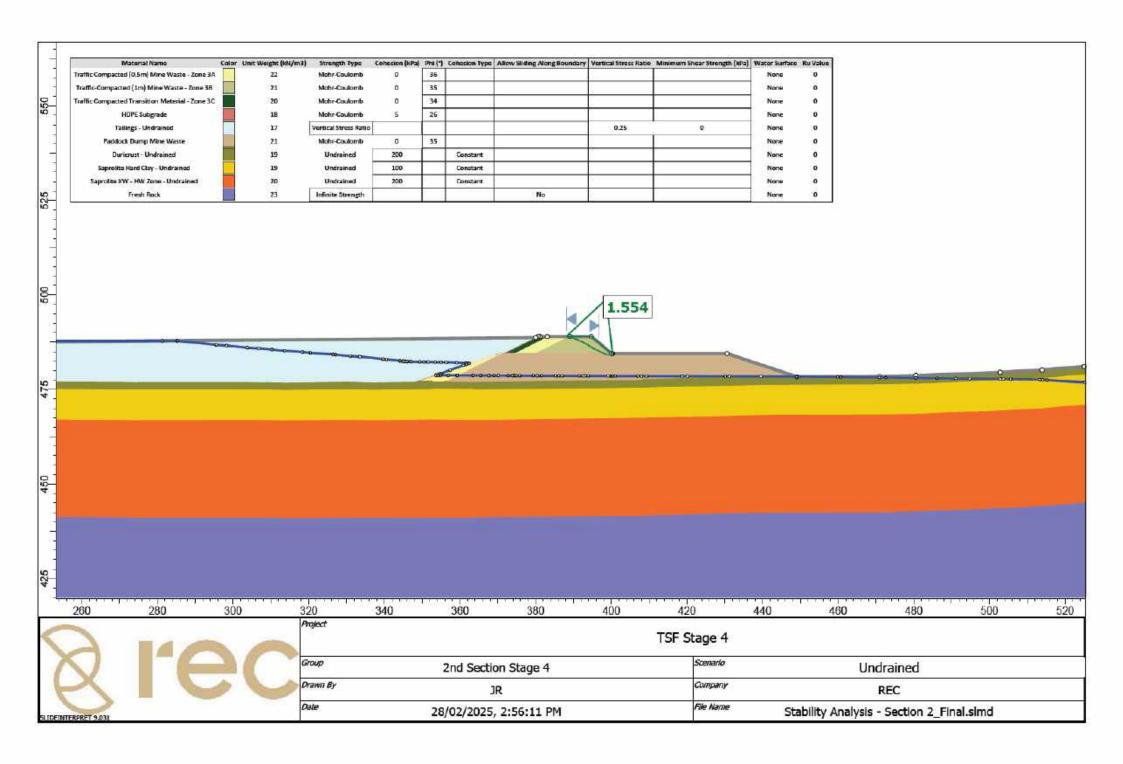


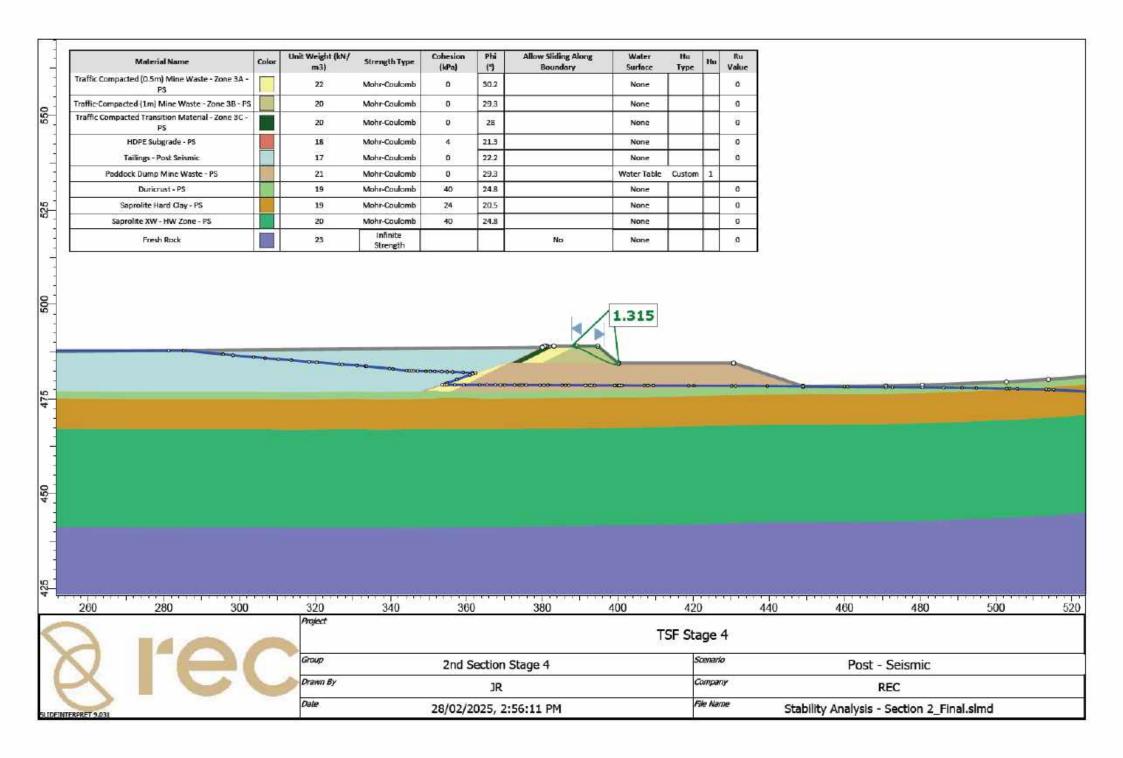

Appendix F

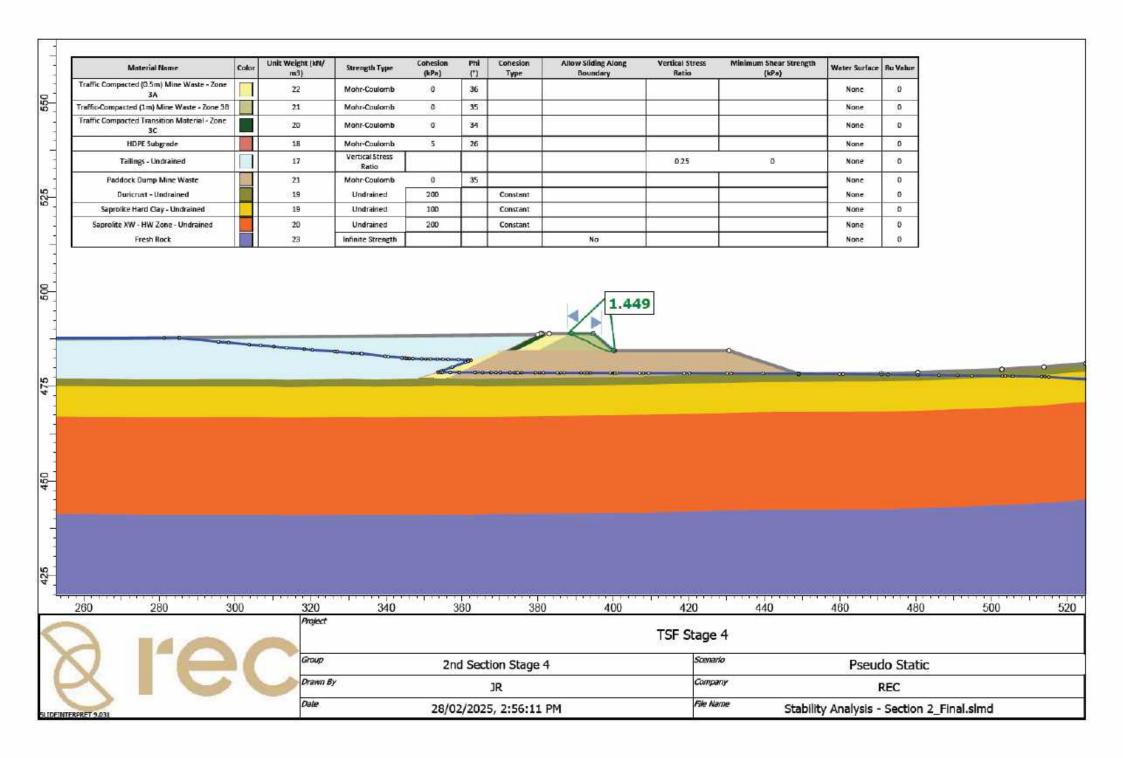
Seepage Assessment Results

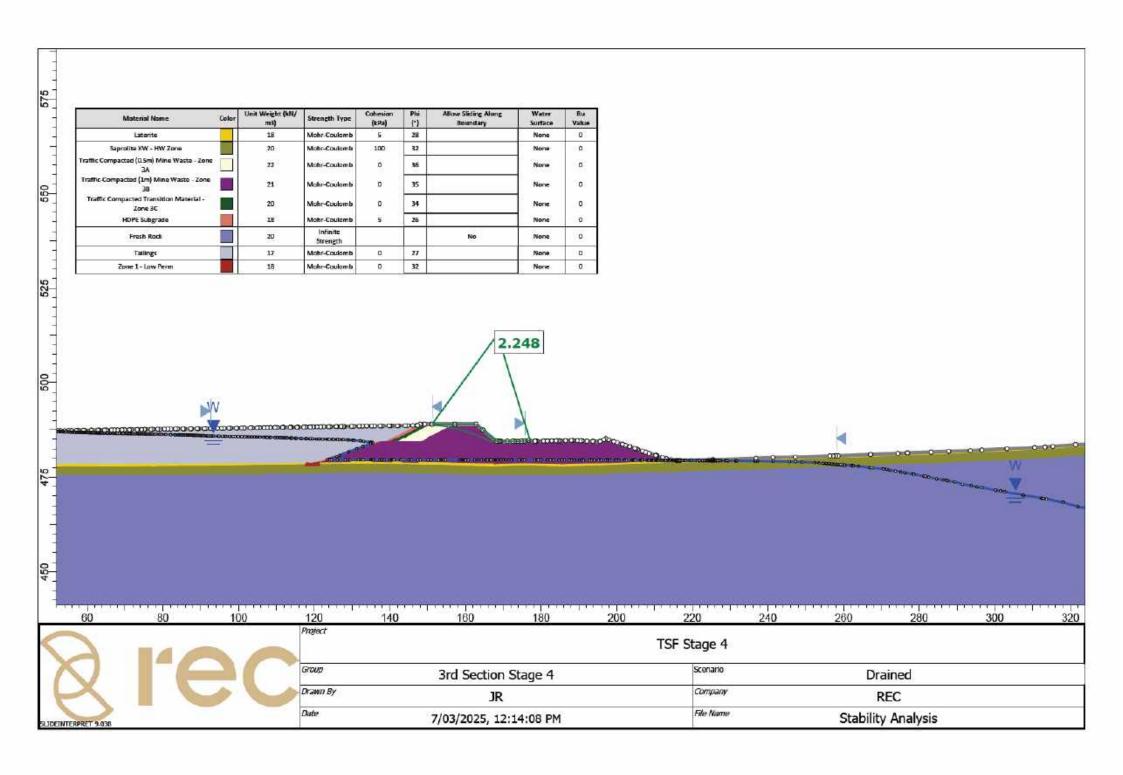
Reference: P19-11-PR-29-R0 Client: Bellevue Gold Limited

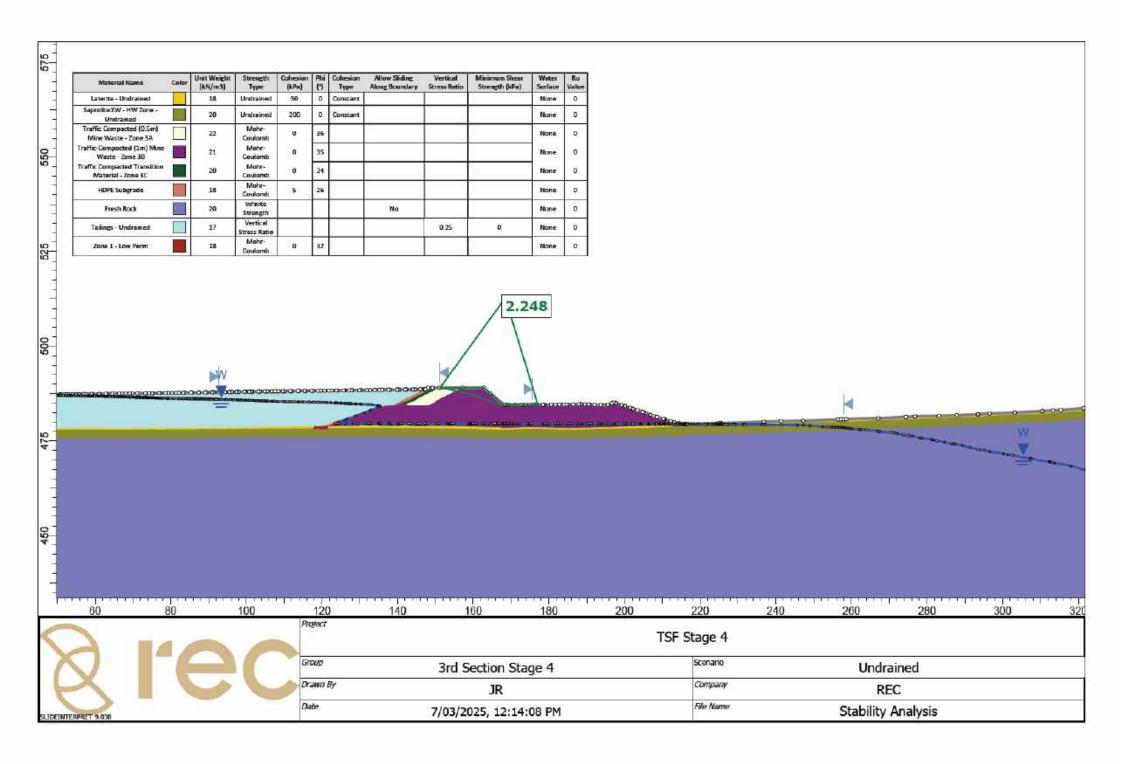


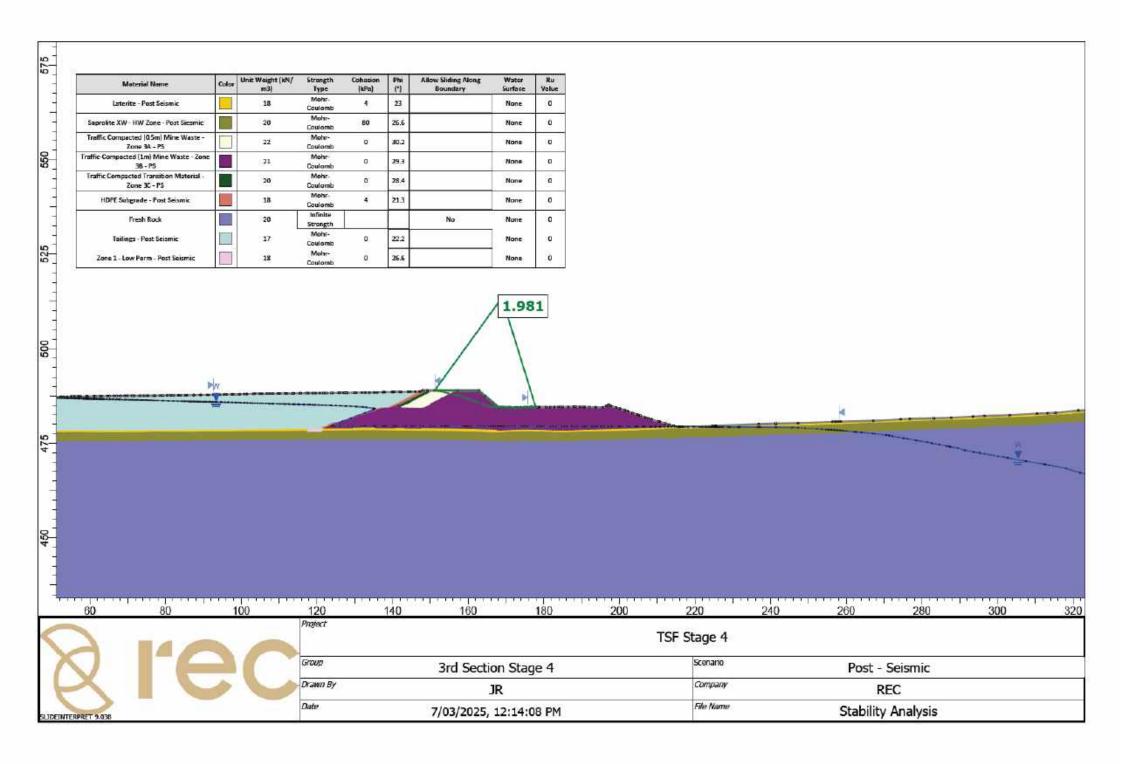


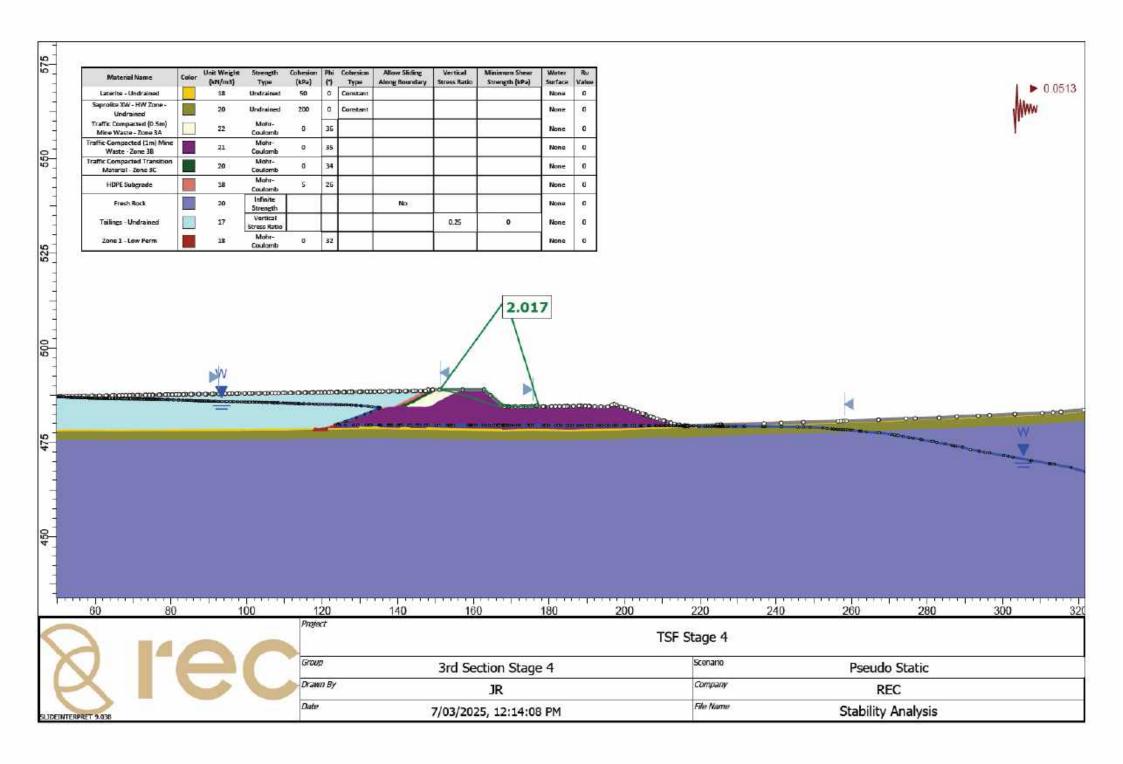

Appendix G


Slope Stability Analysis Results


Reference: P19-11-PR-29-R01 Client: Bellevue Gold Limited







Appendix H

Dam Break Assessment Results

Reference: P19-11-PR-29-R0 Client: Bellevue Gold Limited

BELLEVUE GOLD PROJE a rec CLIENT BELLEVUE GOLD LIMITED LOCATION WLTSF - NORTH EAST DOWN BREAK STUDY - INLTSE ULTIMATE EMBANKMENT HEIGHT 15.0 M AT CREST RL 489.0 M Scenario: Base case (Sunny Day Failure Conditions) 07-Mar-25 P19-11-PF29 Scenario: Job No DRAFT BREACH CHARACTERISTICS Comments Input Parameters New Embankment Crest Leve Approx. Length from Centre Point to Pen Eintr 474.0 mRL 800 m owest Ground Level From survey contours rom design rom design um Embankment Height 309 m 14.0 m 2.0 H to 1V 1.25 H to 1V Approx Emb Vol (at critical section) 50,000 m³ Approximate Emb Length corresponding to Ortical Section From design Embankment Crest Width Upstream Embankment Slope Downstream Embankment Slope From design rom design (average) 1.25 H to 650.0 m² 3.92 Mt 1.4 t/m² 1.88 t/m² 2.899.000 m² 649.000 Approx. Embankment Cross Section Area at Breach Location Embankment cross section area at highest section Assuming basin volume work contribute Existing total storage pagaging Total Tailings Tonnes stored in TSF at New Crest Level Estimated total storage capacity Dry Density Bulk Density From design report New storage values Assumed moisture content of whole tailings depth of 33% New storage papacity Suriny Day Fahire Scenario - No PMP storm event adopted:

Caculated - approximate 30% of stored tailings volume (A Dalbatram (2011), "Estimation of Tailings Dam Break Discharges") Total Tailings Volume stored in TSF (Vy) at New Crest Level NO PMP Storm Volume over TSF Catchment Total Released Tailings Volume from the TSF (V_v) 687 sore-feet cooured through Converted from m" to aure-feet (1 aure-feet = 1233 m3) contion of the new storage. A geotechnical side height same as the raised embankment height was advoted for conservative ballings run out calculations. Note: For the purpose of the analysis, the tailings "failure volume" was assumed to be Tailings released from the embankment breaches were assumed to be ignered Output Parameters - Breach Characteristics Breach Shope - Trapezoidal Side Shopes Geolechnical Side Height (H_e) Comments
Adopted approximate trapecoidal breach shape (T NacDonald and J Langridge - Wompolia, 1984)
Adopted geolechnical slide height same as total embarkment height for conservative assessment. 8.0 V to th 13.0 m 49.2 foot 12,663,000 m⁷ x m 3.4E+04 acce-fi x fi Consorted from motor to fact.
Used this figure to precise the volume of embankment material removed during a breach Converted from m² x m to acro-feet x feet.

Embarisment ustame removed during a breach (determined from Figure 1, T NacDonald and J Langridge - Monopolis, 1984).

Cancerbed from calch yeart to subtemate (1 cubic yard = 0.705 cubic meter).

Calculated based on the removed embankment volume during a breach and embankment geometry. Embarkment Volume Ended during Breach (V_{ω}) 7,664 m² Average Breach Width (Was) Base Breach Width (W_e) Too Breach With (W) Breach shape area at highest entrantment section. Used this figure to estimate the explosion traings failed length behind breach area. Calculated based on the released tailings volume (behind breach area) and breach shape. Breach Stope Area (Ar) Equivalent Released Tallings Volume behind Breach Area Equivalent Tailings Falled Length behind Breach Area (s.) 230 m RUN-OUT CALCULATION (K. Sedskm 2018) Method: Energy Based Approximate - to estimate the nun-out distance for liquefied ta lings (over an assumed herizontal planeirun-out base) 4.2 Linear method The simplest solution can be obtained if it is assumed that the ranget longue is of scalings thickness. From the geometry, H, x = k x $\triangle h = (x_n/x_p)H_n$ Fre-Sim π_{a} Post-flow 1igure 2 Samplified flow state gromeny and re-errorging gives: $\sigma_{\lambda}^{2}+\kappa_{\mu}\kappa_{\mu}=3\,p\epsilon_{\mu}H_{\mu}^{2}\,(\kappa_{\mu}=0)$ a which Ayis the only subnovn, and the required masser distance (Re) is: $Ro = x_1 - x_2$ (7) Input Parameters
Tailings Bulk Density (r)
Geotechnical Side Heig Value Unit Sentechnical Slide Height (H_e) Equivalent Tallings Falled Longth (k_e) Output Parameters Liquefied Strength Ratio |S_{el.Co} / et _{vo} iquefed Shear Strength (suppl) (kPa) 1.3 186 18.6 186 Unit Weight (v) (kNim²) Pro-flow Talings Falled Longth (v_v) (m) 18.6 186 18.6 15.6 Pre-flow Breach Height (H_b) (m) A = 1 B=x_e(m) C=-2'\'\x,"H_e"H_e\ 230 230 230 230 230 230 230

-1,442,177 1,001

10,000

Solution x_i (m) Fluir-out Distance H_a (m)

PROJECT BELLEVUE GOLD PROJECT CLIENT BELLEVUE GOLD LIMITED LOCATION WLTSF - NORTH EAST OAN BREAK STUDY - MILTSF ULTIMATE EMBANKMENT HEIGHT 15.0 M AT CREST RL 480.0 M locerario: Worst Case (PMP Rainy Day Failure Conditions) 07-Mar-25 P19-11-PR29 Date DRAFT BREACH CHARACTERISTICS Value Unit 409.0 mFt. 474.0 mFt. 15.0 m Input Parameters New Embankment Crest Leve Comments rom design Approx. Length from Centre Point to Peri Ends BOOm Lowest Ground Level From survey contours from design from design Maximum Embankment Height 300 m 14.0 m 2.0 H to 1V 1.3 H to 1V 575.6 m² Approx Excly Vol (at ortical seation) #55,000 m² Approximate Emb Length corresponding to Critical Section From design (per oel) Embankment Crest Width Upstream Embankment Slope Downstream Embankment Slope From design From design From design (average) Approx. Embankment Cross Section Area at Breach Location Embankment cross section area at highest section Assuming basin volume nont contribute Existing fotal storage capacity 3.6 Mi 1.82 Mt 1.4 thm 1.96 thm 2.506,006 m 050,006 m 1.505 pare feet to be covered through a Total Tailings Tonnes stored in TSF at New Crest Level Estimated total storage capacity Total Takings Tornes stored in 151-at New Crest Level
Bult Density
Total Takings Volume stored in TSF (V_F) at New Crest Level
Extreme Storen Volume over "whole TSF Catohment
Total Released Tailings Volume from the TSF (V_F) From design report Hern starger schame
Assumed mischare content of Whole tailings depth of SM. Hern strange caspooly
Estimated lotal tailings volume
Rainy Day Fallane Scenario - PMP Storm Event Adopted
Casolated - approximate 50% of storage volume (Assuming more water released, so more tailings mobilized) New storage capacity Mit Convenied from m" to acre-feet (1 acre-feet = 1233 m3) sortion of the new storage. A total breach height same as the raised embanisment height was adopted for conservative tailings run-out calculations. Note: For the purpose of the analysis, the talings 'talure volume' was assumed to be Talings released from the embantument breaches were assumed to be founded Value Unit 3.6 V to 1H 15.6 m 49.2 Sec 30.501,000 m² × m 8.25004 cod-1 x ft Output Parameters - Breach Characteristics Breach Shape - Trapezoidal Side Stopes Adopted approximate trapezoidal breach shape (T MacDonald and J Langridge - Moropolis, 1984) Breach Height (H₄) Adopted the bottom of the breach is at the crest of existing downstream embankmen conversed from meter to feet (sed this figure to predict the volume of embantiment material removed during a breach reach Formation Factor (V_F x H_s) Converted from m² xm to acre-feet x feet. Enthantment volume removed during a treach (desermined from Figure 1, T MacDonald and J Langridge - Memopolis, 1984). Converted from catic yard to exist meter (1 cubic yard = 0.785 cubic meter). Calculated based on the removed embankment volume during a breach and embankment geometry. Embanisment Volume Emded during Breach (Val) 2.8E+04 yra* 15,155 m* Average Breach Width (W....) Base Breach Width (W_e) Top Breach Width (W.) Breach Shape Area (Ay) Equivalent Released Tailings Volume behind Breach Area 395 m² 212,619 m² reach stope area at highest embarkment section ked this figure to estimate the equivalent tallings failed length behind breach area Equivalent Tailings Failed Langth behind Breach Area (x_0) Adopted Breach Development Time (ψ) Released Tailings Fluin-cull Flow (G_{ψ}) Calculated based on the released usings volume (belief broad) arisal and breach shape. Sreaches typically occur over time periods of 0.5 to 4 hours jostermined from Figure 2, 7 MacDonald and J Lacgridge - Monopolis, 1984). Calculated based on released tailings volume and breach development time.

BELLEVUE GOLD PROJE a rec CLIENT BELLEVUE GOLD LIMITED LOCATION WLTSF - SOUTH EAST DOWN BREAK STUDY - MILTSE ULTIMATE EMBANKMENT HEIGHT 27.0 M AT CREST RL 489.0 M Scenario: Base case (Sunny Day Failure Conditions) 07-Mar-25 P19-11-PF29 Scenario: Job No DRAFT BREACH CHARACTERISTICS Comments Input Parameters New Embankment Crest Leve Approx. Length from Centre Point to Pen Eints 482.0 mRt. 800 m owest Ground Level From survey contours From design From design um Embankment Height 309 m 14.0 m 2.0 H to 1V 1.25 H to 1V Approx Emb Vol (at critical section) 11(1400 m² Approximate Emb Length corresponding to Ortical Section From design Embankment Crest Width Upstream Embankment Slope Downstream Embankment Slope From design rom design rom design (average) 1.25 H to 1V 1.700.0 m² 4.72 Mt 1.4 hm³ 1.68 hm³ 3.370.000 m³ 1.611.000 m³ 1.611.000 m³ 1.611.000 m³ 1.611.000 m³ 1.611.000 m³ 1.611.000 m³ Approx. Embankment Cross Section Area at Breach Location Embankment cross section area at highest section Assuming basin volume work contribute Existing total storage pagaging Total Tailings Tonnes stored in TSF at New Crest Level Estimated total storage capacity Dry Density Bulk Density From design report New storage values Assumed moisture content of whole tailings depth of 33% New storage papacity Suriny Day Fahire Scenario - No PMP storm event adopted:

Caculated - approximate 30% of stored tailings volume (A Dalbatram (2011), "Estimation of Tailings Dam Break Discharges") Total Tailings Volume stored in TSF (Vy) at New Crest Level NO PMP Storm Volume over TSF Catchment Total Released Tailings Volume from the TSF (V_v) Converted from m" to aure-feet (1 aure-feet = 1233 m3) contion of the new storage. A geotechnical side height same as the raised embankment height was advoted for conservative ballings run out calculations. Note: For the purpose of the analysis, the tailings failure volume was ass Tailings released from the embantment breaches were assumed to be to Output Parameters - Breach Characteristics Breach Shope - Trapezoidal Side Shopes Geolechnical Side Height (H_e) Comments
Adopted approximate trapecoidal breach shape (T NacDonald and J Langridge - Wompolia, 1984)
Adopted geolechnical slide height same as total embarkment height for conservative assessment. 8.0 V to th 27.0 m 88.5 fluit 27,297,000 m² x m 7,35=64 acce-fl x fl Consorted from motor to fact.
Used this figure to precise the volume of embankment material removed during a breach Converted from m² x m to acro-feet x feet.

Embarisment ustame removed during a breach (determined from Figure 1, T NacDonald and J Langridge - Monopolis, 1984).

Cancerbed from calch yeart to subtemate (1 cubic yard = 0.705 cubic meter).

Calculated based on the removed embankment volume during a breach and embankment geometry. Embarkment Volume Ended during Breach (V_{ω}) 1.8E+04 yrd* 13,899 m* Average Breach Width (W_{ave}) Base Breach Width (W_e) Too Breach With (W) Breach shape area at highest entrantment section. Used this figure to estimate the explosion traings failed length behind breach area. Calculated based on the released tailings volume (behind breach area) and breach shape. Breach Stope Area (Ar) Equivalent Released Tallings Volume behind Breach Area Equivalent Tailings Falled Length behind Breach Area (s.) 190 m RUN-DUT CALCULATION (K. Sedikim 2010). Method: Energy Rased Approximate - to estimate the run-out distance for liquefied tallings (over an assumed horizontal planeirun-out base). 4.2 Linear method The simplest solution can be obtained if it is assumed that the ranget longue is of scalings thickness. From the geometry, H, x = k x $\triangle h = (x_n/x_p)H_n$ Fre-Sim π_{a} Post-flow 1igure 2 Samplified flow state gromeny and re-errorging gives: $\sigma_{\lambda}^{2}+\kappa_{\mu}\kappa_{\mu}=3\,p\epsilon_{\mu}H_{\mu}^{2}\,(\kappa_{\mu}=0)$ a which Ayis the only subnovn, and the required masser distance (Re) is: $Ro = x_1 - x_2$ (7) Input Parameters
Tailings Bulk Density (r)
Geotechnical Side Heig Value Unit Sentechnical Slide Height (H_e) Equivalent Tallings Falled Longth (k_e) Output Parameters Liquefied Strength Ratio |S_{el.Co} / et _{vo} iquefed Shear Strength (suppl) (kPa) 186 186 9.5 18.6 18.6 Unit Weight (v) (kNim²) Pro-flow Talings Falled Longth (v_v) (m) 18.6 186 186 100 27.0 Pre-flow Breach Height (H_b) (m) A = 1 B=x_e(m) C=-2'\'\x,"H_e"H_e\ 100 100 100 100 200 100 100

-2,144,454 1,372

760

5/0

Solution x_i (m) Fluir-out Distance H_a (m)

PROJECT BELLEVUE GOLD PROJECT d rec CLIENT BELLEVUE GOLD LIMITED INICITSE - SOUTH EAST

DAM BREAK STUDY - INICITSE ULT INVATE EMBANKMENT HEIGHT 27.0 M AT CREST RL 481.0 M

Genario: Werst Case (PMP Rainy Day Faiture Conditions) LOCATION 07-Mar-25 P19-11-PR29 Date DRAFT BREACH CHARACTERISTICS Value Unit 409.0 m/st. 462.0 m/st. Input Parameters New Embankment Crest Leve Comments rom design Approx. Length from Centre Point to Peri Ends BOOm Lowest Ground Level From survey contours from design from design Maximum Embankment Height 300 m 14.0 m 2.0 H to 1V 1.3 H to 1V 1.562.6 m² Approx Excls Vol (at ortical seation) 110(400 m) Approximate Emb Length corresponding to Critical Section From design (per oel) Embankment Crest Width Upstream Embankment Slope Downstream Embankment Slope From design From design From design (average) Approx. Embankment Cross Section Area at Breach Location Embankment cross section area at highest section Assuming basin volume nont contribute Existing fotal storage capacity 3.6 Mi 4.72 Mt
1.4 thm
1.06 thm
3.376,006 m*
636,006 m*
1.356 joure feet
to be cooved through: Total Tailings Tonnes stored in TSF at New Crest Level Estimated total storage capacity Total Takings Tornes stored in 151-at New Crest Level
Bult Density
Total Takings Volume stored in TSF (V_F) at New Crest Level
Extreme Storen Volume over "whole TSF Catohment
Total Released Tailings Volume from the TSF (V_F) From design report Hern starger schame
Assumed mischare content of Whole tailings depth of SM. Hern strange caspooly
Estimates lotal tailings volume
Rainy Day Fallane Scenario - PMP Storm Event Adopted
Casolation - approximate 50% of storage volume (Assuming more water released, so more tailings mobilized) New storage capacity Mit Convenied from m" to acre-feet (1 acre-feet = 1233 m3) sortion of the new storage. A total breach height same as the raised embanisment height was adopted for conservative tailings run-out calculations. Note: For the purpose of the analysis, the talings "failure volume" was assumed Talings released from the entication and breaches were assumed to be inserted. Value Unit 4.5 V to 1H 27.6 m 83.5 feet 62,989,700 m² x m 1,75405 and 1 x ft Output Parameters - Breach Characteristics Breach Shipe - Tripezoidal Side Slopes Adopted approximate trapezoidal breach shape (T MacDonald and J Langridge - Moropolis, 1984) Breach Height (H₄) Adopted the bottom of the breach is at the crest of existing downstream embankmen onwried from meter to feet sed this figure to predict the volume of embantiment material removed during a break reach Formation Factor (V_F x H_s) Converted from m² xm to acre-feet x feet. Enthantment volume removed during a treach (desermined from Figure 1, T MacDonald and J Langridge - Memopolis, 1984). Converted from catic yard to exist meter (1 cubic yard = 0.785 cubic meter). Calculated based on the removed embankment volume during a breach and embankment geometry. Embanisment Volume Emded during Breach (Val 3.4E+04 yrg⁶ 26,358 m² Average Breach Width (W....) Base Breach Width (W_e) Top Breach Width (W.) Breach Shape Area (Ay) Equivalent Released Tailings Volume behind Breach Area reach stope area at highest embarkment section ked this figure to estimate the equivalent tallings failed length behind breach area 855 176,925 Equivalent Tailings Failed Langth behind Breach Area (x_0) Adopted Breach Development Time (ψ) Released Tailings Fluin-cull Flow (G_{ψ}) Calculated based on the released usings volume (belief broad) arisal and breach shape. Sreaches typically occur over time periods of 0.5 to 4 hours jostermined from Figure 2, 7 MacDonald and J Lacgridge - Monopolis, 1984). Calculated based on released tailings volume and breach development time.

Appendix I

Static Water Balance

Reference: P19-11-PR-29-R0 Client: Bellevue Gold Limited

YEAR		YEAR 1										
DATE	Sep-26	Oct-26	Nov-26	Dec-26	Jan-27	Feb-27	Mar-27	Apr-27	May-27	Jun-27	Jul-27	Aug-27
DAYS IN MONTH	30	31	30	31	31	28	31	30	31	30	31	31
MONTH	1	2	3	4	- 5	6	7	8	9	10	11	12
OPERATIONAL PHASE		Stage 4 Nor	th Intermedia	ate Storage		Stage	4 South Inte	rmediate St	orage	Stage	4 Full Capa	city

0	OPERATIONAL PHASE			Stage 4 Nort	h Intermediat	e Storage		Stage 4 South Intermediate Storage			Stage	Stage 4 Full Capacity		
RAINFALL		10												
Monthly Rainfall (mm)	Reinfall Scenarie	1	3,6	11,8	15,7	25,4	38,5	40.5	36,0	24,6	14,3	14,6	16,0	8,9
Stage 4 North Intermediate Storage Surface Area (m²)	Talings beach runoff coefficient	1,0	433,299	433.299	433.299	433,299	433 299				int during thi			
Stage 4 South Intermediate Storage Surface Area (m²)	Tallings beach runoff coellicient	1,0	(CANALA)		ent during this		100,200	456,424	456.424	456.424	456,424		nt during this	period
Stage 4 Full Capacity Surface Area (m²)	Tailings beach runoff coefficient	1.0	-	itot injure	and deliving trans		ant during this		400,424	700,724	100,121	548.020	548,020	548,020
Stage 4 North Intermediate Upstream Catchment Area (m²)	Upstream catchment runoff coefficient	0,5	265,701	265,701	265,701	265,701	265,701	o pratiso.		Ned releve	int during thi		540,020	. 070,025
Stage 4 South Intermediate Upstream Catchment Area (m²)	Upstream catchment runoff coefficient	0,5	200,101		ent during this		200,101	242,576	242,576	242,576	242,576		nt during this	nacional
Stage 4 Full Capacity Upstream Catchment Area (m²)		0,5		Ivor selects	ent during une		ant during this		292,370	242,370	242,370	150,980	150,980	150,980
Rainfall Inflow Total Volume from Tailings Surface (m³/month)	Upstream cutchment runoff coefficient	0,0	1,560	5.113	0.000	11,008	16.682	18,485	16.431	11,228	6,527	8,001	8,768	4.87
	+	-			6,803									
Rainfall Inflow Total Volume from Upstream Catchment (m³/month)	-		478	1,568	2,086	3,374	5,115	4,912	4,366	2,984	1,734	1,102	1,208	67
Total Raintall Inflow Total Volume (m*/month)			2,038	6,681	8,889	14,380	21,797	23,397	20,798	14,212	8,261	9,103	9,976	5,54
DEPOSITION Production Rate (I/month)	From Production Schedule (tps)	1,600,000	133,333	133,333	133,333	133,333	133,333	133,333	133,333	133,333	133,333	133,333	133,333	133,33
Slurry Density (%)	From Plant Designer	55,0%	55%	55%	55%	55%	55%	55%	55%	55%	55%	55%	55%	559
Vojume of Tailings Solids into Facility (m³/month)		3.34.70	95,238	95.238	95,238	95,238	95.238	95,238	95,238	95,238	95,238	95,238	95,238	95.23
Cumulative Volume of Tailings Solids in Facility (m ³)	†		95,238	190.476	285,714	380,952	476,190	571,429	666,667	761,905	857,143	952,381	1,047,619	1,142.85
Volume of Sturry Water into Facility (m³/month)			109,091	109.091	109,091	109,091	109,091	109,091	109.091	109,091	109,091	109.091	109,091	109.09
volume of Silary Water into Facility (in Amortin)	E.		109,091	108,081	109,031	100,001	109,091	109,091	109,031	109,091	108,091	100,001	109,691	100,00
TOTAL WATER	TO BE REMOVED (m³/month)		111,129	116,771	117,979	123,471	130,888	132,488	129,889	123,303	117,352	118,194	119,067	114,64
CUMULATIVE VOLUME O	F WATER TO BE REMOVED (m*/month)		111,129	226,901	344,880	468,351	599,239	731,727	861,616	984,918	1,102,270	1,220,465	1,339,532	1,454,17
EVAPORATION (from pond and wet beaches)								- 10		, ni:			7.0	
Monthly Evaporation (mm)	Evep and Pan Factor from Tech Note 65 (Melhose, ~60 km from Leinster)	0,65	247	353	403	486	566	435	401	265	174	123	124	16
Stage 4 North Intermediate Storage Tallings Pool Area (m²)	Assume 8% of the beach surface area (0.5 m peol depth for pump function)	0.08	34,664	34.664	34.664	34.664	34.664	-	2500.00	Not releva	int during thi	s period	(1021)	
Stage 4 South Intermediate Storage Tailings Pool Area (m²)	Assuma 8% of the basch surface area (U,5 m peol depth for pump function)	0,08	a desire		ent during this		97,003	36,514	36.514	36,514	36,514	The second second	nt during this	nerind
Stage 4 Full Capacity Tailings Pool Area (m2)	Assume 8% of the beach surface area (0.5 m pool depth for pump function)	0.08					ant during this				22/2/17	43.842	43,842	
Stage 4 North Intermediate Storage Tailings Running Beaches (m²)	Active spigots x specing x length to pond	4 X 20 X 300	24.000	24.000	24,000	24,000	24.000			Not releva	int during thi	s period		
Stage 4 North Intermediate Storage Tailings Running Beaches (m²)	Active spiguts x spacing x length to pond	4 X 20 X 300	30,000		ant during this			24.000	24.000	24.000	24,000		nt during this	neded
Stage 4 Full Capacity Tailings Running Beaches (m²)	Active spigats a specing a length to pood	4 X 20 X 300		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		The last territory of the last territory of	ant during this	s neriod				24,000	24,000	24.00
Total Evaporation Outflow (m³/month)	Using total wet area	7,7,20,7,30	9,418	13,460	15,367	18,532	21,582	17,110	15,773	10,424	6,844	5,424	5,468	7,45
EVAPOTRANSPIRATION (from dry beaches)														
Tailings Beaches Area (m²)	Î	-	433,299	433,299	433,299	433,299	433.299	456,424	456,424	456,424	456,424	548,020	548,020	548,02
Total Evapotranspiration Outflow (m²/month)	Depth factor	0.3	925	1,322	1,510	1,821	2,120	1,722	1,588	1.049	689	591	595	81
or design and meson of	Depth factor	0.3	925	1,322	1,5101	1,021	2,120	1,722	1,500	1,049	569	281	282	01.
RETENTION IWLTSF Stage 4 Volume Retained in Tailings (MC W/W%)	Dependant on in-situ density-reed from "DD vs MC" sheet		36,25%	36,25%	36,25%	36,25%	36,25%	36,25%	36,25%	36,25%	36,25%	36,25%	36,25%	36,259
IWLTSF Stage 4 Volume Retained in Tailings (m ⁹ /month)	1 ton of water equivalent to 1 m ² of water	- 1	48,333	48,333	48,333	48,333	48.333	48,333	48.333	48,333	48,333	48,333	48,333	48,33
Total Retain Volume in Tailings (m ³ /month)			48,333	48,333	48,333	48,333	48,333	48,333	48,333	48,333	48,333	48,333	48,333	48,33
DECANT WATER FROM FACILITY														
Decant pump rate (tph)		- 5	68	63	.65	66	71	89	78	80	74	79	77	6
Underdrainage pump rate (tph)			18	16	16	16	18	22	20	20	19	20	19	1
Volume of water pumped to plant (m²/month)			46,836	46,853	47,154	48,982	53,049	59,801	58,062	57,581	55,373	56,744	57,331	50,70
Water removed as a percentage of slurry water cut to the facility (%)		47.9%	43%	43%	43%	45%	49%	55%	53%	53%	51%	52%	53%	469
Water return expressed as a percentage of total water into facility (%)	V	42.9%	42%	40%	40%	40%	41%	45%	45%	47%	47%	48%	48%	44
TOTAL WAT	ER REMOVED (m³/month)		111,129	115,771	117,979	123,471	130,888	132,488	129,889	123,303	117,352	118,194	119,067	114,64
CUMULATIVE VOLUM	E OF WATER REMOVED (m ³ /month)		111,129	226,901	344,880	468,351	599,239	731,727	861,616	984,918	1,102,270	1,220,465	1,339,632	1,454,17
MONTHLY DE	FECIT/SURPLUS (m ³ /month)	4	0	0	0	0	0	0	0	0	0	0	0	
ESTIMATED SEEPAGE FR	OM EACH ITY (m³(month)	-	5,616	5,803	5,616	5,803	5,803	5,521	6,112	5,915	6,112	7,102	7,339	7,33
ESTEMATED SEEPAGE FR	OW ENGLIST (HE/MORE)		0,010	5,003	0,010	0,003	5,603	0,021	9,112	0,015	9,112	7,102	7,339	7,55

YEAR		- 7.				S 01		YEA	R2		33 33	- 57		
DATE	Jun-27	Jul-27	Aug-27	Sep-27	Oct-27	Nov-27	Dec-27	Jan-28	Feb-28	Mar-28	Apr-28	May-28	Jun-28	Jul-28
DAYS IN MONTH	30	31	31	30	31	30	31	31	29	31	30	31	30	31
MONTH	10	11	12	13	14	15	16	17	18	19	20	21	22	23
OPERATIONAL PHASE							Stage 4 Ful	Capacity		-			10.00	

RAINFALL																
Monthly Rainfall (mm)	Rantal Scenaria	1	14,6	16,0	8,9	3,6	11,8	15,7	25,4	38,5	40,5	36,0	24,6	14,3	14,6	16,
Stage 4 North Intermediate Storage Surface Area (m²)	Talings beach runoff coefficient	1.0	11000	11112000				No	relevant dur	ing this perio	d					
Slage 4 South Intermediate Storage Surface Area (m²)	Talings beach runoff coefficient	1,0						No	relevant dur	ng this perior	d					
Stage 4 Full Capacity Surface Area (m²)	Tellings beach runoff coefficient	1,0	548,020	548,020	548.020	548,020	548,020	548.020	548,020	548,020	548,020	548,020	548.020	548,020	548,020	548.02
Stage 4 North Intermediate Upstream Catchment Area (m²)	Upstream astatement runoff paditionent	0,5	8	Not refevant during this period												
Stage 4 South Intermediate Upstream Catchment Area (m ¹)	Upstream catchment runoff coefficient	8,5						No	rejevant dur	ing this perior	d					
Stage 4 Full Capacity Upstream Catchment Area (m²)	Upstream catchment runoff coefficient	0.5	150,980	150,980	150,980	150,980	150,980	150,980	150,980	150,980	150,980	150,980	150,980	150,980	150,980	150.98
Rainfall Inflow Total Volume from Tailings Surface (m*/month)	Toposcari successi in inter-processor		8,001	8,768	4.877	1,973	5,467	8,604	13,920	21,099	22,195	19,729	13,481	7,837	8,001	8,76
Rainfall Inflow Total Volume from Upstream Catchment (m ⁵ /month)			1,102	1,208	672	272	891	1,185	1,917	2,906	3,067	2,718	1,857	1,080	1,102	
Total Rainfall Inflow Total Volume (m²/month)			9,103	9,976	5,549	2.245	7,357	9,789	15,837	24,005	25,252	22,446	15.338	8,916	9,103	
Para swatera to			9,103	2,510	0,043	2,240	7,3371	9,199	15,657	24,000]	20,202	22,440	10,000	0,5101	3,100	200720
DEPOSETION Production Rate (timerith)		1,606,000	133,333	133,333	133,333	133,333	133,333	133,333	133,333	133,333	133,333	133,333	133.333	133,333	133,333	133.3
Slumy Density (%)	From Production Schedule (too) From Plant Designer	55.0%	55%	55%	55%	55%	55%	55%	55%	55%	55%	55%	55%	55%	55%	100.0
Volume of Tailings Solids into Facility (m ³ /month)	Lister Clear Creations	eden is	85.238	95,238	95.238	95,238	95,238	95.238	95,238	95,239	95,238	95,238	95.238	95.238	95,238	95.2
The state of the s			2000					2010000		-			7,7,007,7	77.770.77		-
Cumulative Volume of Tallings Solids In Facility (m ³)			952,381	1,047,619	1,142,857	1,238,095	1,333,333	1,428,571	1,523,810	1,610,048	1,714,286	1,809,524	1,904,752	2,000,000	2,095,238	The second second second
Volume of SiLury Water Into Facility (m ³ /month)	4	98	109,091	109,091	109,091	109,091	109,091	109,091	109,091	109,091	109,091	109,091	109,091	109,091	109,091	109,0
TOTAL WATER	TO BE REMOVED (m²/month)	- 0	118,194	119,067	114,640	111,336	116,448	118,880	124,928	133,096	134,343	131,537	124,429	118,007	115,194	119,0
CUMULATIVE VOLUME OF	F WATER TO BE REMOVED (m ² /month)		1,220,465	1,339,532	1,454,172	1,565,507	1,681,956	1,800,836	1,925,764	2,058,860	2,193,203	2,324,740	2,449,169	2,567,176	2,685,371	2,804,4
EVAPORATION (from pond and wet beaches)																
Monthly Evaporation (mm)	Evap and Pan Factor from Tech Note 65 (Metrosa, ~60 km from Leinster)	0.65	123	124	169	247	353	403	486	566	435	401	265	174	123	- 1
Stage 4 North Intermediate Storage Tailings Pool Area (m²)	Assume 5% of the beach surface area (0.5 m pool death for pump function)	0.06						No	relevant dur	ng this perior	d					
Stage 4 South Intermediate Storage Tailings Pool Area (m²)	Assume 8% of the beach surface area (0.5 m good death for pump function)	0,08							relevant dur							
Stage 4 Full Capacity Tailings Pool Area (m2)	Assume 8% of the beach surface area (0.5 m pool depth for pump function)	0,08	43.842	43,542	43.842	43.842	43,842	43.842	43,842		43.842	43,842	43.642	43.842	43,842	43.84
Stage 4 North Intermediate Storage Tallings Running Beaches (m²)	Active spigots x spacing inlength to pond	4 X 20 X 300		STREET, STREET	2000000000	22/28/IIA	U 0500000	No	relevant dur		ď	7.002.00		11/2000	0.1693.573.6	1, 1, 1, 1, 1, 1
Stage 4 North Intermediate Storage Tallings Running Seaches (m2)	Active spigets x specing x length to pend	4 X 20 X 300							relevant dur							
Stage 4 Full Capacity Tailings Running Beaches (m³)	Active spigets x specing x langth to pend	4 X 20 X 300	24,000	24,000	24.000	24,000	24,000	24.000	24,000	24,000	24,000	24,000	24,000	24.000	24,000	24.00
Total Evaporation Outflow (m²/month)	Using total wet area	17720 7730	5.424	5,468	7.452	10.892	15.566	17.771	21,431	24.959	19.182	17,683	11.686	7.673	5,424	5,40
	Control of the Control		3,423	2,000		10,002	10,000		1111-0110	50,000	137,100	(1),000	1,,030	1,00,0	3,324	
EVAPOTRANSPIRATION (from dry beaches)			272.227		202002	404 404	272 223	972.222					2/2 222	272.224		
Tailings Beaches Area (m²)			548,020	548,020	548,020	548,020	548,020	548,020	548,020	548,020	548,020	548,020	548,020	548,020	548,020	
Total Evapotranspiration Outflow (m³/month)	Depth factor	0.3	591	595	812	1,186	1,895	1,935	2,334	2,718	2,069	1,928	1,272	836	591	5
RETENTION															V63 -02 (85)	
WLTSF Stage 4 Volume Retained in Tailings (MC W/W%)	Dependant on in-situ density - read from "DO vs MC" sheet	(4)	35,25%	36,25%	36.25%	36,25%	36,25%	36.25%	36.25%	36.25%	36.25%	36,25%	36,25%	36,25%	36,25%	36.2
WLTSF Stage 4 Volume Retained in Tailings (m³/month)	1 ton of water equivalent to 1 m ² of water		48,333	48,333	48,333	48,333	48,333	48,333	48,333	48,333	48,333	48,333	48,333	48,333	48,333	48,3
Total Retain Volume in Tallings (m³/month)	1	7	48,333	48,333	48,333	48,333	48,333	48,333	48,333	48,333	48,333	48,333	48,333	48,333	48,333	48,3
DECANT WATER FROM FACILITY																
Decant pump rate (tph)			79	77	68	61	58	61	46	50	62	57	58	54	59	
Underdrainage pump rate (lph)			20	19	17	15	15	15	15	17	21	19	19	18	20	
Volume of water pumped to plant (m³/month)		02002	56,744	67,331	50,704	43,822	43,515	43,738	45,491	49,747	67,673	55,256	56,035	53,826	56,744	57,3
Water removed as a percentage of sturry water out to the facility (%)		47.9%	52%	53%	46%	40%	40%	40%	42%	46%	53%	52%	51%	49%	52%	5
Nater return expressed as a percentage of total water into facility (%)		42,9%	48%	48%	44%	39%	37%	37%	36%	37%	43%	43%	45%	46%	48%	46
TOTAL WAT	ER REMOVED (m ¹ /month)	- 1	118,194	119,067	114,640	111,336	116,448	118,880	124,928	133,096	134,343	131,537	124,429	118,007	118,194	119.0
CUMULATIVE VOLUM	E OF WATER REMOVED (m²/month)	- 10	1,220,465	1,339,532	1,454,172	1,565,507	1,681,956	1,800,836	1,925,764	2.058,860	2,193,203	2,324,740	2,449,169	2,567,176	2,685,371	2,804,4
	FECIT/SURPLUS (m*/month)	- 1	0	0	o l	0	0	0	0	0		0		0	ol	-
MIONTHLY DE	ECHASOKE NO ALLABORAL				- 741							- 4			- 4	

Appendix J

Earthwork Specification

Reference: P19-11-PR-29-R0 Client: Bellevue Gold Limited

REPORT REF P19-11-PR-29-R02 25 MARCH 2025

Earthworks Specification

IWLTSF Stage 4 North and Stage 4 South

Bellevue Gold Project

Bellevue Gold Limited

Efficiency

www.rec.com.au

Resource Engineering Consultants Pty Ltd

ACN: 626 931 753

Trading as REC

ABN: 66 626 931 753

Limitations, Uses and Reliance

This document, once read in its entirety, may be relied upon for the purposes stated within the limits of:

Geotechnical investigations and assessments are undertaken in accordance with an agreed term of reference and timeframe and may involve intrusive investigations of subsurface conditions, generally at a few selected locations. Although due care, skill and professional judgement are applied in the interpretation and extrapolation of geotechnical conditions and factors to elsewhere, the potential for variances cannot be discounted. Therefore, the results, analyses and interpretations presented herein cannot be considered absolute or conclusive. REC does not accept any responsibility for variances between the interpreted and extrapolated and those that are revealed by any means. Specific warning is given that many factors, natural or artificial, may render conditions different from those that prevailed at the time of investigation, and should they be revealed at any time subsequently, they should be brought to our attention so that their significance may be assessed, and appropriate advice may be offered. Users are also cautioned that fundamental assumptions made in this document may change with time and it is the responsibility of any user to ensure that assumptions made, remain valid.

The comments, findings, conclusions, and recommendations contained in this document represent professional estimates and opinions and are not to be read as facts unless expressly stated to the contrary. In general, statements of fact are confined to statements as to what was done and/or what was observed; others have been based on professional judgement. The conclusions are based upon information and data, visual observations and the results of field and laboratory investigations and are therefore merely indicative of the environmental and geotechnical conditions at the time, including the presence or otherwise of contaminants or emissions. In addition, presentations in this document are based upon the extent of the terms of reference and/or on information supplied by the client, agents and third parties outside our control. To the extent that the statements, opinions, facts, conclusions and/or recommendations in this document are based in whole or part on this information, those are contingent upon the accuracy and completeness of the information which has not been verified unless stated otherwise. REC does not accept responsibility for omissions and errors due to incorrect information not available at the time of preparation of this document and will not be liable in relation to incorrect conclusions should any information be incorrect or have been concealed, withheld, misrepresented, or otherwise not fully disclosed. We will not be liable to update or revise the document to take into account any events, emergent circumstances or facts occurring or becoming apparent after the date of this document.

Within the limitations imposed by the terms of reference, the assessment of the study area and preparation of this document have been undertaken and performed in a professional manner, by suitably qualified and experienced personnel, in accordance with generally accepted practices and using a degree of skill and care ordinarily exercised by geotechnical consultants under similar circumstances. No other warranty, expressed or implied, is made.

This document has been prepared for the purposes stated herein. Every care was taken in the interpretation of geotechnical conditions and the nature and extent of impacts, presentation of findings and recommendations which are provided in good faith in the general belief that none of these are misleading. No responsibility or liability for the consequences of use and/or inference by others is accepted.

Intellectual and copyright in the information, data, and representations such as drawings, appendices, tabulations and text, included in this document remain the property of REC. This document is for the exclusive use of the authorised recipient(s) and may not be used, copied or reproduced in whole, or in part, for any purpose(s) other than that for which it was prepared for. No responsibility or liability to any other party is accepted for any consequences and/or damages arising out of the use of this document without express and written consent.

The above conditions must be read as part of the document and must be reproduced where permitted. Acceptance of this document indicates acceptance of these terms and conditions.

Reference: P19-11-PR-29-R02 Page i of vii

Client: Bellevue Gold Limited Report Title: Earthworks Specification: IWLTSF Stage 4 North and Stage 4 South

Revision No: 0

Report

Title:	Earthworks Specification – IWLTSF Stage 4 North and Stage 4 South
File:	P19-11-PR-29-R02
Author(s):	
Client:	Bellevue Gold Limited
Contact:	
Synopsis:	This document presents the Earthworks Specification for the IWLTSF Stage 4 North and Stage 4 South raise at the Bellevue Gold Ltd Bellevue Gold Project.

Revision

Date	Revision	Purpose	
19 MAR. 2025	DRAFT	ISSUED FOR REVIEW AND COMMENT	
25 MAR. 2025	0	ISSUED FOR USE	

Distribution

Date	Revision	Approved	Recipient(s)	No of Copies
19 MAR. 2025	DRAFT	MH	BELLEVUE GOLD LIMITED	1. PDF
25 MAR. 2025	0	MH	BELLEVUE GOLD LIMITED	1. PDF
				\\\\\

© REC 2025

Reference: P19-11-PR-29-R02 Page ii of vii
Client: Bellevue Gold Limited Report Title: Earthworks Specification: IWLTSF Stage 4 North and Stage 4 South

Table of Contents

Tak	ole of	Conte	nts	iii
Lis	t of Ta	ables		v
Lis	t of A	ppendi	ices	vi
1.	Gen	eral		1
	1.1	Sumn	mary	1
		1.1.1	Related Specifications	1
		1.1.2	Terminology	2
	1.2	Refer	rences	2
	1.3	Subm	nittals	2
	1.4	Site C	Conditions	3
2.	Mate	erials		4
	2.1	Gene	eral	4
	2.2	Zone	1 Fill Material	4
	2.3	Zone	3A/3B Mine Waste	4
	2.4	Zone	3C Mine Waste	5
	2.5	HDPE	E Subgrade Material	5
	2.6	Wear	ing Course	5
	2.7	Drain	age Medium	6
	2.8	Unsui	itable Material	6
3.	Exe	cution.		7
	3.1	Exam	nination	7
	3.2	Site F	Preparation	7
		3.2.1	Construction Layout	7
		3.2.2	Clearing and Grubbing	7
		3.2.3	Topsoil Stripping	7
		3.2.4	Stockpiling	7
		3.2.5	Haul Roads and Access	7
		3.2.6	Foundation Preparation	7
	3.3	Fill ar	nd Compaction	8
		3.3.1	General	8
		3.3.2	Embankment Surface Preparation	8
		3.3.3	Proof Compaction	8
		3.3.4	Placement and Compaction of Zone 1 Fill Material	8
		3.3.5	Placement and Compaction of Zone 3A/3B Fill Material	9
		3.3.6	Placement and Compaction of Zone 3C Fill Material	9
		3.3.7	Placement and Compaction of HDPE Subgrade	
		3.3.8	Surface and Drainage	
		3.3.9	Maintenance	10
4.	Test	ing an	d Inspection	11
	4.1	Testir	ng Firm/Facilities	11
	4.2	Finish	ning Tolerances	11

5	Clear	ı IIn	12
	4.6	Additional Inspections	11
	4.5	Testing Program	1′
	4.4	Compaction Testing	1′
	4.3	Material Suitability	11

List of Tables

Table 1: List of Drawings	. 1
Table 2: Terminology	. 2
Table 3: Zone 1 Embankment Fill Material Properties	. 4
Table 4: Zone 3A/3B Mine Waste Fill Material Properties	. 5
Table 5: Zone 3C Mine Waste Fill Material Properties	. 5
Table 6: HDPE Subgrade Material Properties	. 5
Table 7: Wearing Course Material Properties	. 6
Table 8: Drainage Medium Material Properties	. 6
Table 9: Quality Control Test Schedule	11

List of Appendices

Appendix A: IWLTSF Stage 4 North and Stage 4 South Detailed Design Drawings

Reference: P19-11-PR-29-R02 Page vi of vii
Client: Bellevue Gold Limited Report Title: Earthworks Specification: IWLTSF Stage 4 North and Stage 4 South

Date: 25 March 2025
Revision No: 0

Date: 25 March 2025

Revision No: 0

Terminology and Abbreviations

The following terminology and abbreviations have been used in this document:

AS Australian Standard

BGL Bellevue Gold Limited

BGP Bellevue Gold Project

IPTSF In-Pit Tailings Storage Facility

IWLTSF Integrated Waste Landform Tailings Storage Facility

NATA National Association of Testing Authorities

OMC Optimum Moisture Content

QAQC Quality Assurance and Quality Control

RL Reduced Level

SMDD Standard Maximum Dry Density

t/m³ Tonnes per cubic metre

TSF Tailings Storage Facility

USCS Unified Soil Classification System

WSD Water Storage Dam

Reference: P19-11-PR-29-R02 Page vii of vii
Client: Bellevue Gold Limited Report Title: Earthworks Specification: IWLTSF Stage 4 North and Stage 4 South

1. General

1.1 Summary

This specification prescribes the requirements for the earthworks construction to achieve the site-finished grades indicated on the IWLTSF Stage 4 North and Stage 4 South Construction Drawings at the Bellevue Gold Limited (BGL) Bellevue Gold Project (BGP), approximately 430 km north of Kalgoorlie and 40 km north of the regional town of Leinster, Western Australia. Also prescribed are the requirements for clearing and grubbing; the removal, replacement and disposal of unsuitable materials; the disposal of surplus materials and the furnishing, placement and compaction of embankment fill material.

The Contractor shall coordinate work prescribed by this Specification with other related works to be performed.

1.1.1 Related Specifications

The Contractor is required to coordinate all works detailed in this Specification. This Specification must be read in conjunction with the latest revision of the following documents:

- IWLTSF Stage 4 North and Stage 4 South Detailed Design Report (Ref. P19-11-PR-29-R01)
- IWLTSF Stage 4 North and Stage 4 South Detailed Design Drawing (Ref. P19-11-PR-29 IFC)

A complete list of the IFC drawings applicable to this work is provided in the following Table 1.

Table 1: List of Drawings

Title	Drawing Number				
Site Layout and Drawing Index	P19-11-PR29-001				
Site General Arrangement – Stage 4	P19-11-PR29-002				
Site General Arrangement – Stage 4 North	P19-11-PR29-003				
Site General Arrangement – Stage 4 South	P19-11-PR29-004				
Deposition Arrangement – Stage 4 North	P19-11-PR29-005				
Deposition Arrangement – Stage 4 South	P19-11-PR29-006				
Embankment Long Section SHT 1 of 2	P19-11-PR29-010				
Embankment Long Section SHT 2 of 2	P19-11-PR29-011				
Embankment Typical Sections	P19-11-PR29-012				
Embankment Cross Sections SHT 1 of 4	P19-11-PR29-013				
Embankment Cross Sections SHT 2 of 4	P19-11-PR29-14				
Embankment Cross Sections SHT 3 of 4	P19-11-PR29-15				
Embankment Cross Sections SHT 4 of 4	P19-11-PR29-16				
Embankment Cross Sections SHT 4 of 4	P19-11-PR29-17				
Decant Causeway and Rock Ring Details	P19-11-PR29-18				
Decant Causeway and Rock Ring Details	P19-11-PR29-19				
Typical Details	P19-11-PR29-020				
Spigot Pipework Sections and Details	P19-11-PR29-025				

1.1.2 Terminology

The following terms are defined as stated, unless otherwise indicated.

Table 2: Terminology

Term	Definition
Contractor	Appropriate individual, partnership, company or corporation contractually obligated to perform the work prescribed in this Specification and associated Specifications (Section 1.1) and becomes contractually obligated to the Owner.
Design Drawings	Detailed IFC Design Drawings issued by the Owner to the Contractor.
Engineer	The engineer (or designated representative) appointed by the Owner who is responsible for evaluating the suitability of the materials involved in the work, and for verifying the compliance of the work to the requirements of the Specifications.
Independent Testing and Inspection Firm	The company, partnership or corporation retained to perform the inspections and tests required determining and verifying compliance of the work with the requirements of this Specification.
Modified Maximum Dry Density	The maximum dry density achieved as per AS 1289.5.1.2 when testing a sample of material representative of that to be compacted in the field.
Optimum Moisture Content	The moisture content at which the Maximum Modified Dry Density is achieved.
Owner	Bellevue Gold Limited (BGL)
Project Superintendent	The designated representative of the Contractor appointed by the Contractor who is responsible for the work by the Contractor.
Standard Maximum Dry Density	The maximum dry density achieved as per AS 1289.5.1.1 when testing a sample of material representative of that to be compacted in the field.
Work / Works	The activities specified within this document as the responsibility for the Contractor.

1.2 References

The publications listed below form part of this Specification. Each publication shall be the latest revision and addendum in effect on the date this Specification is issued for construction, unless noted otherwise. Except as modified by the requirements specified herein or the details of the Design Drawings, work included in this Specification shall conform to the applicable provisions of these publications. Referenced documents are as given in Section 1.1.1.

The works shall be carried out to comply with the latest revision of the Design Drawings, Codes and Standards specified or to the appropriate Australian Standards, or to other recognised International Standards approved by the Owner or the Engineer where there is no comparable Australian Standard.

The applicable Australian Standards for earthworks are as follows:

- AS 1289 Methods of testing soils for engineering purposes.
- AS 1726 Geotechnical site investigations.
- AS 3798 Guidelines on earthworks for commercial and residential developments.

1.3 Submittals

All submittals shall be delivered to the Owner. The following information shall be submitted prior to the work:

- One month before the start of the work, the Contractor shall submit a description of fill procedures/sequences.
- One month before the start of work, the Contractor shall submit proposed methods and construction details for any
 excavation where groundwater is expected to be encountered, to ensure that all excavations are kept dry during
 construction. Discharge/disposal of the dewatering system effluent shall be coordinated with the temporary installations
 for Storm Water Management and dust control. Certified design calculations are required for all groundwater dewatering
 systems. However, it is not expected to encounter any groundwater during IWLTSF construction work.

The following information shall be submitted at the completion of work:

 All field and laboratory test results and comments shall be compiled and submitted at earthwork completion for permanent project records.

1.4 Site Conditions

Detailed geotechnical investigations of the site conditions have been conducted and the test pit logs, borehole logs, photographs and laboratory test results from these investigations are included in the IWLTSF Stage 4 North and Stage 4 South Detailed Design Report.

The information contained in the documents shall not be construed as a guarantee of the depth, extent, or character of materials and groundwater level and quality actually present.

The Contractor should be aware of any existing piezometers and monitoring bores and shall not damage this existing infrastructure. Any costs to repair or replace the instrumentation due to damage during construction by the Contractor, shall be recovered from the Contractor. Information on the existing piezometers and monitoring bore location can be referred in IWLTSF Stage 2 RL 484.5 m Critical Containment Infrastructure Report (REF: P19-11-PR-025-R01) and IWLTSF Stage 3 RL 484.5 m Critical Containment Infrastructure Report (REF: P19-11-PR-028-R05).

2. Materials

2.1 General

Satisfactory materials shall be free from large lumps or clods, refuse or other material that might prevent proper compaction. All material shall be approved for use by the Engineer prior to placement.

The material zones are as follows

- Zone 1 Fill Material the in-situ material sourced from excavations and used as bulk fill or select fill, as appropriate, to construct the IWLTSF cut-off trench, as indicated on the Design Drawings.
- Zone 3A Mine Waste Material this material shall be suitable waste material used as bulk fill to construct the upstream
 zone of the IWLTSF embankment adjacent to Zone 3B, as indicated on the Design Drawings.
- Zone 3B Mine Waste Material this material shall be suitable waste material used as bulk fill to construct the downstream zone of the IWLTSF embankment, as indicated on the Design Drawings.
- Zone 3C Transitional Material this material shall be suitable waste material used as bulk fill to construct the upstream
 zone of the IWLTSF embankment adjacent to the low-permeability interface, as indicated on the Design Drawings.
- Zone 4 Clean Competent Rockfill this material to be used to construct the rock ring as indicated on the Design Drawings.
- HDPE Subgrade Material this material to be used to construct the subgrade to receive HDPE liner in the upstream face of the IWLTSF and anchoring trench at the embankment crest, as indicated on the Design Drawings.
- Wearing Course this material to be used to construct the wearing course in designated areas as indicated on the Design Drawings.
- Drainage Medium this material to be used to in the constructions of toe drains and finger drains, as indicated on the Design Drawings.

2.2 Zone 1 Fill Material

Zone 1 fill material for the construction shall be sourced from suitable laterite sources available across the site or designated borrow area and must meet the requirements listed in Table 3. Test frequencies are provided in Section 4.5.

Table 3: Zone 1 Embankment Fill Material Properties

Property	Test Method	Requirement
Soil Classification	AS 1726	SM, SC, GM, GC
Particle Size Distribution	AS 1289	100 % passing 75 mm, > 15 % passing 75 μm
Compacted In-Situ Density	AS 1289	95% SMDD
Plasticity Index	AS 1289	< 20 %
Liquid Limit	AS 1289	< 50 %

2.3 Zone 3A/3B Mine Waste

The Zone 3 bulk rock mine waste material for the construction of the IWLTSF embankment shall be competent rock material sourced from the underground exploration development works. Zone 3A rock mine waste fill shall meet the requirements listed in Table 4. The Zone 3B bulk rock mine waste fill, located further downstream is not required to meet the maximum particle size detailed in Table 4.

Table 4: Zone 3A/3B Mine Waste Fill Material Properties

Property	Test Method	Requirement
Soil Classification	AS 1726	SM, SC, GM, GC with Cobbles
Particle Size Distribution	AS 1289	100 % passing 300 mm (Zone 3A only)

2.4 Zone 3C Mine Waste

The Zone 3C transitional material for the construction of the IWLTSF embankment shall consist of oxide mine waste, historical weathered mine waste material, or laterite/duricrust material obtained from various borrow sources across the project site, or a combination of these materials. The historical Vanguard mine waste, currently located within the TSF footprint, has been identified as suitable for Zone 3C. Material rejected for HDPE subgrade from the borrow area within the IWLTSF Stage 3 basin, primarily gravelly silty sand with cobbles, is also appropriate for use in Zone 3C. All Zone 3C transitional material shall meet the requirements listed in Table 5, and any occasional boulders larger than 200 mm should be selectively removed. Material compliance shall be verified through visual inspection, with no additional testing required, subject to the satisfaction of the Project Superintendent/Engineer.

Table 5: Zone 3C Mine Waste Fill Material Properties

Property	Test Method	Requirement
Soil Classification	AS 1726	SM, SC, GM, GC with Cobbles
Particle Size Distribution	AS 1289	100 % passing 200 mm and 50 % passing 2.36 mm

2.5 HDPE Subgrade Material

HDPE subgrade material to be used to construct a suitable subgrade to receive HDPE liner in the upstream face of the IWLTSF, and anchoring trench at the embankment crest. When borrowing material for HDPE subgrade, materials containing gravels and rock that has potential to pierce the HDPE liner should be avoided. HDPE subgrade forming the upstream face of the IWLTSF should be roller compacted or alternative construction methodology to achieve smooth and compacted surface suitable to receive HDPE liner. Construction of the anchoring trench at the embankment crest shall use HDPE subgrade material using a handheld plate compactor.

The material for the construction of HDPE subgrade shall consist of lateritic soil, weakly cemented duricrust and extremely weathered saprolite sourced from material borrowed from stage 3 basin. The subgrade shall be lined with Bidim A24 geotextile (or equivalent) to provide enhanced puncture protection before HDPE liner installation. The HDPE subgrade material must meet the requirements listed in Table 6. Test frequencies are provided in Section 4.5.

Table 6: HDPE Subgrade Material Properties

Property	Test Method	Requirement
Soil Classification	AS 1726	SM, SC, GM, GC
Particle Size Distribution	AS 1289	90 % passing 20 mm and 60 % passing 4.75 mm
Plasticity Index	AS 1289	< 20 %
Liquid Limit	AS 1289	< 50 %

2.6 Wearing Course

The Wearing Course material shall comprise crushed and screened waste rock materials derived from the mine development works. If sizing requirements cannot be satisfied through the waste product, purpose crushed and screened aggregate is proposed to be used for the wearing course. Alternative material sources can be considered on approval by the design engineer.

The wearing course is proposed to be constructed for the access road on embankment crest, decant causeway and access ramp. The wearing course medium material must meet the requirements listed in Table 7.

Table 7: Wearing Course Material Properties

Property	Test Method	Requirement
Soil Classification	AS 1726	GW
Particle Size Distribution	AS 1289	100 % passing 37.5 mm

2.7 Drainage Medium

The Drainage Medium material shall comprise crushed and screened waste rock materials derived from the mine development works. If sizing requirements cannot be satisfied through the waste product, purpose crushed and screened aggregate is proposed to be used for the drainage medium. Alternative material sources can be considered on approval by the design engineer.

The drainage medium material to be used to in the constructions of toe drains and finger drains. The drainage medium material must meet the requirements listed in Table 8.

Table 8: Drainage Medium Material Properties

Property	Test Method	Requirement
Soil Classification	AS 1726	GW
Particle Size Distribution	AS 1289	100 % passing 50 mm, < 25 % passing 0.075 mm
Plasticity	AS 1289	Non-Plastic

2.8 Unsuitable Material

Materials that do not meet the requirements listed in the preceding sections and soil having insufficient strength or stability to carry the loads that will be superimposed on the completed fill or embankment without excessive settlement or loss of stability, must not be used in the constructed works.

Material containing vegetable matter, muck refuse, large rocks, debris, or other materials that could cause the embankment fill not to compact and organic soils with Unified Soil Classifications of Pt, OH or OL are considered to be unsuitable material and shall be removed from site.

3. Execution

3.1 Examination

Before starting work, the Contractor shall thoroughly examine the site to ascertain conditions under which the work must be performed and the nature of the materials to be used in the construction. The Contractor shall obtain all necessary site-specific permits prior to commencing work on site.

3.2 Site Preparation

3.2.1 Construction Layout

The earthworks shall be set out in accordance with the Design Drawings. The Contractor shall examine the site and verify all existing levels and survey control points and the set-out points shown on the Design Drawings, before commencing the earthworks. The Contractor shall be responsible for checking and agreeing the correctness of all values of monuments, datum or benchmarks, prior to the commencement of work. The Engineer may find it necessary to revise the lines, levels and grades of any part of the works during progress because of conditions revealed during construction.

The Contractor shall confirm that there are no existing services in the area. If any services are noted, the Contractor shall bring them to the notice of the Owner.

3.2.2 Clearing and Grubbing

The Contractor shall remove trees, stumps, roots, rubbish and any debris and vegetation resting on or protruding through the ground surface, from the designated areas as shown on the Design Drawings. Trees, stumps, roots and other vegetation shall be removed to the bottom of their root zone. The cut materials from the clearing works may, with the permission of the Engineer, be placed on the outer, downstream, batter slope.

3.2.3 Topsoil Stripping

The Contractor shall remove soil only to such depth that the soil meets the definition of topsoil. The Contractor shall avoid mixing topsoil with subsoil or other undesirable materials. The Contractor shall place the removed topsoil in stockpiles to a maximum height of two metres.

3.2.4 Stockpiling

The Contractor shall deposit material resulting from the clearing and grubbing operations in the disposal areas. The Contractor shall cover with soil or burn if permitted by applicable regulations.

3.2.5 Haul Roads and Access

The Contractor shall clear all vegetation, standing and fallen, from the agreed routes of all haul roads. The Contractor shall push this vegetation into heaps.

The Contractor shall form up, lay base course as is necessary and do all things necessary to form and maintain haul roads linking the mine waste dumps/borrow areas to the site and other haul roads necessary for the works.

The Contractor shall keep all haul roads sprayed and wetted to totally prevent the generation of airborne dust during the course of road construction and usage.

3.2.6 Foundation Preparation

The Contractor shall remove unsuitable material as directed by the Engineer.

The Contractor shall scarify/tyne, water and compact any areas of loose material on the surface of the construction footprint which have been identified by the Engineer.

Material containing vegetable matter, cohesive materials, debris or other materials that could cause the embankment fill not to compact and organic soils with Unified Soil Classifications of Pt, OH, or OL are considered to be unsuitable material and shall be removed from site.

All areas to receive fill shall be left in a clean and suitable condition to allow an uninterrupted placement of fill. No fill shall be placed until the base of all excavations has been inspected and approved by the Engineer.

All areas to receive pipework shall be graded smooth and be free of any rock, cobbles and other deleterious materials that could damage the pipework.

3.3 Fill and Compaction

3.3.1 General

The Contractor shall utilise satisfactory materials resulting from excavation and removal of unsuitable materials to the full est extent in the construction.

3.3.2 **Embankment Surface Preparation**

The Contractor shall immediately prior to placing the first layer of fill materials, scarify the surface of areas on which fill is to be placed to a depth of no less than 150 mm and then proof compact to no less than 95 % of the Standard Maximum Dry Density (SMDD).

3.3.3 **Proof Compaction**

After the site construction areas (that is the areas subject to cut to a subgrade level / areas to be filled / areas where foundations are to be constructed) have been stripped to the satisfaction of the Supervising Engineer, the site construction areas should be proof compacted using a heavy, self-propelled, smooth drum vibrating roller (11 tonnes in the front module), capable of operating in variable frequency modes. A Dynamic CA 251D, or equivalent, is recommended (subject to the protection of adjacent buildings from damaging ground vibrations).

The following proof compaction procedure is recommended:

- The entire site should be given a minimum of four (4) passes with the roller operating in the low frequency/high amplitude mode. A pass should include a minimum overlap of 20%.
- The site should then be given an additional minimum of four (4) passes with the roller operating in the high frequency/low amplitude mode.
- All weak areas, that deform excessively under rolling, shall be removed and replaced with fill material approved by design
- On completion of vibratory rolling, two (2) passes of the site should be made with the roller operating in a static mode. This will compact soil in the upper 300 mm that were disturbed by cyclic mobility.

It is recommended that the proof compaction be monitored by an Engineer experienced in earthworks.

3.3.4 Placement and Compaction of Zone 1 Fill Material

The Contractor shall construct the works using suitable material in accordance with Section 2.2, sourced from within the designated borrow areas approved by the Engineer.

Prior to the compaction, all fill material shall be moisture conditioned (as appropriate), to achieve a moisture content within ± 2 % of the OMC as determined by AS 1289.

The moisture content shall be uniformly distributed throughout the fill and there shall be no clods of soil.

Approved water shall be used for moisture control during compaction.

Reference: P19-11-PR-29-R02 Client: Bellevue Gold Limited Report Title: Earthworks Specification - IWLTSF Stage 4 North and Stage 4 South Date: 25 March 2025 Revision No: 0

The construction methodology for Zone 1 Fill Material (low permeability) placement shall be as follows:

- i. Spread a loose lift of moisture cured embankment fill material with a loose thickness not exceeding 300 mm.
- ii. The loose lifts shall be wetted with a water spray bar or similar, to lubricate and maximise mechanical interlock of the particles during compaction.
- iii. Grade, mix to ensure the moisture is uniformly distributed and trim with a grader.
- iv. Compaction of each loose lift shall be undertaken with 6 to 10 passes using handheld plate compactor to 95 % of the maximum SMDD, at a moisture content within ± 2 % of OMC, as determined by AS 1289.
- v. Test the material for compaction (refer to Section 4 for testing requirements).
- vi. After successful compaction testing, add another lift and repeat steps i) to v).
- vii. Placement shall be continuous. If the material dries out due to inactivity at the site, it should be lightly watered and compacted prior to fill placement recommencing.
- viii. The Contractor shall verify the above construction methodology prior to execution.

Where the required finished grade has a slope steeper than 1 vertical to 4 horizontal, overbuild the slope by no less than 600mm (measured horizontally) and trim back to finished grade after compaction.

3.3.5 Placement and Compaction of Zone 3A/3B Fill Material

The Contractor shall construct the works using suitable material in accordance with Section 2.3, sourced from within the designated borrow areas approved by the Engineer.

The construction methodology for Zone 3A/3B Fill Material (bulk rock fill mine waste) placement shall be as follows:

- Spread a loose lift of embankment fill material with a loose thickness not exceeding 1.0 m in Zone 3B 0.5 m in Zone 3A.
- ii. The loose lifts shall be wetted with a water spray bar or similar, to lubricate and maximise mechanical interlock of the particles during compaction.
- iii. Compaction of each loose lift shall be undertaken by heavy earthmoving machinery trafficking the work area (traffic compacted).
- iv. Any weak areas (those that deform excessively under compaction) shall be removed and replaced with new fill at the direction of the Company Representative.
- v. After sufficient trafficking of the placed layer, add another lift and repeat steps i) to iv).
- vi. Placement shall be continuous. If the material dries out due to inactivity at the site, it should be lightly watered and compacted prior to fill placement recommencing.
- vii. The Contractor shall verify the above construction methodology prior to execution.

3.3.6 Placement and Compaction of Zone 3C Fill Material

The Contractor shall construct the works using suitable material in accordance with Section 2.4, sourced from within the designated borrow areas approved by the Engineer.

The construction methodology for Zone 3C Fill Material (transitional material) placement shall be as follows:

- i. Spread a loose lift of embankment fill material with a loose thickness not exceeding 300 mm in Zone 3C.
- ii. The loose lifts shall be wetted with a water spray bar or similar, to lubricate and maximise mechanical interlock of the particles during compaction.

Reference: P19-11-PR-29-R02
Client: Bellevue Gold Limited Report Title: Earthworks Specification - IWLTSF Stage 4 North and Stage 4 South

- iii. Compaction of each loose lift shall be undertaken by heavy earthmoving machinery trafficking the work area (traffic compacted).
- iv. Any weak areas (those that deform excessively under compaction) shall be removed and replaced with new fill at the direction of the Company Representative.
- v. After sufficient trafficking of the placed layer, add another lift and repeat steps i) to iv).
- vi. Placement shall be continuous. If the material dries out due to inactivity at the site, it should be lightly watered and compacted prior to fill placement recommencing.
- vii. The Contractor shall verify the above construction methodology prior to execution.

3.3.7 Placement and Compaction of HDPE Subgrade

The Contractor shall construct the works using suitable material in accordance with Section 2.4, sourced from within the designated borrow areas approved by the Engineer.

Prior to the compaction, all fill material shall be moisture conditioned (as appropriate), to achieve a moisture content within ± 2 % of the OMC as determined by AS 1289.

The moisture content shall be uniformly distributed throughout the fill and there shall be no clods of soil.

Approved water shall be used for moisture control during compaction.

The construction methodology for HDPE subgrade material placement shall be as follows:

- i. Spread a loose lift of moisture cured embankment fill material with a loose thickness not exceeding 300 mm.
- ii. The loose lifts shall be wetted with a water spray bar or similar, to lubricate and maximise mechanical interlock of the particles during compaction.
- iii. Grade, mix to ensure the moisture is uniformly distributed and trim with a grader.
- iv. Compaction shall be carried out using either a smooth drum roller compactor or a dozer, with 6 to 10 passes. Where compaction is undertaken using a dozer, trimming with an excavator bucket shall be performed afterward to achieve a smooth, even surface.
- viii. The Contractor shall verify the above construction methodology prior to execution.

Any depression resulting from material loss into the Zone 3C transition material shall be backfilled and compacted as per the specification. Any protrusion greater than 50 mm on compacted subgrade surface must be selectively removed and backfilled. Surface level defects on the rolled and compacted subgrade surface shall not exceed 50 mm under a 3.0 m straight edge.

3.3.8 Surface and Drainage

The Contractor shall conduct fill operations in such a manner and sequence that proper drainage is maintained at all times in and around the work area. Promptly remove surface waters that become impounded. Remove and replace with satisfactory fill materials or stabilise (by drying, or by approved mechanical or chemical amendment methods) materials that become loosened due to exposure to the elements.

3.3.9 Maintenance

The Contractor shall maintain the final surfaces in a well-drained, dewatered and sufficiently moist condition to prevent shrinkage cracking and minimise dusting. The compacted surface must be smooth and generally free from roller marks, ruts, holes, depressions or protrusions.

Reference: P19-11-PR-29-R02

Client: Bellevue Gold Limited Report Title: Earthworks Specification - IWLTSF Stage 4 North and Stage 4 South

4. Testing and Inspection

4.1 Testing Firm/Facilities

An Independent Testing and Inspection Firm will be retained by the Owner to perform field and laboratory testing and soil evaluations for control of construction activities and/or to verify compliance of the work with the requirements of this Specification. The performance or lack of performance of Quality Control tests and inspections shall not be construed as granting relief from the requirements of these Specifications or the other contract documents.

The Independent Testing and Inspection Firm shall meet the technical criteria of NATA or ASTM for agencies involved in soil and rock inspection and testing. Any work failing to meet the criteria of the Specification shall be rectified at the Contractor's expense.

4.2 Finishing Tolerances

The Contractor shall fine grade the surfaces and perform all work to a vertical tolerance of \pm 50 mm from the elevations shown on the Design Drawings, unless otherwise stated on the drawing. All lines and dimensions shall be constructed to within a horizontal tolerance of \pm 1% and with a maximum tolerance of 100 mm from the dimensions and lines on the Design Drawings. The average slope of batters shall not exceed the specified slope.

4.3 Material Suitability

Prior to the placement of HDPE subgrade, laboratory testing shall be performed by the Independent Testing and Inspection Firm to assess the suitability of the materials for construction. Materials shall meet the requirements outlined in Section 2.0 of this Specification. Compaction criteria for the construction shall be established by performing compaction testing on representative samples in accordance with AS 1289.1.1 as appropriate to the materials.

4.4 Compaction Testing

Field density testing shall be performed by the Independent Testing and Inspection Firm on the compacted embankment material to ensure the compaction criteria meets the requirements of this Specification. The preferred field density testing method is the Nuclear Density test method in accordance with AS 1289.5.8.1. The calibration curves shall be checked and adjusted using either the sand cone method as described in AS 1289.5.3.1, or by an approved method by the Engineer.

The calibration checks of both the density and moisture of each gauge shall be made at the beginning of the project, on each different type of material encountered and at intervals as directed by the Engineer. The number of tests shall be increased if visual inspection indicates non-uniform moisture content or variable compaction effort considered inadequate to achieve the specified dry density.

The Contractor shall provide surveys of the locations and Reduced Levels (RLs) of the test sites:

4.5 Testing Program

The testing for Zone 1 Cutoff Trench and HDPE Subgrade shall follow the requirements of Table 9 as a minimum.

Table 9: Quality Control Test Schedule

Material	Property	Test Method	Frequency - Stockpile
	Soil Classification	AS 1726	1:5,000m³
t dipped to	Plasticity	AS 1289	1:5,000m³
Zone 1, HDPE Subgrade	Particle Size Distribution	AS 1289	1:5,000m³
	Field Density (Zone 1 only)	AS 1289	1:2,500m³

4.6 Additional Inspections

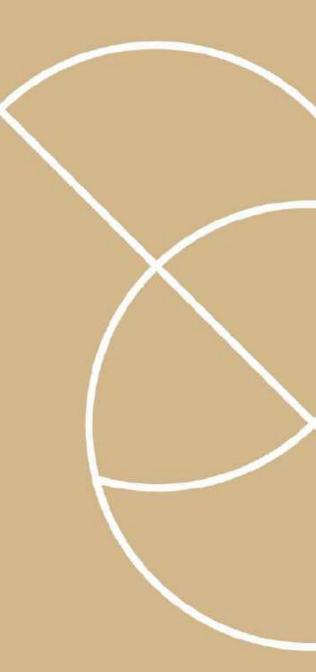
The Contractor shall perform random surveys of the top of every third layer to monitor fill progress.

5. Clean Up

Upon completion of the work, the Contractor shall leave the project site clear of debris and surplus material resulting from the construction operations.

Reference: P19-11-PR-29-R02
Client: Bellevue Gold Limited Report Title: Earthworks Specification - IWLTSF Stage 4 North and Stage 4 South

Appendix A


IWLTSF Stage 4 North and Stage 4 South Detailed Design Drawings

Efficiency Recalibrated.

ACN: 626 931 753

Appendix K

Operating Manual

Reference: P19-11-PR-29-R0 Client: Bellevue Gold Limited

REPORT REF

P19-11-PR-29-R03

25 MARCH 2025

Operating Manual IWLTSF Stage 4 North and Stage 4 South Bellevue Gold Limited Bellevue Gold Project

BELLEVUE

www.rec.com.au

Resource Engineering Consultants Pty Ltd

ACN: 626 931 753

Trading as REC

ABN: 66 626 931 753

Limitations, Uses and Reliance

This document, once read in its entirety, may be relied upon for the purposes stated within the limits of:

Geotechnical investigations and assessments are undertaken in accordance with an agreed term of reference and timeframe and may involve intrusive investigations of subsurface conditions, generally at a few selected locations. Although due care, skill and professional judgement are applied in the interpretation and extrapolation of geotechnical conditions and factors to elsewhere, the potential for variances cannot be discounted. Therefore, the results, analyses and interpretations presented herein cannot be considered absolute or conclusive. REC does not accept any responsibility for variances between the interpreted and extrapolated and those that are revealed by any means. Specific warning is given that many factors, natural or artificial, may render conditions different from those that prevailed at the time of investigation and should they be revealed at any time subsequently, they should be brought to our attention so that their significance may be assessed, and appropriate advice may be offered. Users are also cautioned that fundamental assumptions made in this document may change with time and it is the responsibility of any user to ensure that assumptions made, remain valid.

The comments, findings, conclusions and recommendations contained in this document represent professional estimates and opinions and are not to be read as facts unless expressly stated to the contrary. In general, statements of fact are confined to statements as to what was done and/or what was observed; others have been based on professional judgement. The conclusions are based upon information and data, visual observations and the results of field and laboratory investigations and are therefore merely indicative of the environmental and geotechnical conditions at the time, including the presence or otherwise of contaminants or emissions. In addition, presentations in this document are based upon the extent of the terms of reference and/or on information supplied by the client, agents and third parties outside our control. To the extent that the statements, opinions, facts, conclusions and/or recommendations in this document are based in whole or part on this information, those are contingent upon the accuracy and completeness of the information which has not been verified unless stated otherwise. REC does not accept responsibility for omissions and errors due to incorrect information or information not available at the time of preparation of this document and will not be liable in relation to incorrect conclusions should any information be incorrect or have been concealed, withheld, misrepresented or otherwise not fully disclosed. We will not be liable to update or revise the document to take into account any events, emergent circumstances or facts occurring or becoming apparent after the date of this document.

Within the limitations imposed by the terms of reference, the assessment of the study area and preparation of this document have been undertaken and performed in a professional manner, by suitably qualified and experienced personnel, in accordance with generally accepted practices and using a degree of skill and care ordinarily exercised by geotechnical consultants under similar circumstances. No other warranty, expressed or implied, is made.

This document has been prepared for the purposes stated herein. Every care was taken in the interpretation of geotechnical conditions and the nature and extent of impacts, presentation of findings and recommendations which are provided in good faith in the general belief that none of these are misleading. No responsibility or liability for the consequences of use and/or inference by others is accepted.

Intellectual and copyright in the information, data and representations such as drawings, appendices, tabulations and text, included in this document remain the property of REC. This document is for the exclusive use of the authorised recipient(s) and may not be used, copied or reproduced in whole, or in part, for any purpose(s) other than that for which it was prepared for. No responsibility or liability to any other party is accepted for any consequences and/or damages arising out of the use of this document without express and written consent.

The above conditions must be read as part of the document and must be reproduced where permitted. Acceptance of this document indicates acceptance of these terms and conditions.

Report

Title:	Operating Manual
File:	P19-11-PR-29-R03
Author(s):	
Client:	Bellevue Gold Limited
Contact:	
Synopsis:	This document presents the Operating Manual for the Stage 4 North and Stage 4 South Integrated Waste Landform Tailings Storage Facility (IWLTSF) at the Bellevue Gold Ltd Bellevue Gold Project.

Revision

Date	Revision	Purpose	
25 MAR. 2025	Α	ISSUED FOR REVIEW AND COMMENT	
	8		
ı	Recipients are responsible	of for eliminating all superseded documents in their possession	·

Distribution

Date	Revision	Approved	Recipient(s)	No of Copies
25 MAR. 2025	Α	МН	BELLEVUE GOLD LIMITED	1. PDF
		8		
				3

© REC 2025

Table of Contents

1.	Gen	eral	11
	1.1	Summary	11
	1.2	Scope of the Operating Manual	13
	1.3	Roles and Responsibilities	13
		1.3.1 Key Roles	13
		1.3.2 Organisational Structure	18
	1.4	Operator Training	22
	1.5	Guidelines, Codes, Practice and Standards	22
2.	Sum	ımary of Operating Procedures	23
	2.1	Introduction	23
	2.2	Related Documents	
3.	Ope	rating Methodology	26
	3.1	Background to Tailings Deposition	26
	3.2	Tailings Management	26
		3.2.1 Tailings Pipelines	26
		3.2.2 Tailings Deposition	26
		3.2.3 PAF Tailings Management	27
		3.2.4 Tailings Line Flushing	27
		3.2.5 SCATs Management	27
	3.3	Water Management	28
		3.3.1 Decant Operation	28
		3.3.2 Underdrainage Operation	28
		3.3.3 Water Recovery	28
		3.3.4 Storm Events	29
		3.3.5 Decant Pipelines	29
	3.4	Commissioning Plan	29
	3.5	Daily Inspections	29
		3.5.1 Tailings and Return Water System	30
		3.5.2 Decant System	30
		3.5.3 Embankments	30
		3.5.4 Seepage	30
		3.5.5 Instrumentation	30
	3.6	Warning Signs and Fencing	31
4.	Eme	rgency Action Plan	32
	4.1	Response Actions	
	4.2	Tailings Storage	32
	4.3	Tailings Lines and Water Return Lines	
	4.4	Process Water Dam	33

5.	Incident Reporting	. 34
6.	References	. 35
7	Limitations	36

Reference: P19-11-PR-29-R03
Client: Bellevue Gold Limited
Report Title: Operating Manual: IWLTSF Stage 4 North and Stage 4 South
Revision No: A

List of Figures

Figure 1: IWLTSF Stage 4 (North Intermediate) Tailings Deposition	11
Figure 2: IWLTSF Stage 4 (South Intermediate) Tailings Deposition	12
Figure 3: IWLTSF Stage 4 (North and South Final) Tailings Deposition	12
Figure 4: Organisation Structure	18
Figure 5: Freeboard Definition – Pond Located Away from Perimeter Embankment (DMP, 2015)	23

List of Tables

Table 1: Individual Responsibilities – RACI Matrix	19
Table 2: Individual Responsibilities Details – Responsibility Activity Legend	22
Table 3: Freehoard Limits and Requirements	24

Date: 25 March 2025 Revision No: A

List of Appendices

Appendix A: Emergency Assembly Points (OWNER TO ATTACH)

Appendix B: Regulatory Licence and Lease Conditions (OWNER TO ATTACH)

Appendix C: Operating Manual Forms for Process Plant Staff (OWNER TO ATTACH)

Reference: P19-11-PR-29-R03
Client: Bellevue Gold Limited
Report Title: Operating Manual: IWLTSF Stage 4 North and Stage 4 South

Terminology and Abbreviations

The following terminology and abbreviations have been used in this document:

AE Accountable Executive

ANCOLD Australian National Committee on Large Dams

ARI Average Recurrence Interval

AEP Annual Exceedance Probability

ALARP As Low as Reasonably Practical

BGL Bellevue Gold Limited

BGP Bellevue Gold Project

CCIR Critical Containment Infrastructure Report

CoP Code of Practice

DAR Deviance Accountability Report

DBR Design Basis Report

DMP Department of Mines and Petroleum

DMIRS Department of Mines Industry Safety and Regulation

DSR Dam Safety Review

EoR Engineer of Record

EPA Environmental Protection Agency

EPRP Emergency Preparedness and Response Plan

GCA Graeme Campbell & Associates Pty Ltd

Global Industry Standard on Tailings Management

HDPE High-Density Polyethylene

HST Health, Safety, and Training

ICMM International Council on Mining and Metals

IFC Issued for Construction

ISTR Independent Senior Technical Reviewer

IWLTSF Integrated Waste Landform Tailings Storage Facility

kPa Kilopascal

LoM Life of Mine

MB Monitoring Bore

m/s Meters per Second

Mm³ Million Cubic Meters

Mt Million Tonnes

NA Not Applicable

Date: 25 March 2025

Revision No: A

NAF Non-Acid Forming

PAF Potentially Acid-Forming

PAR Population at Risk

QA/QC Quality Assurance/Quality Control

REC Resource Engineering Consultants Pty Ltd

RL Reduced Level

RTFE Responsible Tailings Facility Engineer

TDS Total Dissolved Solids

TMP Tailings Management Plan

TSF Tailings Storage Facility

t/m³ Tonnes per Cubic Meter

VWP Vibrating Wire Piezometer

WA Western Australia

WB Water Balance

WSD Water Storage Dam

WI Work Instruction

1. General

1.1 Summary

Resource Engineering Consultants Pty Ltd (REC) has prepared this Operating Manual for the Stage 4 North and Stage 4 South Integrated Waste Landform Tailings Storage Facility (IWLTSF) at the Bellevue Gold Ltd (BGL) Bellevue Gold Project (BGP). The BGP is situated in the Sir Samuel region of Western Australia's North-eastern Goldfields, approximately 430 km north of Kalgoorlie and 40 km north of Kalgoorlie and 40 km north of the regional town of Leinster, and adjacent to the Goldfields Highway. The proposed Stage 4 IWLTSF and its operational sequencing configurations are shown in plan on Figures 1 to 3 respectively.

Figure 1: IWLTSF Stage 4 (North Intermediate) Tailings Deposition

Figure 2: IWLTSF Stage 4 (South Intermediate) Tailings Deposition

Figure 3: IWLTSF Stage 4 (North and South Final) Tailings Deposition

IWLTSF Stage 4 North and Stage 4 South has been designed in downstream embankment configuration with an embankment raise height of 4.5 m, increasing the facility elevation to RL 489.0 m. The proposed IWLTSF Stage 4 North and Stage 4 South raise provides approximately 2.1 Mm³ or 2.9 Mt of tailings storage capacity, based on an assumed average tailings dry density of 1.4 t/m³. At a maximum planned throughput of 1.6 Mtpa, this provides a minimum storage life of approximately 1.8 years.

Date: 25 March 2025

Revision No: A

Construction work for the IWLTSF must be undertaken in accordance with drawings and an earthworks specification. Furthermore, the operation of these facilities must be executed in accordance with the intent of the design and Operating Manual (OM).

IWLTSF Stage 4 North and Stage 4 South have been designed in accordance with the Australian National Committee on Large Dams (ANCOLD) Guidelines (ANCOLD, 2012), with a Dam Failure Consequence Category of 'High C' assigned to the facility. Similarly, an assessment based on the Department of Mines and Petroleum (DMP) Code of Practice (DMP 2013, Table 1) determined a 'Medium' hazard rating, while classification under Table 2 of the DMP Code of Practice (DMP 2013, Table 2) designates IWLTSF Stage 4 as a 'Category 1' facility. The IWLTSF Stage 4 has capacity for the 1:100-year annual exceedance probability (AEP) 72-hour storm event, DMP required freeboard and ANCOLD additional freeboard.

Tailings are to be deposited from the perimeter embankment of the IWLTSF in a sub-areal manner in thin lifts to form a decant pond away from the main embankment.

The OM for the IWLTSF describes the operating procedures recommended for the safe management and control of the IWLTSF. The provisions of the Operating Manuals must be strictly adhered to by the Owner and the storages must be constructed and operated strictly in accordance with the provisions of the Operations Manuals and in accordance with the design. REC shall not be liable in any respect whatsoever for any damage to or failure in the operations of the tailings and water storages resulting from failure of the Owner, its servants or agents to comply with the provisions of the design and Operating Manuals for these facilities.

The Appendices referred to in this document comprise the following and are to be attached to this document by the Owner:

- Appendix A: Emergency Assembly Points (OWNER TO ATTACH)
- Appendix B: Regulatory Licence and Lease Conditions (OWNER TO ATTACH)
- Appendix C: Operating Manual Forms for Process Plant Staff (OWNER TO ATTACH)

1.2 Scope of the Operating Manual

The Operating Manual for Plant Staff ('this document') details the requirements for personnel who have the responsibility for day-to-day operation and maintenance of the IWLTSF.

The objectives of the day-to-day management for the facilities are:

- Ensuring the facilities and all associated infrastructure are operated, maintained and monitored to achieve the design objectives;
- Ensuring the facilities are operated in accordance with the design parameters that have been provided by the Owner for use in the design of the facilities. Where changes in the parameters are proposed, the process plant management must advise the designers in order that the impact of the changes can be fully assessed; and
- Ensuring the facility is operated and maintained to remove water ponding against the upstream embankment.

This document also sets out the requirements for operating the IWLTSF including Tailings Storage Management (TSM) and water management aspects comprising:

- Water recovery from the IWLTSF;
- · Tailings placement/deposition;
- The routine daily inspections and monitoring; and
- The objectives of the daily inspection and monitoring programme.

1.3 Roles and Responsibilities

1.3.1 Key Roles

They key roles in relation to the design, construction, operations, maintenance, surveillance and closure of the BGL TSF in accordance with GISTM are defined in the following sections.

1.3.1.1 Engineer of Record (EoR)

The Engineer of Record (EoR) is the qualified engineering firm responsible for confirming that the tailings facility is designed, constructed, and decommissioned with appropriate concern for integrity of the facility, and that it aligns with and meets applicable regulations, statutes, guidelines, codes, and standards. The EoR may delegate responsibility but not accountability.

The EoR's duties (without limiting general duties) include:

General:

- a) Contribute to the risk management system for the TSF.
- b) Provide design continuity and ongoing technical support to the Responsible Tailings Facility Engineer (RTFE) with respect to TSF
- c) Participate in formal risk assessment and development and monitoring of critical controls to maintain the integrity of the TSF.

Design Criteria:

- a) Prepare the Design Basis Report (DBR) (GISTM requirement 4.8).
- b) Issue the DBR to the Independent Tailings Senior Reviewer(s) (ITRS) for review (GISTM requirement 4.8).
- c) Review and update the DBR ever time there is a material change in:
 - i) Design assumptions
 - ii) Design criteria.
 - iii) Design; and/or
 - iv) The knowledge base (GISTM requirement 4.8).

Design:

- a) Responsible for design (GISTM requirement 9.1).
- b) Responsible for the design report.

Construction and Operation:

- a) Prepare (with the assistance of the Responsible Tailings Facility Engineer (RTFE) and approve (sign) the Critical Containment Infrastructure Report (CCIR) (as built report) (GISTM requirement 6.3).
- b) Support the RTFE in providing the Operations Maintenance and Surveillance (OMS) manual to all levels of personnel involved in the TMS (GISTM requirement 6.4).
- c) Prepare a periodic Deviance Accountability Report (DAR) as required by change management systems including recommendations for managing risk and resulting updates in design, DBR, OMS and monitoring program. The DAR is to be submitted by the EoR to the Accountable Executive (AE) for approval. (GISTM requirement 6.5).
- d) Consider new and emerging technologies and approaches and use the evolving knowledge in the refinement of the design, construction and operation of the tailings facility. (GISTM requirement 6.6).

TSF Monitoring Systems:

- a) Develop and document a monitoring program for the TSF including performance criteria/parameters (GISTM requirement 7.1 -7.3).
- b) Establish program (frequency) for analysis of technical monitoring data (GISTM requirement 7.4).
- c) Review evidence submitted and report (for update) in risk management and design (as required). (GISTM requirement 7.4).
- d) Report on performance outside expected ranges and ensure compliance with Trigger Action Response Plan (TARP) or critical controls (GISTM requirement 7.4).

e) Review and approve technical monitoring reports (GISTM requirement 7.5).

Management and Governance:

- a) Attend scheduled communications with Accountable Executive(s) (GSIOTM requirement 8.4).
- b) Liaise with the RTFE and AE.
- c) Appointment of Replacement EoR:
- d) If a change of EoR is necessary, assist with the preparation of a detailed plan for comprehensive transfer of data, information, knowledge and experience with the construction procedures and materials. (GSIOTM requirement 9.5).

Review:

- a) Assist multi-disciplinary team with update of risk assessments (GISTM requirement 10.1).
- b) Conduct annual (or more frequently if required) TSF construction and performance reviews (GISTM requirement 10.4).
- c) Review and approve technical monitoring reports and annual auditing (GISTM requirement 7.5).
- d) Certify design and documentation of TSF, cell raising construction (including drawings, specifications, scope of work, schedule, resign report etc.).
- e) Review monthly monitoring results (i.e., piezometer levels).
- f) Support the Mine Owner (MO), AE and RTFE in any other technical matters relating to maintaining the effective TSF integrity including the provision of appropriate training.
- g) Undertake the 5 yearly dam safety review.
- h) Provide design documentation for cell raises.
- i) Provide construction monitoring of TSF cell raises, including monitoring QA/QC, schedule, safety and issue of construction report and compliance certificate on completion of the construction program.
- j) Provide other geotechnical services as requested by the RTFE.

Deliverables (EoR to prepare unless agreed otherwise):

- a) Design Basis Report.
- b) Design Report(s).
- c) Critical Containment Infrastructure Report(s).
- d) Review of OMS Manual.
- e) Annual Performance/Audit Report.
- f) Deviance Accountability Report.
- g) Dam Safety Review Report (annually for ANCOLD high consequence TSF's and dams).
- h) Emergency Preparedness and Response Plan (EPRP) (EoR to review and RTFE to update).
- i) Impact Assessments and Mitigation Plans (EoR to review annually and RTFE to update).

1.3.1.2 Responsible Tailings Facility Engineer (RTFE)

The RTFE shall be appointed by the MO to be responsible for the tailings facility. The RTFE must be available at all times during construction, operations and closure. The RTFE has clearly defined, delegated responsibility for management of the tailings facility and has appropriate qualifications and experience compatible with the level of complexity of the tailings facility. The RTFE is responsible for the scope of work and budget requirements for the tailings facility, including risk management. The RTFE may delegate specific tasks and responsibilities for aspects of tailings management to qualified personnel but not accountability.

The RTFE's duties (without limiting general duties) include:

General:

- a) Responsible for the integrity of the TSF and coordinating activities related to the TSF including planning, design, operation, construction, maintenance, and surveillance of the TSF (GISTM requirement 8.5).
- b) Keep AE and EoR appraised of the status of TSF at all times including giving notice immediately if there is any material change or risk of any material change in the integrity of the TSF.
- c) Keep the Tailings Management Master Plan (TMMP) current and obtain any necessary approvals for same and review it at least annually for completeness and accuracy.

Specific:

- a) Responsible for the integrity of the tailings facility (GISTM requirement 8.5).
- b) Liaise with the EoR, operations, planning, regulatory affairs, social performance, and environmental teams (GISTM requirement 8.5).
- c) Implement the TSF design.
- d) Establish a change management system (GISTM requirement 6.5).
- e) Monitor system and communication of the results to the EoR, including performance reviews (GISTM requirements 7.2, 7.3).
- f) Review and approve technical monitoring reports (GISTM requirements 7.5).
- g) Assist the EoR, with the Critical Containment Infrastructure Report and signing this Report (GISTM requirement 6.3).
- h) Assist the EoR with preparation of the OMS Manual (GISTM requirement 6.4).
- i) Maintain production databases (i.e., ore and tailings production).
- j) Record water balance and provide this to the EoR monthly (i.e., slurry density and water return).
- k) Maintain site knowledge and plan for the life of site tailings requirements.
- I) Manage tailings storage capital funding.
- m) Manage the TMP.
- n) Manage cell lifts.
- o) Co-ordinate with the cell raise contractor to ensure delivery of projects on time and on budget.
- p) Incident reporting and investigations associated with incidents related to cell construction and stability.
- g) Review TSF piezometer data.
- r) Train personnel associated with the TSF (GISTM requirement 6.4).

1.3.1.3 Accountable Executive (AE)

The Accountable Executive(s) (AE) is one or more executive(s) who is/are directly answerable to the Chief Executive Officer (CEO) on matters related to GISTM, communicates with the Board of Directors, and who is accountable for the safety of tailings facilities and for minimising the social and environmental consequences of a potential tailings facility failure. The AE may delegate responsibilities but not accountability.

The AE's duties (without limiting general duties) include:

General:

a) Responsible for the safety of tailings facilities and for minimizing the social and environmental consequences of a potential tailings facility failure.

Date: 25 March 2025

Revision No: A

Specific:

- b) Responsible for the safety of the TSF and for environmental and social performance (GISOTM requirements 7.1, 8.2, 8.3, 8.4).
- c) Appoint:
 - i) RTFE (GISTM requirements 8.5, 8.6).
 - ii) EoR (GISTM requirements 9.1 to 9.5, 8.6); and
 - iii) ISTR (GISTM requirement 8.7).
 - iv) Approve the adopted design criteria and measures to reduce the risk of failure of existing facilities to as low as reasonably practical (ALARP) (GISTM requirements 4.3, 4.7, 5.7).
 - v) Responsible for tailings management training, emergency preparedness and response (GISTM requirement 8.4).
 - vi) Responsible for establishment of a process for addressing concerns (GISTM requirement 12.1).

1.3.1.4 Independent Tailings Senior Reviewer (ITSR)

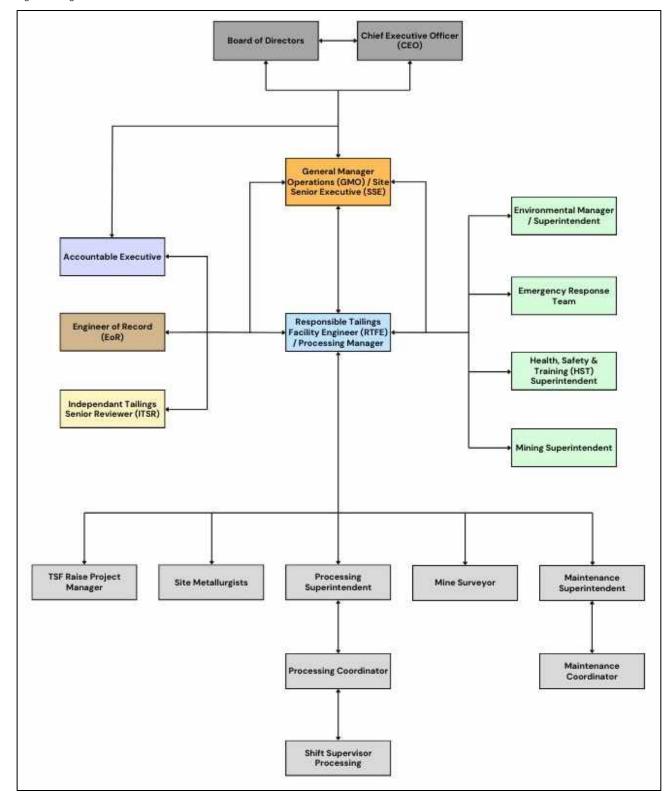
The Independent Tailings Senior Reviewer (ITSR) is a person or board that provides independent technical review of the design, construction, operation, closure and management of the tailings facilities. The ITSR are reviewer(s) which are third-parties who are not, and have not been directly involved with the design or operation of the tailings facility. The expertise of the ITSR member(s) shall reflect the range of issues relevant to the facility and its context and the complexity of these issues.

The ITSR's duties (without limiting general duties) include:

General:

a) Review aspects of EoR's performance of EoR duties as required.

Specific:


- a) Review of the design, construction, risk assessments, governance systems and other risk management matters that can affect the tailings facility, ensuring that the required expertise and skill sets are involved.
- b) Review of the adopted external loading design criteria and measures to reduce the risk of failure of existing facilities to ALARP (GISTM requirements 4.2, 4.7, 5.7).
- c) Review of the alternatives analysis (GISTM requirement 3.2), design, construction, risk assessments (GISTM requirements 10.1), governance systems and other risk management matters (GISTM requirement 10.6) that can affect the tailings facility.
- d) Review the Design Basis Report (GISTM requirement 4.8).
- e) Determine the frequency of Dam Safety Review (GISTM requirement 10.5).

1.3.2 Organisational Structure

The organisational structure for the Bellevue Gold Project TSFs is presented as Figure 4.

Figure 4: Organisation Structure

Table 1: Individual Responsibilities – RACI Matrix		-																_
Description	Chief Executive Officer (CEO)	Accountable Executive (AE)	Engineer of Record (EoR)	Independent Tailings Senior Reviewer (ITSR)	GM Operations / SSE	Responsible Tailings Facility Engineer (RTFE) / Process Manager	Processing Superintendent	Processing Co-ordinator	Shift Supervisor Processing	TSF Raise Construction Supervisor	Site Metallurgists	Mine Surveyor	Maintenance Superintendent	Maintenance Co-ordinator	Environmental Manager/Superintendent	HST Superintendent	Emergency Response Team	Mining Superintendent
ROLE APPOINTMENTS																		
Appoint the EoR, RTFE and ISTR	А	R	С	С	С	С	- 1	1	I)	J	1	Ŋ	1	13	1	1	1	1
Appointment of Replacement EoR	Α	R	R	С	C	C	E	4	T.	4	Ī	ă	Ī	E	3	Ü	ï	1
DESIGN DEVELOPMENT, CONSTRUCTION, REPORTING AND REVIEW																		
Life of Operation Plan - TSF planning	1	А	R	С	A	Α	С	С	C	C	C	ä	c	C	С	Ĩ.	1	C
Prefeasibility / Scoping Studies / Feasibility Designs	1	А	R	С	А	Α	c	С	C	С	G		C	U	С	-	1	С
Develop Detailed Design of New TSF's and Raises	1	A	R	С	Α	Α	C	C	0	С	C	Ť	С	C	C	Î	Ť	С
Develop & Update Design Basis Report	1	А	R	С	А	Α	O	С	С	С	U		C	u	С	-	1	С
Develop & Update Deviance Accountability Report	1	A	R	С	Α	А	С	O	C	C	С		С	C	С	Ī	ï	C
Design Documentation Review	1	Α	R	R	A	R	С	С	С	С	С		1	1	С	-1	1	С
Construction Monitoring of TSF / TSF Raises	1	Α	R	С	Α	Α	С	С	С	R	С	R	c	С	С	Ĩ	Ï	С
Develop & Review Critical Containment Infrastructure Report	1	А	R	R	А	R	C	С	C	С	C	С	С	С	R			С
Geochem/Geotech Tailings Properties Review	1	A	R	R	C	Α	C	O	С	1	С				R	Ţ.	Ţ	С
Develop & Review Impact Assessments and Mitigation Plans	1	А	R	R	Α	R	С	С	С	С	С		С	С	R	С	С	С
Develop & Review Risk Assessment for the TSF	(1)	А	R	R	Α	R	С	С	С	С	С		С	C	R	С	С	С
OPERATIONS AND MAINTENANCE	4.0	10					7.				U) U				. 10	A. 6		
Develop, Review & Update Operations Manual	(1)	Α	R	С	A	R	R	R	С	C	С	9	c	С	С	1	1	С
																	$\overline{}$	$\overline{}$

Description	Chief Executive Officer (CEO)	Accountable Executive (AE)	Engineer of Record (EoR)	Independent Tailings Senior Reviewer (ITSR)	GM Operations / SSE	Responsible Tailings Facility Engineer (RTFE) / Process Manager	Processing Superintendent	Processing Co-ordinator	Shift Supervisor Processing	TSF Raise Construction Supervisor	Site Metallurgists	Mine Surveyor	Maintenance Superintendent	Maintenance Co-ordinator	Environmental Manager/Superintendent	HST Superintendent	Emergency Response Team	Mining Superintendent
Develop, Review & Update Tailings Management System	1	A	R	С	Α	R	R	R	С	С	С	ä	С	С	С	1	1	С
Develop, Review & Update Change Management System	1	A	R	С	A	R	R	R	О	С	С	ji ji	1	- 1	С	С	С	С
Develop and Maintain the Knowledge Base	E	A	R	С	A	R	R	R	G	C	С	ä	1	Ē	C			C
Provide Operating, Monitoring and Surveillance Data to the EoR at Required Intervals	1	Α	С	1	A	Α	R	R	-1	1	1	1	1	T,	-			1
Manage TSF Budgeting	1	А	С		A	R	R	R	С	R	С	С	c	С	С			C
Deposition Planning		A	R	1	1	А	R	R	R	ij	1	(1			1			1
Operation of TSF	1	А	С	1	1	А	R	R	R	1	1		1	-1	1	1		1
TSF Personnel Training	1	Α			А	R	R	R	R	С	С	С	С	С	С	R	С	С
Rectification Works	1	A	С	1	1	Α	R	R	R	С	С		R	R	С			1
Maintenance of Infrastructure (Pipework, Pumps, Generators etc)		Α	С		1	Α	С	С	С	С	C		R	R	С			1
Incident Reporting and Investigations	L	A	С	С	Α	R	С	С	С	С	С	С	c	С	R	R	С	R
SURVEILLANCE AND MONITORING				A)			MF V.			0	100 to							
Develop, Review & Implement a Monitoring Program	1	Α	R	С	A	R	R	R	R	С	C	(i	1	E	R	С	С	С
Develop, Review & Implement a TARP or Critical Controls	1	A	R	C	А	R	R	R	R	ì	С	С	1	- 1	R	С	С	С
Examine & Review TSF Monitoring Data	1	А	R	С	A	R	С	C	c	С	С	gi .	С	С	R	С	С	С
Develop & Review Technical Monitoring Reports	1.	Α	R	С	A	R	С	С	С	Ä	С	Я	1	- 65	R	С	С	С
Monitor TSF Piezometers		A	С	1	А	А	С	O	С	H	1		1	-13	R	1	1	1
Monitor Groundwater Standpipes and Decant (licenced)		А	С	1	Α	Α	С	C	С	1	1		1	1	R	1	1	1

Description	Chief Executive Officer (CEO)	Accountable Executive (AE)	Engineer of Record (EoR)	Independent Tailings Senior Reviewer (ITSR)	GM Operations / SSE	Responsible Tailings Facility Engineer (RTFE) / Process Manager	Processing Superintendent	Processing Co-ordinator	Shift Supervisor Processing	TSF Raise Construction Supervisor	Site Metallurgists	Mine Surveyor	Maintenance Superintendent	Maintenance Co-ordinator	Environmental Manager/Superintendent	HST Superintendent	Emergency Response Team	Mining Superintendent
Visual Inspections as per Licence Requirements	9	A	C	1	A	A	R	R	R	R	1	-	1	-	R	1	1	1
Aerial Survey (monthly)		А	С	1	A	Α	С	С	С	1	1	R	1	1	С	1:	1	1
Bathymetric Survey (quarterly to biannually)		A	С	i	A	А	С	С	C	i	Ī.	R	1	Ē	С	ī	1	1
AUDITING							-						_				_	
Annual Inspection of TSF by EoR	T	А	R	î	Α	Α	С	C	Ī	ï	С	ñ.	C	С	С			1
Develop Annual Audit Compliance Report (licenced)	(i)	Α	R	С	А	А	C	С	ı	С	С	()	1	1)	А	1	-1	С
Determine the Frequency of the Dam Safety Review	А	R	С	C	R	R	С	C	-1	1	С	11	I	1	С	ı	1	С
Dam Safety Review Inspection of TSF by EoR (5-yearly)	1	Α	R	1	А	Α	С	С	1	С	С	1	С	С	С			С
Develop 5-Yearly Dam Safety Review Report	1	Ā	R	С	A	Α	С	С	-1	C	С	11	1	-1	С	1	1	C
EMERGENCY RESPONSE		0.1																
Emergency Planning	1	А	С	Ţ	Α	Α	R	R	R	R	Ţ	J	Î	T	С	R	R	С
Emergency Management	1	А	С	1	А	Α	R	R	R	R	1	ij	1	- ()	С	R	R	С
Regulatory Liaison on Emergency Response	1	А	С	1	Α	A	С	С	С		1				R	R	R	С
Develop & Review Emergency Preparedness and Response Plan	1	Α	R	1	А	R	R	R	R	R	i.	ij	1	- 1)	R	R	R	С
CLOSURE																		
Develop & Review TSF Closure Plan	1	А	R	С	A	Ā	С	C	1)	С	С	М	С	C	R	I.	1	С
Implement TSF Closure & Decommissioning Plan	(1)	A	С	С	А	Α	C	C	Ŋ.	С	С	31	c	С	R	1:	1	С

Table 2: Individual Responsibilities Details - Responsibility Activity Legend

Responsibility Activ	ity Legend	Role							
Responsible	R	The person who carries out the process of task assignment. Responsible for executing the job.							
Accountable	А	The person who is ultimately accountable for the process or task being completed appropriately. Responsible person(s) are accountable to this person.							
Communicated	С	People who are not directly involved with carrying out the task, but who are consulted. May be a stakeholder or subject matter expert.							
Informed	1	Those who receive output from the process or task, or who have a need to stay informed.							

1.4 Operator Training

All operators of the IWLTSF and associated components and Contractors working on the facilities must complete the requisite training, competency testing and be aware of the emergency procedures prior to being allowed to work on the facilities and associated components.

The Site Manager is responsible for ensuring that the training, competency testing and emergency awareness of operators and Contractors is completed.

Personnel inspecting the IWLTSF should be advised of the regulatory requirements for the facility as part of their induction and training.

Copies of the regulatory Licence and or Lease Conditions relevant to the facilities are attached to this document in Appendix B. The Site Manager and Process Plant Foreman must insert these documents in Appendix B of this Operations Manual and must ensure that each time the regulatory conditions are changed (renewed, amended or updated) the documents are changed, and the staff are advised of the changes and the training confirmation records updated accordingly.

1.5 Guidelines, Codes, Practice and Standards

The following Guidelines, Codes of Practice and Standards are relevant to the operation of the IWLTSF:

- Government of Western Australia Department of Mines and Petroleum (DMP): "Guide to Departmental requirements for the management and closure of tailings storage facilities (TSFs)", 20:15;
- Government of Western Australia Department of Mines and Petroleum (DMP) Code of Practice (CoP): "Tailings Storage Facilities in Western Australia", 2013;
- Australian National Committee on Large Dams (ANCOLD): "Guidelines on the Consequence Categories for Dams",
 2012; and
- iv) Australian National Committee on Large Dams (ANCOLD): "Guidelines on Tailings Dams Planning, Design, Construction, Operation and Closure", 2019.
- Australian National Committee on Large Dams (ANCOLD): "Guidelines on Selection of Acceptable Flood Capacity", 2000.

2. Summary of Operating Procedures

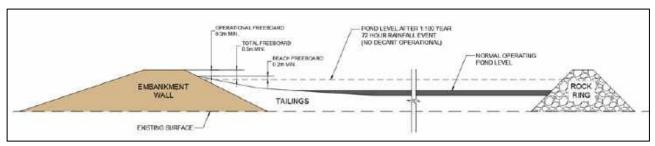
2.1 Introduction

The following considerations have been incorporated into the design of the IWLTSF.

- To optimise tailings storage capacity and reduce the risks associated with embankment stability and seepage, tailings will be deposited from the embankment and along the perimeter of the storage as depicted in the drawings.
- Tailings deposition and beaching will be controlled such that the supernatant water is ponded away from the engineered
 embankment. Tailings will be deposited such that the in-situ densities within the stored tailings and the water return for
 reuse in the process plant is maximised.
- Tailings in the form of a slurry will be discharged subaerially (discharge exposed to air) and or sub-aqueously (discharge
 to slurry/water) depending on the slurry and water levels at the point of discharge from the upstream face of the main
 embankment. Tailings will be deposited in discrete layers from numerous spigot point discharges.

The deposition regime is aimed at minimising the supernatant pond over the surface of the tailings beach to promote drying of the tailings and maintaining the supernatant pond around the decant facility. Under no circumstances is the supernatant pond allowed to extend to reach the perimeter embankment.

Depending on the decommissioning plan adopted for the IWLTSF, it may be necessary to alter the deposition philosophy near the end of the mine life. Appropriate procedures shall be developed if changes to deposition or freeboard criteria are required. If necessary, appropriate government authorities shall be advised of any changes especially to freeboard criteria. As tailings deposition progresses, there may be a requirement for the deposition locations to be moved in order to maximise the utilisation of the tailings storage area.


Tailings discharge or spigotting is to be carried out such that the supernatant pond is always maintained around the decant facility and associated pump. The supernatant pond is always to be maintained below the perimeter containment embankments and bunds.

The IWLTSF have been sized to accommodate storm events. The IFD data obtained from the BOM indicates the 1 in 100 AEP 72-hour storm is approximately 194 mm. The design of the facilities has been followed the freeboard requirements stipulated by the DMP guidelines (2015) for TSFs. The freeboard requirements vary based on whether a water pond is normally located away from or against a perimeter embankment. Additionally, for a TSF with a water pond normally located against a perimeter wall, the freeboard requirements vary depending on whether the facility has an upstream catchment or not.

These requirements comprise three distinct elements, namely: operational freeboard, beach freeboard and total freeboard. These elements are graphically illustrated in Figure 5, and are summarised in Table 3, where:

- Operational freeboard is the height difference between the tailings beach and the embankment crest;
- Beach freeboard is the level difference between the tailings beach and the decant water level plus allowance for the 1 in 100-year average recurrence interval (ARI), 72-hour rainfall event, and;
- Total freeboard is the sum of the operational freeboard and beach freeboard plus allowance for the 1 in 100-year average recurrence interval (ARI), 72-hour rainfall event.

Figure 5: Freeboard Definition – Pond Located Away from Perimeter Embankment (DMP, 2015)

Reference: P19-11-PR-29-R03

Client: Bellevue Gold Limited

Report Title: Operating Manual: IWLTSF Stage 4 North and Stage 4 South

Revision No. A

A construction sequence and deposition sequencing plan have been developed to ensure the timely completion of Stage 4 construction while maintaining continuous storage for tailings operations. To achieve this, Stage 4 North will be operated at an intermediate storage capacity for a period of time to allow for the construction of Stage 4 South and its CCIR approval. During this initial phase, the decant pond will be managed within the IPTSF and adjacent low-lying areas, generally central to the facility.

Once Stage 4 North reaches its intermediate storage capacity and Stage 4 South is ready for commissioning, tailings operations will transition to Stage 4 South. During this phase, the decant pond will continue to be managed within the IPTSF, while tailings will be deposited from the south, gradually encapsulating the IPTSF. By this stage, the decant pond will either remain within the IPTSF or be pumped into the rock ring for recovery.

Tailings deposition will continue in Stage 4 South until the beach elevation aligns with that of Stage 4 North. Thereafter, the remaining capacity of Stage 4 will be operated as a single storage facility, with tailings deposition cycled along the entire perimeter embankment.

During final phase of Stage 4 operation, to maintain the decant pond within and around the rock ring, intermittent operation of three open-end tailings discharge points from different locations around the hill in the south, adjacent to the decant causeway, will be required.

In accordance with the classification undertaken by DMIRS (2015) and ANCOLD (2019), A summary of the freeboard limits and requirements for Stage 4 North and Stage 4 South, along with their sequencing order, is presented in Table 3.

Table 3: Freeboard Limits and Requirements

Parameter	Stage 4 North Intermediate	Stage 4 South Intermediate	Stage 4 North & South (Remaining)
Facility Classification			.,ů
ANCOLD	High C	High C	High C
DEMIRS	Category 1	Category 1	Category 1
Embankment Elevations		.	30
Embankment Elevation (RLm)	489.0	489.0	489.0
Contingency Storage Allowance			
Tailings Operational Freeboard (DEMIRS minimum)	0.3 m	0.3 m	0.3 m
Beach Freeboard (DEMIRS minimum)	0.2 m	0.2 m	0.2 m
Additional Freeboard (ANCOLD 2019)	0.5 m	0.5 m	0.5 m
Total Freeboard (Minimum to Max. Operating Pond)	1.0 m	1.0 m	1.0 m
Extreme Storage Allowance			
Design Storm Event (1:100-year AEP, 72-hour event)	0.26	0.26	0.26
Normal Operating Pond			
Minimum Normal Operating Pond Freeboard (m)	1.26	1.26	1.26
Maximum Normal Operating Pond (RL m)	483.24*	487.74	487.74

yet provided to the full Stage 4 embankment elevation (RL 489 0) on south.

The IWLTSF Stage 4 North intermediate, Stage 4 South intermediate and Stage 4 North and South remaining operation, including construction periods, will result will result in varying levels of the supernatant pond and retained water within the facility. At the completion of construction and tailings operation for each stage, the computed freeboard height (vertical distance from the embankment crest to the tailings solids and supernatant pond) must be determined.

Date: 25 March 2025

Revision No: A

To manage the tailings facility effectively the following must be adhered to:

- Water recovery must be maximised at all times; and
- The minimum freeboard requirement must be maintained at all times.

The tailings storage area will assume the form of a truncated prism with a depressed cone in the top surface. Frequent inspections (multiple times per day) should be made of the:

- Freeboard;
- Tailings lines;
- Water return lines:
- Discharge points;
- · Decant system;
- The position of the supernatant ponds in relation to the water recovery system;
- The perimeter containment embankments; and
- Monitoring and instrumentation.

The embankments should be inspected once per day. If seepage has occurred, particular attention should be paid to the embankments in the vicinity of the seepage. Only by regular inspection and appropriate remedial action can the performance of the water return system be optimised, and operational problems be avoided.

Operation, safety and environmental aspects should be periodically reviewed during an inspection by a suitably experienced and qualified engineer. This inspection should be done at least every year.

The operational design of the tailings storage located at the Bellevue Gold Project is aimed at:

- · Providing return water to the plant; and
- Maximising the in-situ density of the tailings which in turn maximises the storage capacity of the tailings facility.

2.2 Related Documents

This document is to be used in conjunction with the following related documents:

- IWLTSF Stage 4 Design Report;
- Operating Manual for Process Plant Management; and
- Construction Specifications (Earthworks).

The forms which are relevant to this Operations Manual are provided in Appendix C and comprise the following templates:

- Daily Inspection Log Sheet (OMPPS1);
- Operations Personnel Contact Details (OMPPS2); and
- Training Confirmation Record (OMPPS3).

The content of these templates is considered to be the reasonable minimum to be used to monitor the performance of the IWLTSF. The content of the templates can be modified by the site management, if required, to meet any additional site-specific requirements.

A plan showing the location of the Assembly Points in the event of an emergency is to be prepared by the Processing Manager. This plan should be designated Figure 1 and be placed behind the text of the report in Appendix A.

3. Operating Methodology

3.1 Background to Tailings Deposition

The method of deposition of tailings into the IWLTSF is one of the major controlling factors to achieve or exceed the design requirements. The method of tailings deposition influences:

- · In-situ densities within the stored tailings; and
- Water return for reuse in the process plant.

It is essential that a detailed understanding of the various components of the tailings system is acquired to understand the tailings deposition. The tailings system components include:

- Tailings pipeline from the process plant to the IWLTSF including the associated valves in this pipeline which direct tailings to the various distribution points;
- Spigot operation and the spigotting (tailings deposition) process; and
- Flushing procedures for the tailings pipeline(s) and spigots.

3.2 Tailings Management

3.2.1 Tailings Pipelines

For the Bellevue Gold Project, tailings are transported from the process plant to the IWLTSF via a large diameter HDPE pipe to embankments where the tailings are to be discharged. This pipeline is contained within a system of bunds to enable any spillage or leakage to be contained. An access track is located outside the bunds to facilitate pipeline inspections and maintenance. This track extends from the process plant to the embankment of the IWLTSF and onto the crest of the embankment. Flow meters are installed on opposite ends of the tailings pipelines with remote monitoring to aid in the detection of spills.

For the IWLTSF, the pipe divides via a manifold into four distribution lines to distribute the tailings to the active deposition points. The distribution lines are known as the A, B, C and D lines. The manifold also provides for flushing capabilities for water sourced from the return water line from the decant facility to the process plant. The tailings distribution lines comprise lengths of welded HDPE pipe. Teed off-takes or spigots are located at 20 m intervals in the discharge area on the embankments, totalling approximately 124 at IWLTSF Stage 4.

3.2.2 Tailings Deposition

Tailings will be delivered from the Plant at a production rate of approximately 1,600,000 tonnes of solids per annum (tpa) for 1.75 years (base case production scenario). At times throughout the mine plan, the rate of deposition may increase or decrease. Tailings will be produced using a thickener with a resultant solids content (% solids) of approximately 55%.

Tailings in the form of a thickened slurry will be discharged sub-aerially (discharge exposed to air) or subaqueously (discharged to slurry/water) depending on the slurry and water levels at the point of discharge from the upstream face of the perimeter embankment / pit berm within the IWLTSF at the time of discharge. The tailings should be deposited at a low velocity from numerous spigot discharge points for the IWLTSF. Deposition should occur for a period of two to three days from each group of spigots. Each spigot comprises a hose with clamp/valve to shut off the flow.

Tailings spigotting or deposition within the IWLTSF will be executed in thin layers of not more than 300 mm to facilitate the development of a uniform tailings beach and optimise drying, consolidation and the in-situ density of the stored tailings. Tailings deposition will be formulated such that the supernatant water pond is always maintained away from the perimeter embankments / point of discharge. The deposition sequence will be based on cyclic deposition that is sequential deposition along the IWLTSF embankment, such that each layer of tailings assists the formation of sloped tailings beaches to facilitate the drainage and drying processes to achieve maximum dry density of the deposited tailings.

Reference: P19-11-PR-29-R03
Client: Bellevue Gold Limited
Page 26 of 37
Client: Bellevue Gold Limited
Report Title: Operating Manual: IWLTSF Stage 4 North and Stage 4 South

Tailings deposition will occur from multiple spigot points regularly spaced at intervals not less than 20 m and not more than 50 m. The design and operation of the pumping and piping system will dictate the number of spigots which can be opened at any one time. Deposition from a single point discharge will not occur for the IWLTSF.

As the IWLTSF is lined with HDPE across the upstream embankment face and low permeability in-situ materials across the valley floor, care will be taken to ensure that the tailings are not discharged so as to damage the HDPE and earthworks or allow tailings slurry flow to erode the perimeter containment bunds. Conductor pipes (slotted) will be utilised to ensure the tailings are deposited past the toe of the embankments and internal underdrainage excavation.

Furthermore, tailings deposition will be undertaken to prevent oxidation and the potential subsequent development of Acid Mine Drainage (AMD) by ensuring fresh tailings are deposited over the existing tailings within the lag time limit for acidification (18 months) as detailed in Section 3.2.3.

3.2.3 PAF Tailings Management

Though kinetic testing by Graeme Campbell & Associates Pty Ltd (GCA) is still in hand, the current indications are that the PAF tailings will be characterised by a lag time of at least 18 months. As such, operation of the facilities requires careful consideration be given to the geochemical nature, especially reactivity of the mine tailings.

BGL's works approval conditions stipulate that tailings should not be left uncovered for a period greater than 3 months due to the lag time of acidification. It is understood that these license conditions are based on preliminary testing by GCA at the time of submission of the Detailed Design Report, and do not reflect updated/current test results. As such, a maximum lag time for acidification of 18 months is considered appropriate for the IWLTSF.

Throughout the construction, commissioning, operation, and closure of the IWLTSF, the tailings beach exposure times (to atmospheric oxidation) will be limited to below the lag time for acidification (18 months). As such, fresh tailings will be deposited over existing tailings within the lag time limit (18 months).

3.2.4 Tailings Line Flushing

The tailings distribution mains will be thoroughly flushed after each deposition cycle to ensure that no tailings solids have settled in the pipeline. During the flushing process the spigots on each distribution line will be progressively closed, furthest from the plant first and closest to the plant last and the inoperative distribution main left filled with water. The water retained in the distribution main limits the potential for blockages when the tailings deposition is switched to the inoperative line.

3.2.5 SCATs Management

SCATs material developed as a byproduct from processing activities at the BGL Process Plant are produced at an approximate rate of 4.0 - 5.0 tonnes per day. It is understood that geochemical testing is currently underway to identify whether the SCATs byproduct is PAF. In the case of the SCATs material being PAF, careful consideration is required with respect to the materials management and storage given its geochemical nature and reactivity.

Similar strategies to the management of the PAF tailings shall be implemented for PAF SCATs in accordance with Section 6.3.3. That is, throughout construction, commissioning, operation, and closure of the IPTSF and IWLTSF, the SCATs material exposure times (to atmospheric oxidation) will be limited to below the lag time for acidification (18 months). As such, fresh tailings will be deposited over the SCATs material (minimum 1.0 m coverage for encapsulation) or 1.0 m of overlying water cover shall be provided to prevent oxidation within the lag time limit (18 months).

Consideration should be given to the storage of PAF SCATs across the wider IWLTSF where planned tailings beaching activities provide coverage over these materials within the lag time limit (18 months), without compromising their overall development and facility water recovery.

Reference: P19-11-PR-29-R03

Client: Bellevue Gold Limited

Report Title: Operating Manual: IWLTSF Stage 4 North and Stage 4 South

Revision No: A

3.3 Water Management

3.3.1 **Decant Operation**

The supernatant pond level must be actively maintained, to be kept clear of the perimeter embankments. At no time will the supernatant pond be allowed to encroach within 100 m of the external engineered embankments of the IWLTSF.

The position and extent of the supernatant pond is controlled by the water recovery which will be maximised. The decant pumping system will be capable of recovering additional water during the wet season.

Water recovery will be carried out through the operation of one (1) turret pump each in IWLTSF Stage 4A and Stage 4D, and two (2) turret pumps in Stage 4B and 4C. The position of these turret pumps will be continuously optimised as the deposited tailings fill the lower basins and move upstream along the embankments/pit benches, following the decant pond, to maximise water recovery.

The turret pumps will be used during the commissioning phase of the facility and will continue until the completion of Stage 4D, at which point water recovery will be transitioned fully to a rock ring filter. During early commissioning the following factors will be considered in the managing of the decant pond:

- Little or no pond around the decant facility is likely to produce turbid or dirty water in the water return;
- A large pond around the decant will produce clear water but evaporation losses from the pond will be high;
- To limit seepage risk, the water pond will not be allowed to exceed a distance of 100 m from the perimeter embankments; and
- The water pond will not be so large that the storm freeboard volume is compromised.

The process of tailings deposition is to ensure that the pond is positioned away from the perimeter embankments.

A bathymetric survey of the supernatant pond will be conducted periodically to establish accurate water volumes and submerged beach profiles.

3.3.2 **Underdrainage Operation**

The extension of finger drains will be installed within the basins of Stage 4 IWLTSF to assist with the consolidation of deposited tailings, thus promoting early water return, minimising seepage and increasing in-situ stored tailings densities.

The existing submersible pumps will be still used at the base of each of the existing underdrainage collection sumps and connected to diesel generators. The submersible pump will pump collected underdrainage water back onto the facility. This will be undertaken by routing return pipes up the embankment downstream face, across the embankment alignment and crossing the embankment crest into the facility. The submersible pumps will be run at all times. A backup diesel generator and backup pump will be available for deployment in case of failure of the system.

3.3.3 **Water Recovery**

The decant pond on the IWLTSF will be maintained at the smallest practical operational size to maximise water return to the plant and allow the tailings beaches to drain, dry and desiccate. The size of the pond will be largely governed by operational requirements and the efficiency of the decant system in removing water.

Based on the tailings test results, there will be some loss of water via seepage. Under average rainfall and evaporation, the preliminary water balance indicates:

an average daily water returns of 1715 m³/day or 71.4 m³/hr, equivalent to 48% of the total slurry water, for operation of the IWLTSF (Stage 4) (based on the operating hours of 8,000 per annum).

3.3.4 Storm Events

The IWLTSF have been sized to accommodate storm events and the DMIRS minimum total freeboard, comprising the operational freeboard (300 mm) and beach freeboard (200 mm) in additional to ANCOLD requirements.

The vertical distance between the embankment crest and the adjacent deposited tailings beach or standing water level which corresponds with this level will have to be determined, after construction for each embankment crest level. At this stage the maximum operating pond levels for the proposed embankment crest levels are as follows:

IWLTSF Stage 4 (Embankment Crest Level RL 489.0 m) maximum operating pond level RL 487.74m;

Water recovery will be maximised at all times for the IWLTSF. The minimum freeboard requirements will be maintained at all times.

3.3.5 Decant Pipelines

For the Bellevue Gold Project, decanted water transported from the IWLTSF to the process plant will be undertaken via a large diameter HDPE pipe. This pipeline is contained within a system of bunds to enable any spillage or leakage to be contained. An access track is located outside the bunds to facilitate pipeline inspections and maintenance (inspections of the pipelines are to occur twice daily and records of these inspections kept). This track extends from the process plant to the decant locations for the IWLTSF. Flow meters will also be installed on opposite ends of the tailings pipelines with remote monitoring to aid in the detection of spills.

3.4 Commissioning Plan

A detailed Commissioning Plan will be developed in the future.

3.5 Daily Inspections

The daily inspections, twice per shift (day shift and night shift) for a minimum total of 4 inspections per day, are to be executed by the Metallurgy Superintendent and the designated, trained, Operators as it is expected these staff have responsibility for the general day to day operation and maintenance of TSFs. As part of the inspections these staff will be required to complete the daily inspection log (Doc No. OMPPS1).

The process plant management has the responsibility for verifying that these inspections are occurring, and that these inspections are following the requirements.

The date and time of each inspection is to be entered into the Process Plant Foreman's logbook and is to be signed by the person allocated to undertake the inspection on that shift to ensure the requirements have been undertaken. The Daily Inspections must cover the following:

- The pipelines (tailings delivery line and water return line) to and from the tailings storage facility;
- · Bunding arrangements;
- Leak detection;
- Pumps;
- Spigots and valves;
- Spigotting and deposition;
- Location and size of the supernatant water pond;
- The decant and decant pump;
- The embankment crest, upstream and downstream face;
- Seepage from the embankment toe, if any;
- The general integrity of the embankment i.e. any new cracking, any new seepage (daily);

- Any changes to existing cracking or seepage;
- The integrity of the HDPE liner (damages, tearing etc); and
- Process Water Pond.

Any leaks or failures of the tailings pipeline, damage to the bunds or HDPE liner in the process water pond or abnormally high water levels in the process water pond will be immediately reported to the following personnel or project equivalents, as appropriate, and an incident report completed:

- Site Manager; and
- Process Plant Foreman.

3.5.1 Tailings and Return Water System

All tailings' lines and water return lines are located in bunded corridors. The tailings lines, particularly on the embankment crests of the IWLTSF, are sensitive to temperature and the expansion and contraction of this line can cause leaks and in extreme situations, failure of the pipeline.

The process water pond must also be inspected to ensure that the water from the IWLTSF water return pipes is clear and the level of the water in the pond is at or below the design level. High water levels, above the design water level, must be reported. The HDPE liners to the process water pond are also susceptible to damage from animals. Any damage to HDPE liners noted during the inspection must be reported immediately, to the personnel list above, and an incident report completed.

3.5.2 Decant System

The position and size of the pond in relation to the decant facility must be inspected at least once per shift. Any abnormalities must be immediately reported immediately to the maintenance and process plant personnel.

3.5.3 Embankments

As part of each inspection of the IWLTSF, the containment embankments, including berms and batter slopes, must be visually assessed. The presence of any new cracking or other features such as seepage, embankment erosion or scour (caused by tailings deposition or rainfall runoff), HDPE damage or any other obvious changes to the physical state of the embankment since the previous inspection must be entered into the Process Plant Foreman's logbook and on the inspection form, and immediately reported to the following personnel:

- Site Manager;
- Process Plant Foreman; and
- Design Consultant.

3.5.4 Seepage

Monitoring bores are installed adjacent to the IWLTSF to monitor ground water levels and quality. The integrity of these bores will be routinely checked to ensure the bores remain intact and are not damaged. It is the responsibility of the Environmental Department to measure ground water levels and collect water samples for analysis as per site license conditions.

3.5.5 Instrumentation

The instrumentation and monitoring bores installed into embankments and close to the IWLTSF must be inspected for damage. Any damage must be reported to the following personnel:

- Site Manager;
- · Process Plant Foreman; and
- Design Consultant.

3.6 Warning Signs and Fencing

Warning signs around the facilities are recommended and the integrity of the stock fencing adjacent to the IWLTSF must be checked daily. Any observed damage to fencing must be immediately reported to the relevant personnel or project equivalents, as appropriate, and an incident report completed.

Reference: P19-11-PR-29-R03
Client: Bellevue Gold Limited
Report Title: Operating Manual: IWLTSF Stage 4 North and Stage 4 South
Revision No: A

4. Emergency Action Plan

4.1 Response Actions

In the event of an emergency the site emergency response team must immediately be notified and advised of the nature of the emergency to enable the emergency action plan to be implemented which is appropriate to the nature of the emergency. The site emergency response plan contains the details presented in Sections, 4.2 to 4.4, such that response activities are co-ordinated with operations personnel.

At the time of the emergency the Process Plant Foreman or his designated trained representative is to ensure that:

- a) All personnel and Contractors who were or are working in or around TSFs are accounted for;
- b) Personnel Contact Details are provided on form (OMPPS2) appended to this document. This form must be reviewed quarterly as a minimum and must be updated immediately in the event of personnel leaving or joining the operation.
- c) The site Emergency Response team are immediately contacted and advised of the nature of the emergency and any assistance required is requested; and
- d) All mine based personnel listed in Table 1 are immediately contacted and advised of the nature of the emergency and any assistance required is requested.

All personnel who are working in the vicinity of the emergency are expected to be present at the muster points and are expected to be aware of other assembly points around the TSF and the relevant reporting procedures. Emergency assembly points are shown on Figure 1 in Appendix A of this document.

4.2 Tailings Storage

The embankments have been designed with an adequate factor of safety against failure under normal operating and seismic load conditions, appropriate for the location of the IWLTSF.

Normal operating conditions refers to the tailings surface and water pond surface within the freeboard requirements.

The probability of embankment failure during normal operations is very low, given that:

- a) The embankment construction has been, or should have been, carried out in accordance with the design;
- b) The implementation of the tailings operation methodology (Section 2), including the routine inspections and maintenance practices are adhered to as set out in Operations Manual.

However, in the unlikely event of embankment failure, the flow of tailings from the storage will be controlled by the degree of saturation of the tailings at the time of failure.

Action to control a small-scale embankment failure and limit environmental damage would include:

- a) Assess the requirement to shut down the process plant, or reduce process plant throughput;
- b) Diversion of tailings deposition to areas not affected by the small-scale embankment failure;
- c) Construction of bunds by earthmoving equipment to divert and contain the tailings;
- d) Contact a suitably qualified geotechnical organisation for technical assistance;
- e) Deployment of pumps to recover tailings water and return it either to the IWLTSF if structurally sound or to the plant water storage facilities if evaporation and or dilution is impractical;
- f) Undertaking a thorough inspection of the area with or without a specialist, dependent on the scale of the failure, prior to the commencement of any repairs;
- g) Undertaking remedial and repair work of the damaged embankment or affected area;
- h) Clean up of tailings as soon as practicable after embankment repairs have been completed and the storage is considered in a safe condition;

- Preparing an incident report, detailing all factors prior to the incident and the situation after clean-up. The report should identify causes of the problem and what actions will be taken to prevent a similar occurrence. This report should detail the on-going monitoring programme to fully assess the impact of the incident; and
- j) Advise all appropriate government departments as necessary of the incident, review the conditions of operating licence and lease conditions to ensure that the timing of reports and content of reports meets the regulatory requirements.

Action to control large-scale embankment failure and to limit environmental damage would include:

- a) Shut down of the process plant;
- b) Construction of bunds by earthmoving equipment to divert and contain the tailings;
- c) Contact a suitably qualified geotechnical organisation for technical assistance;
- d) Advising the relevant regulatory authorities;
- e) Deployment of pumps to recover tailings water and return it to the IWLTSF if structurally sound or to the plant water storage facilities if evaporation and or dilution is impractical;
- f) Undertaking a thorough inspection of the area with the assistance specialist prior to the commencement of any repairs;
- g) Repairing the damaged embankment;
- h) Clean-up of tailings as soon as practical after the embankment repairs have been completed;
- i) Prepare an incident report, detailing all factors prior to the incident and the situation after clean-up. The report should identify causes of the problem and what actions will be taken to prevent a similar occurrence. This report should detail the on-going monitoring programme to fully assess the impact of the incident;
- j) Advise all appropriate regulatory authorities as necessary of the incident; and
- k) Review conditions of any license or lease conditions in respect to the timing of advising the regulatory authorities and the contents of that notification (reporting criteria).

It must be stressed however, that the safe operation of the IWLTSF relies upon the implementation of procedures which comprise, tailings deposition, decant operation, and routine inspections and maintenance, as set out in the Operations Manual to minimise the potential for a catastrophic event such as a failed embankment.

4.3 Tailings Lines and Water Return Lines

The tailings lines from the process plant to the tailings storage and the return water lines from the decant facilities to the process water dam are to be located inside bunded, open trenches to contain any spillage of materials resulting from leaks or burst pipes during operation. In the event of pipeline failure, the Process Plant Superintendent is to be notified and the affected pipeline is to be shut down until repaired and the spilled materials collected and/or pumped, as appropriate, and deposited in the IWLTSF. An internal incident report is to be completed and the Site Environmental Department informed.

4.4 Process Water Dam

The decant pump is operated manually and run at all times. The pump is only switched off during:

- a) During plant shutdowns or maintenance periods: and
- b) When dirty water is pumped into the process water pond or; when embankment construction is scheduled in accordance with the design.

Alternative pumping equipment / and or pump locations will be required during periods of pump maintenance and when embankment construction work is being undertaken.

5. Incident Reporting

The objective of regular inspections by the designated process plant staff and monitoring by the environmental staff is to identify any problems prior to them causing a major impact on the operation or integrity of the IWLTSF and associated infrastructure.

The inspections may result in the identification of an event, of which the nature and extent may require reporting to senior staff and in some cases to relevant regulatory authorities.

Reference: P19-11-PR-29-R03
Client: Bellevue Gold Limited
Report Title: Operating Manual: IWLTSF Stage 4 North and Stage 4 South
Revision No: A

6. References

- 1. ANCOLD 2012, Australian National Committee on Large Dams: Guidelines on the Consequence Categories for Dams
- ANCOLD 2019, Australian National Committee on Large Dams: Guidelines on Tailings Dams Planning, Design, Construction,
 Operation and Closure
- 3. ANCOLD 2019, Australian National Committee on Large Dams: Guidelines for Dams and Appurtenant Structures for Earthquakes
- 4. DMP 2013, Code of Practice (CoP): Tailings Storage Facilities in Western Australia
- 5. DMP 2015, Guide to Departmental Requirements for the Management and Closure of tailings storage facilities (TSFs)
- 6. DMP 2015, Guidelines for Preparing Mine Closure Plans
- 7. DMP 2015, Guide to the Preparation of a design report for tailings storage facilities (TSFs)

Reference: P19-11-PR-29-R03 Page 35 of 37
Client: Bellevue Gold Limited Report Title: Operating Manual: IWLTSF Stage 4 North and Stage 4 South Revision No: A

7. Limitations

Resource Engineering Consultants Pty Ltd (REC) has prepared this Operating Manual for the Integrated Waste Landform Storage Facility (IWLTSF) (Stage 4) at the Bellevue Gold Ltd (BGL) Bellevue Gold Project (BGP). This report is provided for the exclusive use of BGL and their consultants for this project only and for the purposes as described in the report. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of REC, does so entirely at its own risk and without recourse to REC for any loss or damage. In preparing this report REC has necessarily relied upon information provided by the client and/or their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and/or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after REC's field testing has been completed.

REC's advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by REC in this report may be affected by undetected variations in ground conditions across the site between and beyond the sampling and/or testing locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. REC cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by REC. This is because this report has been written as advice and opinion rather than instructions for construction.

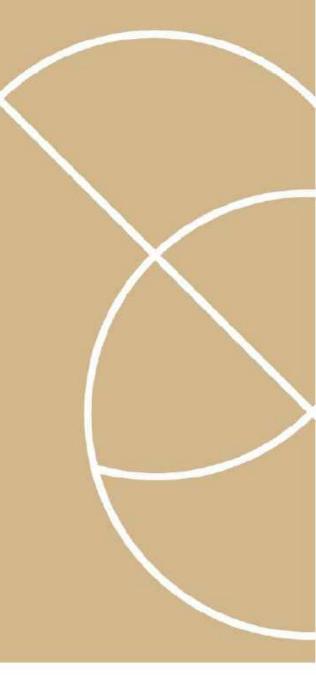
The contents of this report do not constitute formal design components such as are required, by the Health and Safety Legislation and Regulations, to be included in a Safety Report specifying the hazards likely to be encountered during construction and the controls required to mitigate risk. This design process requires risk assessment to be undertaken, with such assessment being dependent upon factors relating to likelihood of occurrence and consequences of damage to property and to life. This, in turn, requires project data and analysis presently beyond the knowledge and project role respectively of REC.

REC may be able, however, to assist the client in carrying out a risk assessment of potential hazards contained in this report, as an extension to the current scope of works, if so requested, and provided that suitable additional information is made available to REC.

Any such risk assessment would, however, be necessarily restricted to the geotechnical components set out in this report and to their application by the project designers to project design, construction, maintenance and demolition.

Reference: P19-11-PR-29-R03

Client: Bellevue Gold Limited


Report Title: Operating Manual: IWLTSF Stage 4 North and Stage 4 South

Efficiency Recalibrated.

Resource Engineering Consultants Pty Ltd ACN: 626 931 753

