OPAL VALE PTY LTD

REPORT ON: GROUND WATER ASSESSMENT, 11 CHITTY ROAD, TOODYAY, WA DECEMBER 2014

REPORT TITLE: GROUND WATER ASSESSMENT, 11 CHITTY ROAD, TOODYAY, WA.

DATE: December 2014

REPORT VERSION: Version 2

© STASS ENVIRONMENTAL

This document remains the property of STASS ENVIRONMENTAL. The document may only be used for the purposes for which it was commissioned and in accordance with the terms of engagement for the commission. Unauthorized use of this document in any form whatsoever is prohibited.

P.O. Box 11 Kalamunda WA 6926 Tel: +618 63635276 Fax: + 618 9454 7615 web: www.stass.com.au email:info@stass.com.au

TABLE OF CONTENTS

1	INTI	RODUCTION	1
2	OB.	IECTIVES	2
3	TER	MS OF REFERENCE	2
4	SCO	DPE OF WORK	2
5	DIS	CRIPTION OF THE REGION	2
	5.1	LOCATION	2
	5.2	CLIMATE	2
	5.3	GEOLOGY AND LANDFORMS	5
	5.3.1	Geology - Regional	5
	5.3.2	2 Geology - Site	9
	5.3.3	3 Soils	10
6	SITE	E HYDROGEOLOGY	10
	6.1	REGIONAL HYDROGEOLOGY – PREVIOUS INVESTIGATIONS	
	6.1.1	Permeability	10
	6.2	REGIONAL GROUNDWATER QUALITY	11
7	MO	NITORING BORE INSTALLATION	12
	7.1	LOCATION OF GROUNDWATER MONITOR WELLS	12
	7.1.1	Previously Installed Monitor Wells	12
	7.1.2	2 Monitor Well Site Selection	12
	7.1.3	3 Drilling	12
	7.1.4	1 Development	13
	7.1.5	5 Position and level survey	13
	7.2	WATER LEVEL MEASUREMENT	16
	7.2.1		
	7.2.2	Prield Water Quality Data	20
8	LAE	ORATORY ANALYSIS	23
	8.1	ANALYTES	23
	8.2	QUALITY CONTROL	
	8.3	FIELD DUPLICATES AND BLANK SAMPLES	23
	8.4	LABORATORY CONTROL SAMPLES, SPIKE RECOVERIES, DUPLICATES AND BLANKS	
9	GRO	DUNDWATER QUALITY	25
	9.1	MAJOR IONS AND GROUNDWATER PARAMETERS	25

ę	9.2	HEAV	/Y METALS	25
ç	9.3	NITR	ATE	25
10	GRO	DUNE	DWATER CONDITIONS	27
	10.1	GRO	UNDWATER HYDRAULICS	27
	10.2	Cond	CEPTUAL HYDROGEOLOGICAL MODEL	27
	10.3	GRO	UNDWATER FLOW	28
	10.3	2.1	Direct Calculation for Travel Time from Proposed Landfill to Jimperding Brook:	29
	10.3	.2	Bioscreen Modelling	30
11	CO	NCLU	JSIONS	31
12	REC	COMN	MENDATIONS	32
13	REF	ERE	NCES	33
14	GLC	DSSA	RY OF TERMS	34
15	LIM	ΙΤΑΤΙ	IONS	36

FIGURES

Figure 1 – Site location
Figure 2 – Site details
Figure 3 – Geology
Figure 4 – Highest Potentiometric groundwater Levels – 2011 to 2014
Figure 5 - Water strikes
Figure 6 – Bore locations
Figure 7 – Conceptual Geological Model
Figure 8 – Log of Bore SE 1
Figure 9 – Log of Bore SE 2
Figure 10 – Log of Bore SE 3
Figure 11 – Log of Bore SE 4
Figure 12 – Log of Bore SE 5
Figure 13 – Log of Bore SE 6
Figure 14 – Log of Bore SE 7
Figure 15 – Log of Bore SE 8
Figure 16 - Log of Bore SE 9

Drawings

OV-01-ACW - Site Plan OV-02-ACW - Receptor Pathways, site layout plan OV-03-ACW - RP, Cross Sections

APPEDICES

- Appendix A Figures and Drawings
- Appendix B Photographic Record
- Appendix C Water Quality Summaries
- Appendix D Chain of Custody and Laboratory Certificates
- Appendix E Survey Reports
- Appendix F Water Level Database 2011 to 2014

ABN 73 976 537 552

December 2014

GROUND WATER ASSESSMENT, 11 CHITTY ROAD , TOODYAY, WA

1 INTRODUCTION

Opal Vale Pty Ltd (Opal Vale) intends to develop a landfill on this site of the old clay pit at 11 Chitty Road, Toodyay, at some stage. To fulfill regulatory requirements, a groundwater review had to be undertaken.

To be able to define the groundwater conditions at the site, nine groundwater monitoring bores were installed to provide information on:

- 1. the depth of the water table,
- 2. the groundwater quality; and
- 3. the geology below the site

The regional geology and hydrology of the area was reviewed by a literature review of available data on the region obtained from the Geological Survey of Western Australia.

The site was found to be located on weathered schists (fine clayey) geologic materials with expected low transmissivity and groundwater yield. This would suggest that the site is suitable for the activities which are intended by Opal Vale in that the impact on groundwater from the proposed landfill is expected to be minimal if any.

This report provides the detail of the groundwater investigations and monitoring bore installation programme as well as the groundwater quality analytical results for the site.

2 OBJECTIVES

The objectives of this study are to:

- Review of available regional groundwater and geology data.
- Install groundwater monitoring bores to suit the proposed landfill
- Obtain baseline groundwater quality data from the site.
- Provide a detailed report on the work

3 TERMS OF REFERENCE

Mr. Sam Mangione of Opal Vale Pty Ltd requested that Stass Environmental submit a proposal for the groundwater site assessment, baseline groundwater quality database and installation of groundwater monitoring bores at the Opal Vale facility.

4 SCOPE OF WORK

The following scope of work was carried out:

a) Review of all available data and reports

Review all available data on the groundwater studies performed to date for the development.

b) Provide a short synthesis of the available information

The reviewed reports are to be synthesized into a short form format, to provide a summary of the groundwater status at the site.

c) Assessment of available information

The available information is to be assessed for correctness and adequacy in terms of the proposed development and installation and logging of monitoring bores.

d) Reporting

The information and the interpretation of the data are presented in this document as a stand-alone report.

5 DISCRIPTION OF THE REGION

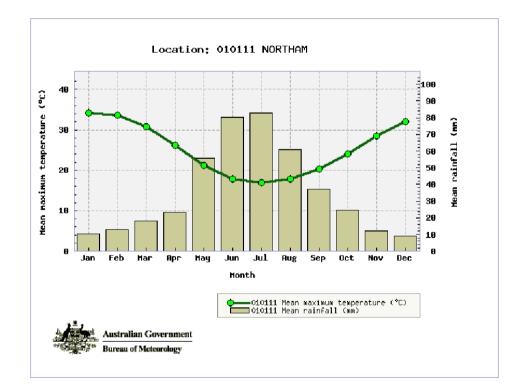
5.1 LOCATION

The Toodyay geological zone lies approximately 70km east of Perth in Western Australia and covers an area of approximately 2km² (Figure 1).

5.2 CLIMATE

The region experiences a Mediterranean climate, characterised by warm dry summers and cool wet winters. During summer (September to March) a belt of anticyclones lies over the region producing dry easterly winds and high temperatures. During winter this belt moves north and the predominant winds blow onshore from the south-west bringing cool temperatures and cold fronts that produce 90% of the region's total annual rainfall. Average annual rainfall varies between 300mm and 420mm and the average daily temperatures range from 17° C to 30° C in summer and from 6 °C to 17° C in winter.

Month	Mean 1902-2014	Mean 1980-2010	2013	2014
January	10.3	17.7	18.4	1.2
February	13.2	16.9	5.8	2.4
March	18.3	16	65.7	0.6
April	23.3	20.2	12.2	48.8
Мау	55.4	51.1	54.4	77.2
June	79.5	69.8	5.6	45.2
July	82.3	74.7	65.1	87.0
August	60.6	55.6	80.1	41.2
September	37.5	39.2	75.3	41.8
October	24.8	22.1	24.7	50.8
November	12.4	17.3	0.2	8.6
December	9.3	10.1	3.2	
TOTAL ANNUAL	427.1	410.8	410.7	


TABLE 1 Rainfall Records	Northam Station No 010111	(shown as mm/month)
TADLE I Naimaii Necorus,		(Showh as min/monu)


Over the period 1877 to the present the following rainfall statistics apply:

Mean – 427.1 mm/yr *Lowest* – 194.1 mm/yr *Median* – N/A mm/yr *Highest* – 710.9 mm/yr

Month	Mean 1902-2014	2012	2013
January	34.2	34.6	34.5
February	33.7	33.2	36.1
March	30.8	32.1	29.2
April	26.1	27.6	29.0
Мау	21.2	23.4	21.1
June	17.9	18.6	19.0
July	16.9	18.0	17.9
August	18.0	19.4	19.5
September	20.4	21.6	20.1
October	24.1	26.6	25.7
November	28.5	28.2	31.1
December	32.1	33.8	33.6
Annual Average	25.3	26.4	26.4

TABLE 2 Mean maximum temperature records, Northam, Station No.010111 (in degrees C)

Wind Roses - Annual wind direction and velocity statistics

5.3 GEOLOGY AND LANDFORMS

5.3.1 Geology - Regional

Main geological components of the southwest Yilgarn Craton

The area is characterized by discrete, linear metamorphic belts enveloped by diffuse areas of migmatite, containing isolated rafts of the earlier gneissic sequences (Wilde, 1990). The present distribution of gneiss and migmatite is largely controlled by the emplacement of Late Archaean granitoids which typically post-date metamorphism and regional tectonism. The high-grade gneisses and supracrustal rocks have been grouped within the Jimperding, Chittering and Balingup Metamorphic Belts (Wilde, 1980 and 1990). Migmatite is locally developed at the margins of these belts and also forms more extensive areas in the eastern part of the region. There are also a number of small greenstone belts, ranging in metamorphic grade from greenschist to granulite facies, widely distributed across the region (Fig. 1). All these sequences are intruded by a variety of granitoids, including charnockites in the east.

Metamorphic Belts

The chief rock-type in the Jimperding, Chittering and Balingup Metamorphic Belts is layered quartz-feldsparbiotite gneiss. Some units are paragneiss and show gradations to arkosic quartzite and quartz-mica schist and are interleaved with orthoquartzite, banded iron formation and rare calc-silicate rocks. This association is a characteristic feature of the Jimperding Metamorphic Belt east and southeast of Toodyay and of the south-eastern part of the Balingup belt. It has been interpreted as indicating stable shelf sedimentation on a pre-existing sialic basement (Gee *et al.*, 1981; Wilde, 1990). In contrast, the Chittering and western portion of

the Balingup Metamorphic Belt consist mainly of pelite, semi-pelite and greywacke. Banded iron formation and quartzite are absent and this association has been interpreted to be the result of rapid, trough-style sedimentation along a continental margin (Gee *et* al.,1981; Wilde, 1990).

The Jimperding Metamorphic Belt shows a progressive eastward increase in metamorphic grade fiom lower amphibolite to granulite facies, with the presence of andalusite, sillimanite and cordierite indicating low pressure. In contrast, the Chittering and Balingup Metamorphic Belts are chiefly at amphibolite facies, with the presence of kyanite, sillimanite and staurolite indicating moderate pressure, Barrovian-type metamorphism (Wilde, 1990). This contrast in grade between the metamorphic belts appears to be in part related to their location, with the higher pressure assemblages occurring at the western margin of the craton, associated with ductile shear zones related to early movement along the Darling Fault Zone (Blight *et aZ.*, 1981; Bretan, 1985). This zone has been reactivated at several later periods, resulting in local retrogression to greenschist facies assemblages.

Greenstone Belts

There are a number of small greenstone belts present in the Western Gneiss Terrain. In the south-eastern portion (Fig. I), areas of mafic and felsic granulite are interleaved with a variety of metasedimentary rocks. These were interpreted as 'keels' of original greenstone belts by Wilson (1969) and this interpretation is supported by more recent work on the mafk granulites (Wilde and Pidgeon, 1987; Nemchin *et aZ.,* in press). The mineralogical features indicate that this area underwent low to moderate pressure granulite facies metamorphism and the enclosing granitoids commonly include hypersthene-bearing charnockites (Wilde, 1990).

Three lower grade greenstone belts are present near the western margin of the Yilgam Craton; the Saddleback, Morangup and Wongan Hills Greenstone Belts. The Saddleback Greenstone Belt (Wilde, 1976 and 1990) near Boddington (Fig. 1) is poorly-exposed due to an extensive cover of Tertiary laterite. It is composed of mafic and felsic volcanic rocks, with minor sedimentary units, metamorphosed to greenschist facies and generally in faulted contact with orthogneiss, migmatite and granite. However, in the extreme southwest, granite intrudes metasediments and felsic pyroclastic rocks (Wilde, 1976). The Morangup Greenstone Belt near Toodyay (Wilde and Pidgeon, 1990) consists predominantly of metabasalt with a greenschist facies assemblage of tremolite-actinolite, albite and clinozoisite. Porphyritic andesite and fine grained metasedimentary rocks are also present. The sequence is also poorly exposed and the full extent of the belt is unknown. The Wongan Hills Greenstone Belt consists predominantly of basalt, dacite, chert, banded iron formation and mica schist, interleaved with paragneiss and intruded by small ultramafic units, all metamorphosed to upper amphibolite facies (Carter and Lipple, 1982). The presence of cordierite indicates low pressure conditions, similar to those in the nearby Jimperding Metamorphic Belt (Pidgeon et **al.,** 1990).

Granitoids

Granitoids occur as two large batholiths that occupy a considerable portion of the southwest Yilgarn Craton. The granitoids east of Meckering and Quairading and around Lake Grace were informally referred to as the "Wheat Belt" granites by Wilson (1958), whereas the western area has been termed the Darling Range Batholith (Wilde and Low, 1978). The zone of mignatite referred to above separates the two batholithic areas.

Around Katanning many porphyritic granites are hypersthene-bearing and petrographically and geochemically identical to those developed further east within the zone of migmatite and gneiss south of Quairading and in the "Wheat Belt" batholith. Wilde and Pidgeon (1987) describe reaction textures from near Lake Grace which indicate that hypersthene and subsequent mafic minerals followed a magmatic crystallisation sequence and that these charnockites are of igneous origin.

The granitoids of the Darling Range Batholith are quite diverse and show considerable textural variation. They range in composition from granodiorite to granite; the compositional variations being commonly independent of textural changes. Where cross-cutting relations can be identified, granodiorite is invariably the earliest phase. Most granitoids are undeformed, although plutons of porphyritic granite that occur close to the eastern boundaries of the Chittering and Balingup Metamorphic Belts show evidence of intense ductile shearing. There is a westward increase in deformation, resulting in a progressive change from porphyritic granite to augen gneiss, mylonite and ultramylonite (Blight *et al.*, 1981). This deformation is related to early movement along the Darling Fault Zone, accompanied by medium pressure, amphibolite facies metamorphism (Wilde, 1990).

There are also a number of small bodies of quartz-poor granitoids of dioritic, monzonitic and syenitic affinity within the granite batholiths. More extensive areas of quartz monzonite occur south of Darkan (Fig. 1) and these are rich in amphibolite xenoliths. A distinctive, tectonised quartz monzonite (the Gibralter Quartz Monzonite) forms a narrow, discontinuous zone along the eastern boundary of the Balingup Metamorphic Belt (Wilde and Walker, 1982 and 1984) in association with migmatite.

5.3.2 Geology - Site

The site is located on the dissected Darling Plateau. The locality consists of an elongate narrow plateau remnant that runs north west along the ridge line in the west, at an elevation of 280 metres AHD ranging down to about 240 metres in the north west.

The general area is located in a drainage basin of the Avon River system and geologically, is are part of the Pre-Cambrian meta sedimentary complex which is known as the Jimperding Metamorphic Belt. The Jimperding Metamorphic Belt Series extends as a 120 kilometre long belt in a north-westerly direction from York to Clackline and from there to Jimperding and then Chittering, where it becomes the higher grade metamorphic Chittering Metamorphic Belt.

Williamson's Pit is located on the crest of a hill, at an elevation of about 290 metres AHD.

To the west of the pit the land is gently undulating before sloping relatively uniformly to the river flat. To the immediate east of the pit the land slopes gently down to a small drainage line (draining from south to north) at about 280 metres and from there the land slopes gently upwards to about 330 metres.

The Jimperding Series consists of inter-bedded schists, quartzites and minor metamorphosed volcanics. They are steeply dipping and trend northerly and then north-westerly. However under the void only weathered schists are encountered, because these are the only parts of the regolith that are suitable for brick manufacture.

The area to be filled is a void cut into deep micaceous clays formed from the weathering of schists of the Jimperding Metamorphic Belt. The rocks are predominantly weathered andalusite and kaolin-quartz-mica schists that are near vertical and striking generally north. These schists have been subjected to a long period of weathering, in the Mesozoic - Cainozoic, to produce the laterite erosion surface, of which a remnant caps the nearby hills.

A number of hydrothermal quartz veins intersect the exposed geological sequences, presumably intruded along fracture lines. The quartz veins are either massive white quartz veins or a reddish coloured quart which has been fractured, presumably due to earlier metamorphic events, These older quartz veins tend to have the fractures infilled with a clay/silt matrix.

Weathering of the rocks is deep, and, from a drilling program conducted by Austral Brick, shows the depth of weathering as over 30 metres. The base of the weathered material was not found because the clay quality reduced with depth and drilling was stopped.

Williamson's Pit is located in an area of micaceous silty clay which becomes fresher with depth and shows some laterisation. Clayey sands are present in small amounts.

Only clays suitable for brick making are excavated.

5.3.3 Soils

The soils which overlay the weathered schists (clay) belong to the Yalanbee and Leaver soil landscape units. In the vicinity of Williamson's Pit is a yellow gravelly loamy sand and loam which overlies sandy clay at a depth of about 0.5 metres.

6 SITE HYDROGEOLOGY

6.1 Regional Hydrogeology – Previous Investigations

The local hydrogeology has been characterised from an interpretation of the exploration drilling undertaken by Austral Brick and hydrogeological studies completed by Martinick McNulty in 1998.

On 24 March 1998 ten holes were drilled by Wallis Drilling with a Mantis drilling rig which was mounted on a Toyota Landcruiser, to assess the local geology and groundwater conditions.

Water was generally not encountered during drilling, with the exception of some holes which are located approximately 1 kilometre to the northwest of the pit. In these holes granite was intersected and water was found to be present in weathered basement.

Hydraulic testing of all of the monitoring bores (WF 1 to WF 11) was undertaken by Martinick McNaulty to determine the in-situ hydraulic properties of the schistose clay. Testing comprised injection of a known volume of water into the bore and subsequently monitoring the rate at which the water level declined. Analysis of the response was completed using the Bower and Rice method.

From the results of the hydraulic testing it was concluded by Martinick McNulty, that the schistose clay present in the pit and its vicinity has a low to very low permeability and that the groundwater regime in that area is classified as an aquiturd/aquiclude. That is to say, although groundwater is present there is no defined aquifer system. The sandy clays are partially saturated and the local groundwater levels and vary with changes in topography.

6.1.1 Permeability

Six piezometers were installed by Martinick/McNulty around the perimeter and another four within the clay pit at that time. Whilst the clay pit has been enlarged in the past decade, the results provide a good indication of the geotechnical properties of the weathered schist.

In each piezometer a PVC standpipe of 50 millimetre diameter was installed immediately after the hole was drilled. The casing was slotted for the entire depth of the hole and all of the piezometers were surveyed by Scanlan Surveying in May 1998. A summary of monitoring bore details is provided in Table 3 (Martinick McNaulty 2002).

Two clay samples were collected by Martinick/McNaulty from the floor of Williamson's Pit adjacent to bores WF2 and WF4. These samples were analysed for particle size distribution, optimal moisture content for compaction and permeability of the compacted clay.

Drill			Top of	SWL	Permeability	Permeability
Hole	East	North	Casing	mAHD	m/d	m/s
WF1	449865	6449588	88.41	81.91	0.0164	1.1 x 10-7
WF2	449915	6495825	89.2	81.69	0.0041	4.7 x 10-8
WF3	449761	6495895	82.07	80.71	0.0037	4.2 x 10-8
WF4	449870	6495734	86	81.2	0.0064	7.4 x 10-8
WF5	449756	6496127	85.5	80.49	0.038	4.4 x 10-7
WF6	49956 6	495896	99.57	85.3	0.00034	3.0 x 10-9
WF7	449845	6495626	86.37	80.99	0.0017	1.9 x 10-8
WF9	449658	6495750	90.5	86.89	0.006	6.9 x 10-8
WF10	0449632	6495903	86.44	83.90	0.0030	3.4 x 10-8
WF11	1449606	6495610	84.62	80.88	0.0204	2.4 x 10-7

Table 3 Permeability Testing (Martinick McNaulty 1998)

The distribution of particle sizes demonstrated that the material in Williamson's Pit consists of a clayey silty sand with minor gravel. The clay content varies from 4 to 8%, the silt content varies from 26% to 33% silt, and the sand content varies from 53 to 56%.

The falling head permeability tests for samples compacted to 90% standard compaction at optimal moisture content, gave coefficients of permeability of 3.12×10^{-9} and 1.49×10^{-8} metres per second respectively for WF2 and WF4. The compaction tests indicate that maximum dry densities of 1.87 and 1.74 tonnes per cubic metre at optimum moisture contents of 13% and 17% could be achieved for the material obtained from WF2 and WF4, respectively.

The above tests indicate that the clay can be used as landfill liner material, if compacted.

6.2 REGIONAL GROUNDWATER QUALITY

The regional groundwater quality is highly variable, with water quality ranging from 500 mg/l as TDS to 3000 mg/l TDS. Ground water tends to be slightly acidic with pH in the range of 4 to 5 not uncommon.

7 MONITORING BORE INSTALLATION

Drilling at the site commenced in June 2011 and was completed in 5 days. Further installation of monitoring bores was required as the outcome of the SAT process in 2013, and a further 5 monitoring bores were installed in April 2013. All fieldwork undertaken, including a summary of the investigation methodology utilised is summarised in the following sections in chronological order.

7.1 LOCATION OF GROUNDWATER MONITOR WELLS

7.1.1 Previously Installed Monitor Wells

No previously installed wells (pre 2011) were observed at on site. Wells drilled for previous investigations have been decommissioned or were unusable. Other bores in the general area to 2 km radius, registered with Department of Water are shown below. No registered bores are located within a radius of 2 km from the site. The nearest bore is located 2.2 km up hydraulic groundwater gradient, to the east of the site.

7.1.2 Monitor Well Site Selection

Nine new groundwater monitor wells (designated SE-1 to SE-9) were installed at the site during this investigation. The locations for these wells were selected after an evaluation of the regional groundwater flow direction (previous groundwater monitoring).

Monitor wells SE-1 to SE-3 were installed within the south-western areas. Monitor well SE-4 targeted the aquifer up-hydraulic gradient boundaries of the site. Monitoring bores SE 5 and SE 6 targeted the south and south east side of the pit edge, while monitoring bores SE 7, and SE 8 the north and north western edges. Monitoring bore SE 9 was installed to record the far western side of the proposed development.

Prior to the commencement of drilling activities, all services within the site area were identified and located to prevent potential damage. Accurate locations of the nine newly installed monitoring bores are shown on Figure 6.

7.1.3 Drilling

The nine monitor wells (SE1 to SE9) were installed by Mick Lewis Drilling under supervision by Stass Environmental using the down hole hammer rotary drilling technique (refer Appendix B, Photographs 1). At all drilling locations, natural clays and muscovite schists were encountered throughout the entire profile therefore allowing trouble free well completion.

Drilling locations SE 1 to SE 9

• After positioning the drill rig, 150mm diameter holes were drilled to approximately 50 to 60m.

- The casing was inserted and sand packed to one metre above the slotted interval (see Figure 8 to 17).
- Bentonite pellets were placed immediately above the sand packing and measured with a weighted tape until a one metre thick seal was formed.
- The annulus of the hole was backfilled with local drilled materials mixed with cement grout to the ground surface and sealed with bentonite at the ground surface to prevent surface water leakage to groundwater. A cement pad measuring 300mm from the centre of the bore annulus was also placed to further reduce the potential for surface waters to short circuit down the bore annulus.

Steel protective surface covers, protruding approximately 600mm above the ground surface were also installed over all PVC casings and lockable with padlocks. Monitor well logs and construction diagrams are contained within Appendix B.

Five in-pit bores were also installed to a depth of approximately 10 m, to monitor any subsurface waters within the pit (again, as part of the SAT outcome).

7.1.4 Development

Immediately following well installation, monitor wells SE-1 SE 9 were developed to remove sediment initially using compressed air from the drill rig and later an electric submersible pump (Grundfoss MP1 and other electric pumps).

7.1.5 Position and level survey

A position and level survey was undertaken by a licensed surveyor to determine Australian Map Grid (AMG) coordinates and Australian Height Datum (AHD) elevations of each monitor well casing including the wells from 2011 installation and newly installed monitor well (2013). During the level survey, elevations of each monitor well were obtained from the highest point on the bore protective cover opening, which was also permanently marked for future reference. These reference points were used during the collection of water levels as described in Section 7.6. The results of this position and level survey are shown below:

Monitor Well	Easting (mAMG)	Northing (mAMG)	PVC Casing Elevation (mAHD)	Descriptive Location	
SE1	6495635.67	449807.22	274.4	Close to drainage line	
SE2	6495913.67	449616.1	285.58	Along the downgrad. Road	
SE3	6496193.89	449382.97	291.64	Along the downgrad. Road	
SE4	6495785.76	450377.9	299.86	Upstream of quarry	
SE 5	6495858.19	449809.33	280.553	South edge of pit	
SE 6	6495855.09	450039.37	286.78	East edge of pit	
SE 7	6496095.83	450043.12	289.08	North edge of pit	
SE 8	6496172.63	449770.44	292.86	North east of pit	
SE 9	6496373.32	449643.15	278.62	Far north east of pit	
pit 1	6496054.74	449813.3	274.89	In pit shallow bore	
pit 2	6496122.84	449804.3	274.4	In pit shallow bore	
pit 3	6496067.8	449783.51	285.58	In pit shallow bore	
pit 4	6496037.54	449911.15	291.64	In pit shallow bore	
pit 5	6495948.38	449707.85	299.86	In pit shallow bore	

Table 4 MONITOR WELL SURVEY DATA

Note: mAHD – metres above Australian Height Datum mAMG – metres relative to Australian Map Grid All positions were determined by a licensed surveyor using a differential GPS instrumentation, calibrated to within +/- 2m accuracy. AHD elevations were surveyed to +/- 1mm. These levels of accuracy are judged to be within the requirements of this study.

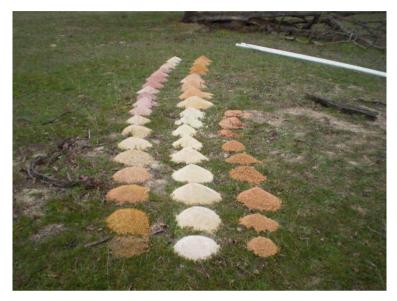
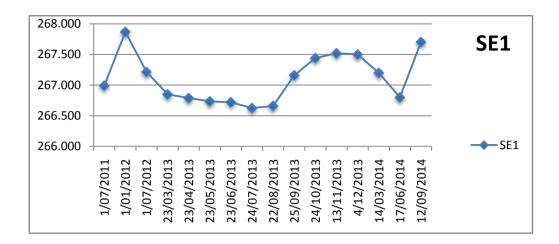
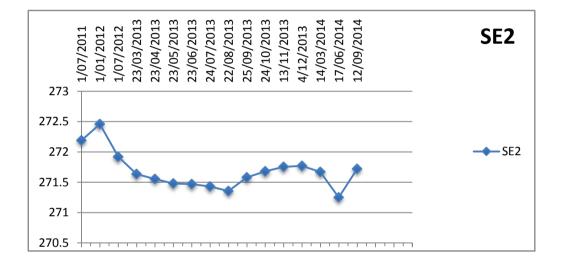
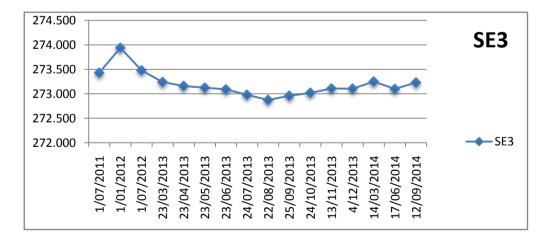
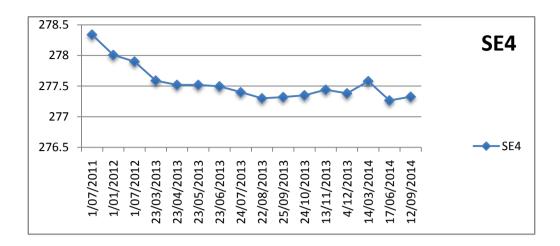


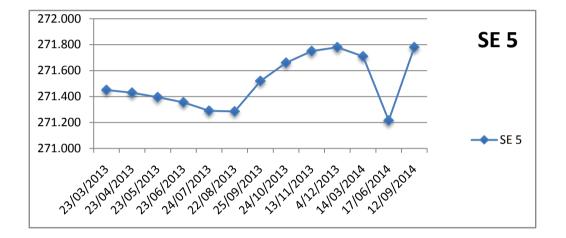
Photo plate 1 - Drill cuttings sampled at 1 m intervals. Water struck at 39 m depth.

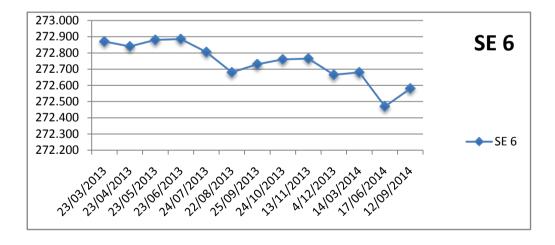

Photo plate 2 - cuttings sampled at 1 m intervals. Water struck at 44 m depth.

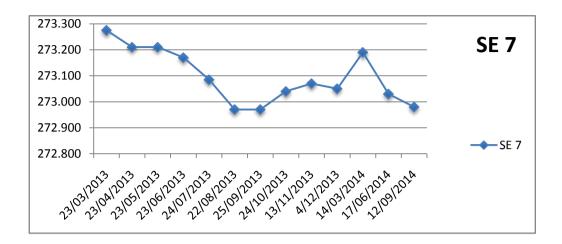

7.2 Water Level Measurement

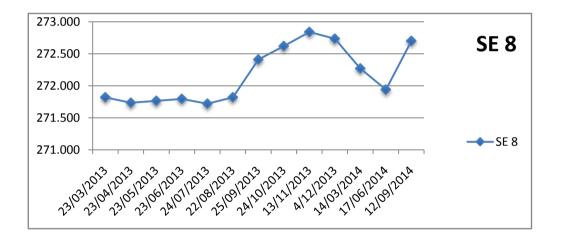

Water levels were measured in all monitor wells on-site prior to the purging and sampling of each well (described earlier in Section 7). These levels were assessed to be suitable for hydrogeological interpretation. The highest of these levels, measured quarterly between 2011 and 2014 reduced to AHD using the level survey data are shown in Table 5 below.

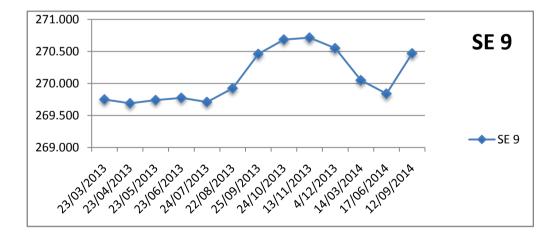

Monitor Well	Easting (mAMG)	Northing (mAMG)	Highest Water Elevation (mAHD)
SE1	6495636	449807.2	267.868
SE2	6495914	449616.1	272.46
SE3	6496194	449383	273.94
SE4	6495786	450377.9	278.34
SE 5	6495858	449809.3	271.78
SE 6	6495855	450039.4	272.885
SE 7	6496096	450043.1	273.275
SE 8	6496173	449770.4	271.94
SE 9	6496373	449643.2	270.715
pit 1	6496055	449813.3	270.565
pit 2	6496123	449804.3	271.75
pit 3	6496068	449783.5	270.275
pit 4	6496038	449911.2	270.5
pit 5	6495948	449707.9	271.92


The data obtained from the quarterly measurements of the static water level at the bores is provided in the graphs below:









7.2.1 Purging and Sampling

Groundwater samples were obtained from a total of 4 locations on and around the site from the 9 new monitoring wells. Prior to sampling, each monitor well was purged at a rate of

approximately 5 L/min using a decontaminated submersible pump for a minimum of 15 minutes (i.e. purge volume of greater than 75L).

Groundwater samples were collected in laboratory supplied and preservative treated containers from each monitor well after withdrawing the submersible pump. Groundwater samples were collected in accordance with AS 5667.1:1998. All samples were stored on ice and transported MGT Eurofins laboratories in Melbourne for analysis with appropriate chain-of-custody documentation. In addition, one duplicate sample was obtained at each monitoring event and submitted for quality control purposes.

The laboratory certificates of all of these analyses are provided in the Appendix D.

7.2.2 Field Water Quality Data

Water quality of the groundwater samples was tested in the field. The following table presents the average results over the period 2011 to 2014:

Bore ID	рН	Elect. Cond Us/cm	TDS ppm
SE 1	3.7	3744	1886
SE 2	4.45	7536	3904
SE 3	6.9	8640	4490
SE 4	5.8	488	257
SE 5	4.9	4188	2326
SE 6	4.4	6936	3415
SE 7	3.7	10628	4836
SE 8	6.01	692	346
SE 9	5.2	12854	981

Table 6 Average of the field water quality record (June 2011 to October 2014)

Field water quality records were recorded at all bores, from SE-1 to SE-9 between March 2013 and October 2014. Previous to that bores SE-1 to SE-4 were sampled when installed in 2011 and then again quarterly to 2014.

It is apparent from the field water quality results that two different groundwater aquifers have been intersected by the 9 bores installed around the site. Bores SE-1, SE-2, SE-3, SE-5, SE-6 and SE-7 report poor water quality of brackish nature, whereas bores SE-4, SE-8 and SE-9, which are located to the east and north of the site report relatively fresh water conditions.

The field water quality records for pH, electrical conductivity and field salinity testing are provided in Tables 7 to 9. It is worth noting that while most of the bores presented a relatively steady water quality, the variation in both pH and EC at bore SE 9 was at times significant, with salinity increasing with reduction in acidity (rise in pH) of the groundwater.

Bore ID	SE1	SE2	SE3	SE4	SE 5	SE 6	SE 7	SE 8	SE 9
Northings	6495635.667	6495913.7	6496193.886	6495786	6495858	6495855.090	6496096	6496173	6496373
Eastings	449807.222	449616.1	449382.966	450377.9	449809.3	450039.370	450043.1	449770.4	449643.2
1/07/2011									
18/01/2012	3.590	4.03	3.910	6.23					
18/07/2012	4.620	6.4	4.360	8.89					
13/01/2013	3.740	4.4	4.720	6.15					
23/03/2013	4.050	5.630	3.870	6.140	5.860	5.170	4.300	6.760	6.370
24/07/2013	3.190	4.650	36.980	5.360	4.730	4.510	3.620	6.15	4.93
24/10/2013	3.750	4.300	4.220	4.710	4.780	4.450	3.620	6.020	5.130
13/11/2013	3.800	4.270	3.540	5.410	4.640	4.660	3.520	5.550	6.150
4/12/2013	3.340	4.240	3.890	5.070	4.520	3.980	3.410	5.650	4.860
14/03/2014	3.630	4.000	3.350	5.680	5.000	4.220	3.660	6.530	5.350
17/06/2014	3.520	3.330	3.450	5.080	4.620	4.240	3.530	5.670	4.620
12/09/2014	3.520	3.700	3.550	5.260	4.710	4.270	3.650	5.790	4.420
Average	3.705	4.450	6.895	5.816	4.858	4.438	3.664	6.015	5.229

Table 7 - Field water quality record - pH

Bore ID	SE1	SE2	SE3	SE4	SE 5	SE 6	SE 7	SE 8	SE 9
Northings	6495635.667	6495913.7	6496193.886	6495786	6495858	6495855.090	6496096	6496173	6496373
Eastings	449807.222	449616.1	449382.966	450377.9	449809.3	450039.370	450043.1	449770.4	449643.2
18/01/2012	4300	6070	7690	327					
18/07/2012	3920	5200	7880	473					
9/01/2013	3750	5670	7750	540					
23/03/2013	3620	5600	8500	532	5090	5870	6480	1358	597
24/07/2013	3770	5440	12490	507	5260	5640	11230	570	952
24/10/2013	3650	5860	5570	479	4130	5570	11600	529	2310
13/11/2013	3620	5790	5450	504	3990	5640	10960	527	841
4/12/2013	3600	6080	12260	452	4270	6950	10950	523	852
14/03/2014	3710	10200	8770	453	3830	7900	11350	635	3320
17/06/2014	3640	12880	9650	644	3680	8610	11180	979	700
12/09/2014	3600	14110	9030	455	3250	8510	11270	415	698
Average	3744	7536	8640	488	4188	6836	10628	692	1284

Table 8 - Field water quality record - Electric Conductivity in μ S/cm

Table 9 - Field salinity record in mg/l

Bore ID	SE1	SE2	SE3	SE4	SE 5	SE 6	SE 7	SE 8	SE 9
Northings	6495635.667	6495913.7	6496193.886	6495786	6495858	6495855.090	6496096	6496173	6496373
Eastings	449807.222	449616.1	449382.966	450377.9	449809.3	450039.370	450043.1	449770.4	449643.2
18/01/2012	2976	4231	5315	327					
1/01/2012	1310	2880	4430	236					
1/07/2012	1840	2810	3800	260					
23/03/2013	1810	2800	4250	261	2470	2890	3240	675	3000
24/07/2013	1890	2720	6290	252	2620	2830	5540	285	474
24/10/2013	1830	2940	2790	239	2080	2790	5800	260	1170
13/11/2013	1810	2900	2740	251	2000	2820	5480	262	422
4/12/2013	1800	3040	6130	226	2140	3470	5500	263	426
14/03/2014	1860	5120	4300	227	3830	3950	5680	321	1660
17/06/2014	1820	6440	4830	323	1840	4310	1820	490	350
12/09/2014	1800	7060	4520	228	1630	4260	5630	208	349
Average	1886	3904	4490	257	2326	3415	4836	346	981

8 LABORATORY ANALYSIS

8.1 Analytes

All groundwater and quality control samples were analysed using National Association of Testing Authorities (NATA) registered methods and analytical techniques for the following determinants.

- Major anions and cations, pH, conductivity, ammoniacal nitrogen and total dissolved solids (TDS);
- Heavy metals including arsenic, cadmium, chromium, copper, nickel, lead, zinc and mercury;

The chain-of-custody documentation and analytical data as presented by the laboratories appears within Appendix D.

8.2 Quality Control

The following sections describe the testing methodologies and quality assurance/quality control (QA/QC) procedures used for analysis of the water samples obtained during the field activities.

8.3 Field Duplicates and Blank Samples

One field blank sample (designated SE-5) was obtained. The results of the field duplicate and blank analyses are included in the Appendix D.

The Relative Percentage Difference (RPD) values calculated for the duplicated groundwater analysis ranged from incalculable where results were below laboratory practical quantitation limits (PQLs).

Analysis of the blank groundwater sample (designated SE 5) reported concentrations below the respective practical quantization limits (PQLs). Expected background concentrations were reported for major anions, cations and the heavy metals analyses conducted.

8.4 Laboratory Control Samples, Spike Recoveries, Duplicates and Blanks

Laboratory control and spiked samples were analysed by ARL and MGT Eurofins for all analytes (where applicable). All recovery results were within recommended control limits, indicating the results of the sample analyses are adequate for the purposes of this report, with a general tendency to slightly overestimate the concentrations of each individual analyte. All laboratory blank samples reported concentrations less than the PQL.

Laboratory duplicate analysis was conducted for heavy metals, cations, anions, ammoniacal nitrogen and total nitrogen. All RPDs were well within acceptable limits.

9 GROUNDWATER QUALITY

The groundwater analytical results are summarised in Appendix C. Based on the analytical results obtained, the following conclusions can be derived.

9.1 Major lons and Groundwater Parameters

Analysis of groundwater samples reported all major ions and parameters

9.2 Heavy Metals

Analysis of most of downgradient and upgradient groundwater reported dissolved heavy metal concentrations above the DEC (2010) fresh water guidelines. Bores SE-4, SE-8 and SE-9 are located north and east of the proposed landfill and water within these bores is characterised by relatively low salinity (ranging some 200 to 1000 mg/l as TDS), the absence of heavy metals (arsenic, cadmium, copper, nickel, lead and zinc) and moderate pH (close to neutral). In general, the water quality to the north and east of the proposed landfill can be described as relatively good.

To the south and west of the site, the groundwater displays poor water quality. The water is brackish with TDS ranging from 2000mg/l to over 6000 mg/l. Heavy metals are present for all sampling events, with nickel being the main heavy metal of concern as the concentrations of this water quality variable have in the past been in the order of 200 times over the drinking water guidelines. Lead and copper are also prevalent, with occasional presence of small amounts of cadmium and arsenic. Table 10 presents water quality analyses from the most recent sampling event in September 2014. These analyses can be considered as representative of all other sampling events.

Summaries of the water quality in the bores are presented in Appendix C.

9.3 Nitrate

Unlike with the heavy metals, nitrate (or other nitrogen species) is not present in the groundwaters to the south and west of the proposed site, but is present to the north and east. This is most likely as a consequence of land use - the land is stocked with sheep.

The water quality with respect to all the nitrogen species complies with DER water quality guidelines for drinking water.

	SE1	SE2	SE3	SE4	SE5	SE6	SE7	SE8	SE9	NG2
Chloride	1000	4800	2900	100	910	2800	3900	48	59	58
Conductivity (at 25°C)	3700	14000	9400	440	3300	8700	12000	400	700	700
рН	3.5	3.8	3.4	6.1	5.9	4.3	3.7	7.1	7.4	5.9
Sulphate (as S)	41	240	190	5.6	44	110	60	12	66	67
Total Dissolved Solids	1900	9000	5100	260	1800	4500	6800	270	490	480
Alkali Metals										
Calcium	1.1	25	3.7	0.9	1.7	2.2	5.5	< 0.5	< 0.5	< 0.5
Magnesium	40	420	300	9.9	70	100	100	1.3	1.8	1.9
Potassium	2.8	53	66	1.5	17	11	7.2	2.3	1.9	1.8
Sodium	550	2100	1200	70	470	1500	1800	81	130	130
Heavy Metals										
Arsenic (filtered)	0.001	0.002	0.004	< 0.001	< 0.001	0.001	0.002	< 0.001	< 0.001	< 0.001
Cadmium (filtered)	0.0003	0.0019	0.027	< 0.0002	0.0004	< 0.0002	< 0.0002	< 0.0002	< 0.0002	0.0002
Chromium (filtered)	0.001	0.004	< 0.001	< 0.001	< 0.001	0.005	0.002	< 0.001	< 0.001	< 0.001
Copper (filtered)	0.46	1.8	0.01	0.013	0.003	0.085	0.093	0.002	0.007	0.007
Lead (filtered)	0.096	0.66	0.1	< 0.001	< 0.001	0.014	0.003	< 0.001	< 0.001	< 0.001
Manganese (filtered)	0.093	1.2	1.8	0.017	1.6	0.055	0.1	< 0.005	< 0.005	< 0.005
Mercury (filtered)	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel (filtered)	0.098	1.2	3.8	0.014	0.49	0.029	0.046	< 0.001	0.003	0.003
Zinc (filtered)	0.1	0.91	3.2	0.024	0.38	0.052	0.058	0.004	0.038	0.039
Total Nitrogen Set (as N)										
Nitrate & Nitrite (as N)	< 0.05	< 0.05	< 0.05	7.7	< 0.05	0.13	0.98	5.7	7.5	8
Total Kjeldahl Nitrogen (as N)	< 0.2	0.3	< 0.2	0.3	< 0.2	< 0.2	< 0.2	< 0.2	0.2	< 0.2
Total Nitrogen (as N)	< 0.2	0.3	< 0.2	8	< 0.2	< 0.2	1	5.7	7.7	8

Table 10 – Water Quality Results - September 2014

All results in mg/l. Values in bold exceed drinking water guidelines

10 GROUNDWATER CONDITIONS

10.1 Groundwater Hydraulics

Regional ground water was inferred to be flowing in a south to south-westerly direction south of the site and north-westerly, north of the site. This observation is based on the measured depth to groundwater in each monitor well and the results of the level survey. Figure 4 illustrates the direction of groundwater flow based on lines of equal potential derived from the groundwater elevation in each monitor well (Section 7).

Ground water (as a deep confined aquifer) appears to exist underneath the whole of the proposed landfill. Ground water arrives from the east and the predominant flow direction from the proposed landfill site is to the south and north west, with a relatively steep hydraulic gradient of approximately 0.03, when calculated with respect to a closest potential groundwater pathway to the Jimperding Brook. The site sits on a topographical saddle which is also reflected in the groundwater potentiometric surface morphology.

10.2 Conceptual Hydrogeological Model

A conceptual groundwater model has been derived from a review of previous reports relating to the drilling, and the recent installation of piezometers in the area.

Figure 7 illustrates the major features of the conceptual hydrogeological model of the quarry area and surrounds. The major elements of the model are:

- The local geology is characterised by weathered micaceous schists with steep paleobedding which strikes northwards. The weathered zone above fresh bedrock extends to between 40 and 50m. This zone is primarily a white silty/clay with inclusions of quartzite, mica and is criss-crossed by a number of hydrothermal quartz veins. No local faulting has been observed from aerial photography nor is reported in geological maps of the area.
- Recharge to the local aquifers is likely to be from zones to the east, potentially a long distance away. Local geology is of very low permeability and is unlikely to provide rainfall recharge of any magnitude. The closest groundwater discharge to the site is the Jimperding Brook, located about 1 km to the south of the site.
- The upper 10 to 15 m of this weathered zone is mined for clay. Below this level the clay becomes saline and is no longer suitable for brick and tile production.
- The aquifer/aquitard has a steep groundwater gradient with respect to Jimperding Brook (0.03). Seasonal groundwater level fluctuations over the site are in the order of 0.5 to 1.2 m.
- The aquifer/aquitard which is located in weathered micaceous schists at depth and is confined by between 30 and 50 m thick bed of weathered micaceous to gritty silt/clays, from the ground surface (see Figure 7). This indicates that the aquifer/aquitard is

separated from the surface by some 30m (in the east) to 50m (in the west) of clay beds. This was borne out during the drilling of the monitor wells (see geological logs of SE-1 to SE-9), as groundwater strikes were all well below the current potentiometric surface. This also shows that the depth to groundwater aquifers/aquitards increases westwards.

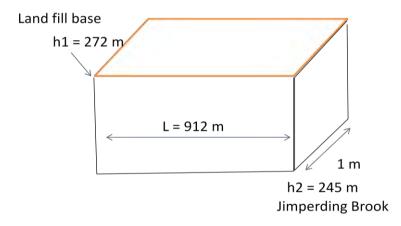
- It is concluded that this is a deep sitting confined aquifer/aquitard, with relatively poor water yield.
- Significant upward piezometric pressure due to confinement by clay rich stratigraphy and steep aquifer gradient.
- Stabilised potentiometric head relatively close to the surface (within 10 to 20 m from the natural ground surface). Potentiometric head is the result of the confining pressure at the aquifer level. Lateral groundwater flow is likely to be restricted by the clay rich mineralisation, resulting in poor transmissivity. This was shown by the relatively long time (up to 2 days) it took the monitoring bores to stabilise a SWL after drilling was completed (see cross sections in DWG OV-03-ACW and site plan in DWG OV-02-ACW)
- Ground water chemistry recorded for the period July 2011 to September 2014 shows that the waters south and south-west of the site are not fit for human consumption. Ground water to the east and north east of the site is of good quality.
- The potential primary beneficial use of groundwater in proximity to the site is (i) aquatic environment in the Jimperding Brook 900 m to the south and south-west, (ii) stock watering from the Jimperding Brook, (iii) possible future groundwater abstraction at residences to the north, potentially for domestic purposes (see DWG OV-01- ACW).

Geological logs for the bores drilled during June 2011 and April 2013 are shown in Figures 8 to 16.

10.3 Groundwater flow

The potentiometric groundwater surface elevation is shown in Figure 4 and the aquifer/aquitard location is derived from the water strikes recorded during drilling of the monitoring bores. Figure 4 is generated from the highest recorded water levels over the period July 2011 to September 2014 at each of the monitoring wells.

The local land gradient is towards the south and north-west from the site, but the groundwater flow direction is recorded to the south, calculated from the potentiometric isoclines. This flow direction is used in the risk assessment for impact on potential receptors, as Jimperding Brook is the closet potential receptor to the site (912 m south). An assumption is made that a preferential groundwater flow path to the receptor exists directly south to Jimperding Brook.


10.3.1 Direct Calculation for Travel Time from Proposed Landfill to Jimperding Brook:

An assumed hydrogeological connection between the site and Jimperding Brook is used to provide a worst case scenario for contamination impact of a sensitive receptor.

The receptor pathway would be along a quartzite geological structure which would allow groundwater flow from below the proposed landfill and be intercepted by the base flow of the Jimperding Brook.

The following model calculation seeks to provide the time period that a contaminant would take to reach the Brook, under purely advective groundwater flow conditions.

- Hydraulic conductivity through a fractured quartzite with a silt matrix 0.08m/d (Freeze & Cherry, 1979)
- Porosity 10%. While clay may have porosities in the order of 40%, silt is more likely to be in the 10% range.
- Gradient 0.03 from the conceptualization below:

Not to scale

Calculation

Darcy's law is the basic equation that describes fluid flow through porous media. There are many ways to write Darcy's Law, and a few of them will be presented here. The first equation contains a velocity term, v (L/T), a conductivity term, K (L/T), a head term, h (L), and a distance term, I (L):

$$\label{eq:keylinear} \begin{array}{ll} \mathsf{v} = -\mathsf{K}(\Delta h/\Delta I) \\ \mathsf{L} = 912m & \mathsf{K} = 1 \ x \ 10^{-6} \ \text{m/s} & \mathsf{Porosity} = 10\% \ \text{or} \ 0.1 \\ \mathsf{A} = 1 \ x \ 27 = 27m^2 & \mathsf{dh} = (h_2 - h_1) = (272 - 245) = -27 \ \text{m} \\ \mathsf{therefore}, \\ \mathsf{i} = (27)/912 = -0.0296 = -0.03 \\ \mathsf{v} = - (10^{-6}) \ x \ (-0.03) = 3 \ x \ 10^{-8} \ \text{m/s} \end{array}$$

 $Q = -(10^{-6}) \times (-0.03) \times 27 = 0.81 \times 10^{-7} \text{ m}^3/\text{s}$

Note: To Calculate Average Linear Velocity which is what we use for groundwater calculations you must divide v by porosity.

Average Linear Velocity

v/porosity = $3 \times 10^{-8} / 0.1 = 3 \times 10^{-7}$ m/s

Therefore daily travel distance = $3 \times 10^{-7} \times 86,400 = 0.026$ m/day

and in a year, 0.026 x 365 = 9.5 m/year

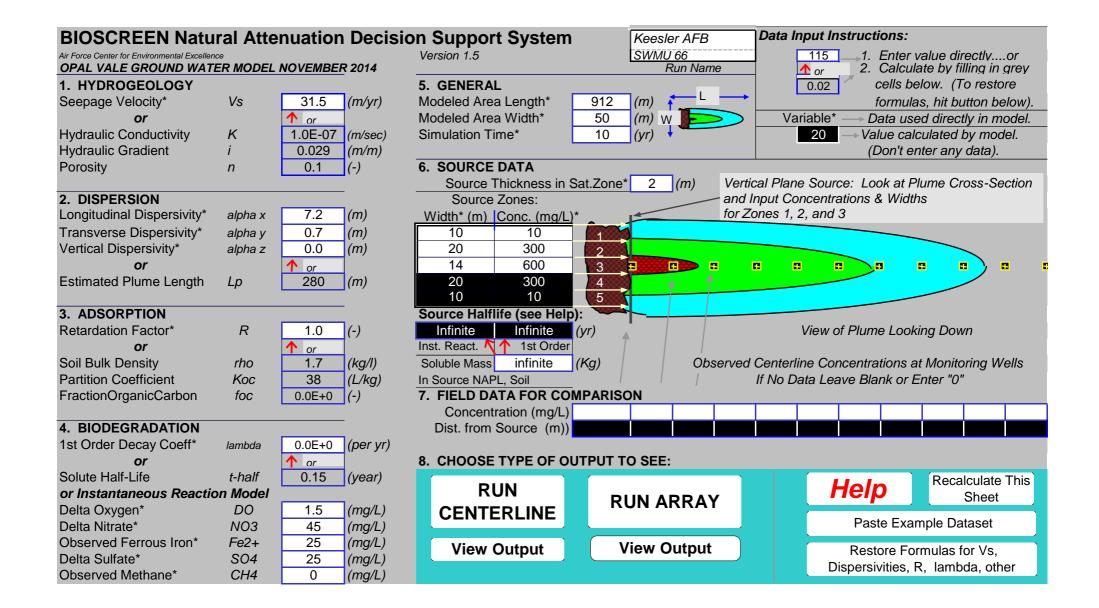
To cover the full distance (912 m) it will take groundwater <u>96 years</u> to reach Jimperding Brook.

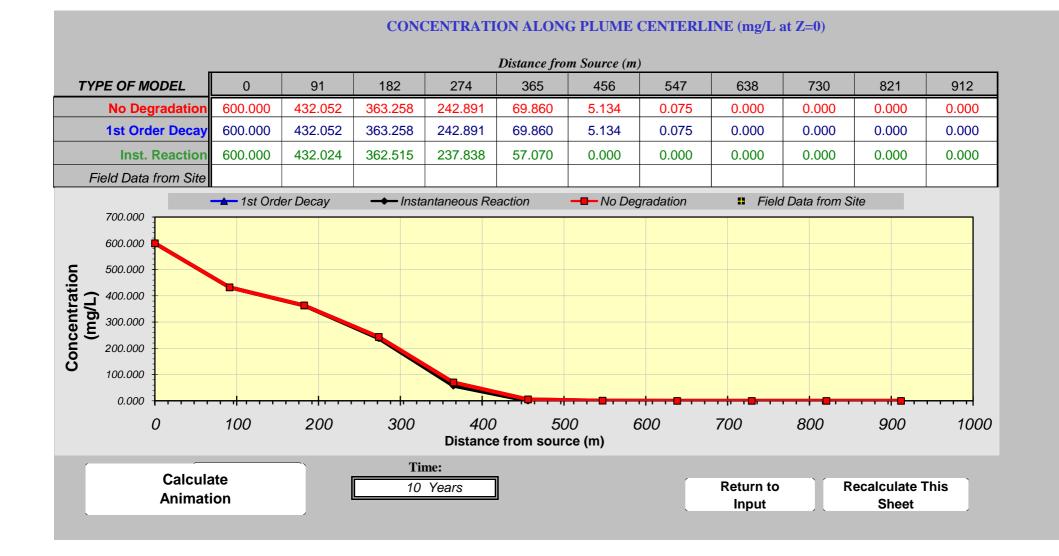
NOTE:

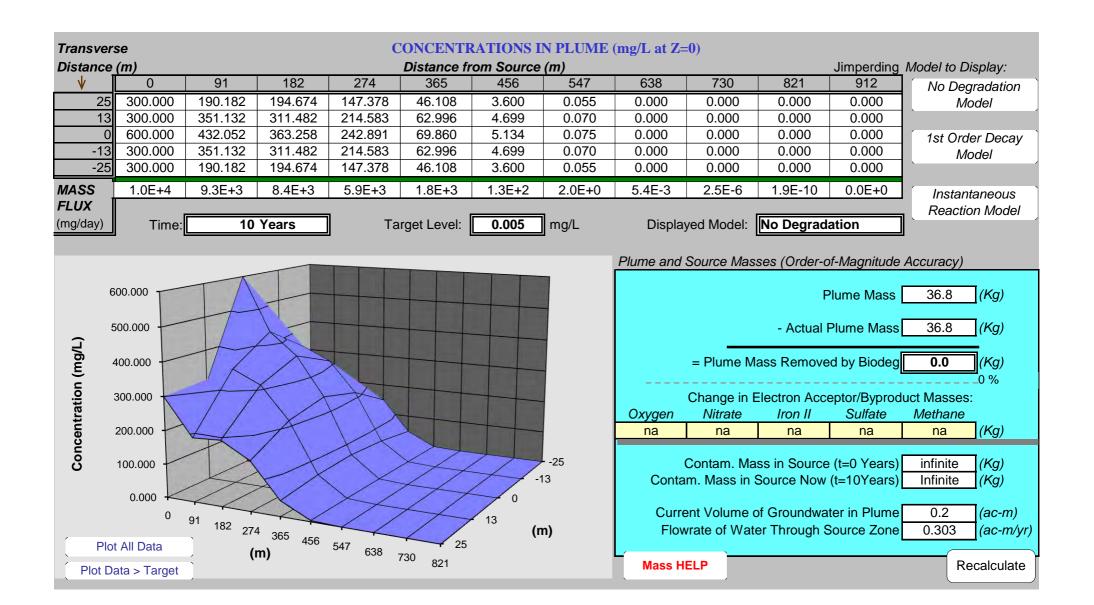
Hydraulic conductivity assumed to be that of silt (0.08 m/day), which is worst case scenario, as the lithological material matrix is a silt-clay mix, which could be considered less permeable.

No dispersion or other solute transport assumptions taken into account.

10.3.2 Bioscreen Modelling


Bioscreen is a screening model which simulates a contaminant plume. It is programmed in Microsoft® Excel, is based on the Domenico analytical solute transport model, and has the ability to simulate advection, dispersion and adsorption. For the purposes of this report, a solute transport without decay model was used.


Bioscreen was run for a period of 10 years to determine which contaminants were likely to reach the closest sensitive receptor (Jimperding Brook) at concentrations above the guideline values. A cross sectional area was estimated for the plume using the flow rate from the base of the landfill and the calculated seepage velocity. Flow rate was assumed to be conserved.


As an assumption was taken that a conservative contaminant (non-decay) at a concentration of 600 mg/l (say chloride) will leave the landfill through a 50 m wide and 2 m deep saturated contact zone (approximately 200 litres/day for the whole landfill site). This would be roughly equivalent to a loss of 10l/day/ha over the Stage 1 of the landfill. The Bioscreen input and output screens are provided over the next 3 pages.

The Bioscreen modelling results indicated that after 10 years the closest impact would be about 400 m downgradient of the site, with a total plume mass of some 38 kgs with concentrations of an arbitrary conservative contaminant reduced from 600 mg/l to less than 50 mg/l.

The Bioscreen model calculations use dispersion in addition to advection of a conservative contaminant, which allows for solute transport to be faster than by purely advective flow of groundwater (previous calculation). These calculations show that the first "breakthrough" of contamination to the Brook is possible within 17 years of the landfill developing a leak.

11 CONCLUSIONS

On the basis of this study, the following conclusions are reached:

- The site is underlain by a confined aquifer/aquitard of limited extent which is confined by thick beds (up to 30 m thick) of clays and weathered schist/quartzite.
- Based on the water yield and aquifer physical characteristics, the water body can be defined as a confined aquitard.
- The water quality in south and south west downgradient bores is poor, indicating impacts from salinity and geological weathering of in situ mineralisation (presence of heavy metals). Ground water quality to the north and east of the site is good.
- While the yield from the aquifer has not been tested, the geological materials recovered from the drilling suggest that this aquifer is potentially low yielding with poor aquifer transmissivity (low hydraulic conductivity).
- The recently installed bores are adequately located to define the local aquifers and are suitably positioned for monitoring of the groundwater below the site.
- The highest possible groundwater potentiometric surface (measured between July 2011 and September 2014) is below the current floor of the pit.
- The groundwater conditions at the site are favorable for the development of a waste management facility as the aquifer below and adjacent to the site cannot be considered a beneficial water resource due to likely low yielding water characteristics and in some locations poor water quality. This observation is related to the significant clay content in the matrix of the geologic materials recorded during installation of the site groundwater monitoring bores.
- Modelling of the most sensitive receptor pathways shows that it will take in excess of 90 years for water leaking from the landfill to reach the most sensitive and closest receptor - the Jimperding Brook. The Bioscreen model suggests that it may take as little as 17 years for a contaminant "breakthrough" to be observed at the Brook (first recorded concentration) if a preferential groundwater flow path exists in a direct line between the landfill and Jimperding Brook

- The beneficial groundwater use in the area is considered to be sufficient for "stock watering". Groundwater to ten east and north of the site is suitable for domestic use.
- Water yields from bores adjacent to the site are likely to be poor due to the low permeability of the aquifer/aquitard.

12 RECOMMENDATIONS

The following recommendations are made, based on the investigations to date:

- As the downgradient groundwater quality exceeds the DER guidelines for fresh waters, it is recommended that the baseline water quality survey data is used as water quality triggers. If required, these water quality analyses can be performed again to confirm the water quality data base currently available.
- Static water level (SWL) and quality of the groundwater should be continue to be monitored at a quarterly interval.

13 REFERENCES

- Department of Environment and Conservation, 2010. Contaminated Sites Management Series.
- Department of Environment and Conservation, 2005. The use of risk assessment in contaminated site assessment.
- Wilde, S. A. 1994. Crustal Evolution OF The South Western Yilgam Craton. Geological Society OF Australia (WA, DIVISION) EXCURSION GUIDEBOOK, 7,20P.
- Landform Research, 2009. Management and Rehabilitation Program of Clay Pit Class 11 Landfill, Lot M2027, Chitty Road, Toodyay, Opal Vale Pty Ltd.

14 GLOSSARY OF TERMS

Abstraction Pumping groundwater from an aquifer.

AHD Australian Height Datum; equivalent to: Mean Sea Level (MSL) + 0.026 m; Low Water Mark Fremantle (LWMF) + 0.756 m.

Alluvium Unconsolidated sediments transported by streams and rivers and deposited.

AMG Australian Map Grid.

Anticline Sedimentary strata folded in an arch.

Aquifer A geological formation or group of formations able to receive, store and transmit significant quantities of water.

Confined A permeable bed saturated with water and lying between an upper and a lower confining layer of low permeability.

Baseflow Portion of river and stream flow coming from groundwater discharge.

Basement Competent rock formations underneath sediments.

Bore Small diameter well, usually drilled with machinery.

bns Below natural surface.

Colluvium Material transported by gravity downhill of slopes.

Confining bed Sedimentary bed of very low hydraulic conductivity.

Conformably Sediments deposited in a continuous sequence without a break.

Conductivity The flow through a unit cross sectional area of an aquifer under a unit hydraulic gradient.

Dewatering Abstraction of groundwater from bores to assist in mining.

Evapotranspiration A collective term for evaporation and transpiration.

Gradient The rate of change of total head per unit distance of flow at a given point and in a given direction.

Head The height of the free surface of a body of water above a given subsurface point.

Hydraulic Pertaining to groundwater motion.

Flux Flow.

Fault A fracture in rocks or sediments along which there has been an observable displacement.

Formation A group of rocks or sediments which have certain characteristics in common, were deposited about the same geological period, and which constitute a convenient unit for description.

Porosity The ratio of the volume of void spaces, to the total volume of a rock matrix.

Potentiometric An imaginary surface representing the total head of groundwater and defined by the level to which water will rise in a bore.

Specific yield The volume of water than an unconfined aquifer releases from storage per unit surface area of the surface.

Semi-confined A semi-confined or a leaky aquifer is saturated and bounded above by a semipermeable layer and below by a layer that is either impermeable or semi-permeable.

Semi-unconfined Intermediate between semi confined and unconfined, when the upper semipermeable layer easily transmits water.

Unconfined A permeable bed only partially filled water and overlying a relatively impermeable layer. Its upper boundary is formed by a free watertable or phreatic level under atmospheric pressure.

Transmissivity The rate at which water is transmitted through a unit width of an aquifer under a unit hydraulic gradient.

Transpiration The loss of water vapour from a plant, mainly through the leaves.

Watertable The surface of a body of unconfined groundwater at which the pressure is equal to that of the atmosphere.

Well Large diameter bore, usually dug by hand.

15 LIMITATIONS

1. The conclusions presented in this report are relevant to the condition of the site and the state of legislation currently enacted as at the date of this report. We do not make any representation or warranty that the conclusions in this report will be applicable in the future as there may be changes in the condition of the site, applicable legislation or other factors that would affect the conclusions contained in this report.

2. Stass Environmental has used a degree of skill and care ordinarily exercised by reputable members of our profession practicing in the same or similar locality. Conclusions are based on representative samples or locations at the site, the intensity of those samples being in accordance with the usual levels of testing carried out for this type of investigation. Due to the inherent variability in natural soils we cannot warrant that the whole overall condition of the site is identical or substantially similar to the representative samples.

3. This report has been prepared for Opal Vale and for the specific purpose to which it refers. No responsibility is accepted to any third party and neither the whole of the report or any part or reference thereto may be published in any document, statement or circular nor in any communication with third parties without our prior written approval of the form and context in which it will appear.

4. This report and the information contained in it is the intellectual property of Stass Environmental. Opal Vale is granted an exclusive licence for the use of the report for the purpose described in the report.

APPENDIX A Figures and drawings

Figure 1 : Location of the Site

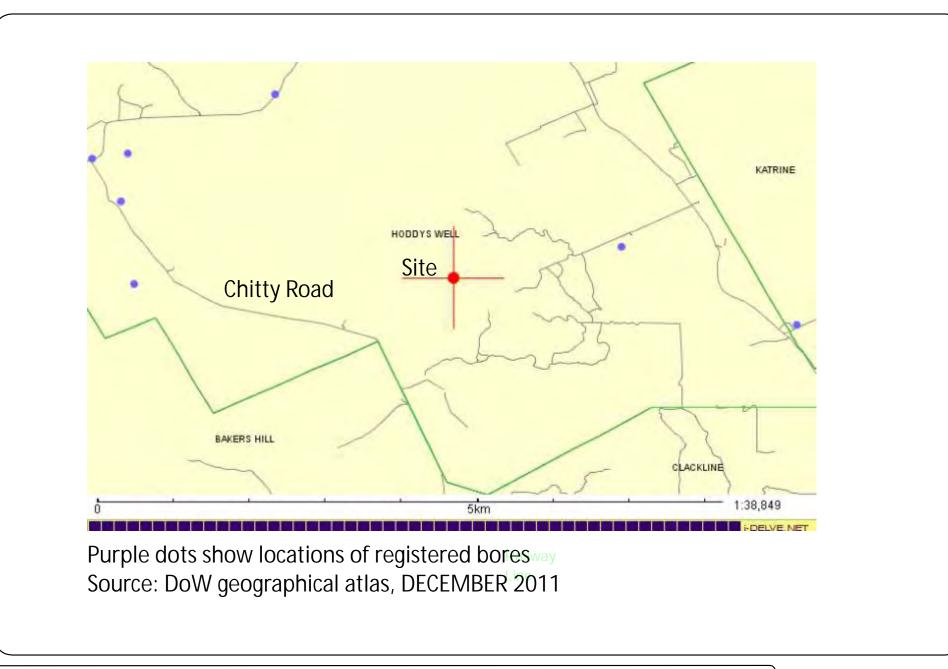
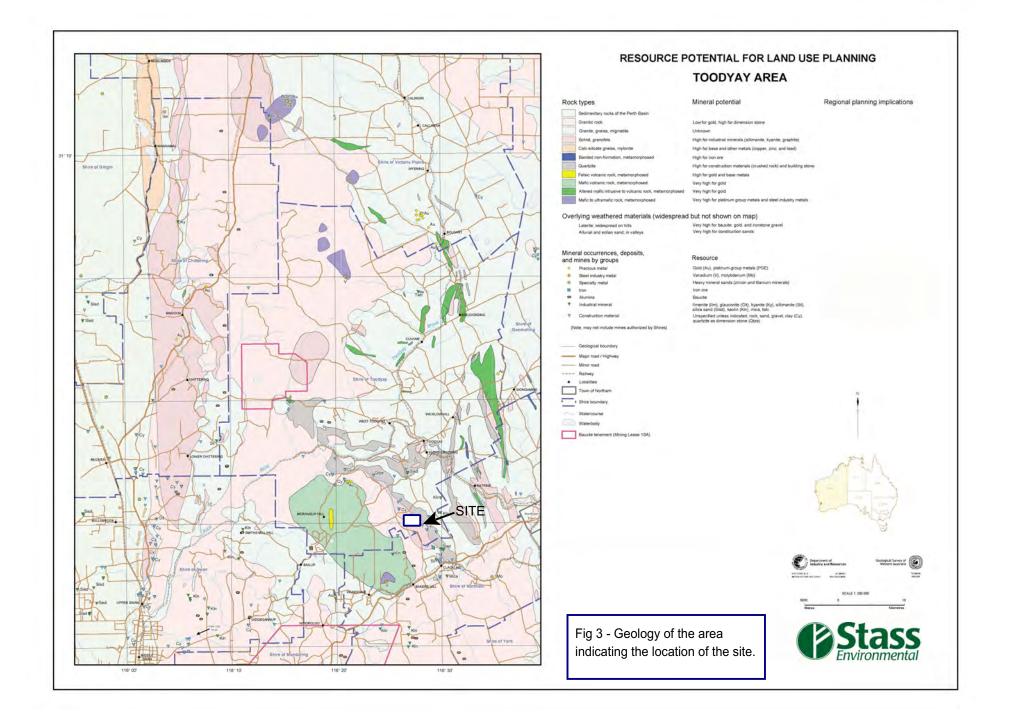
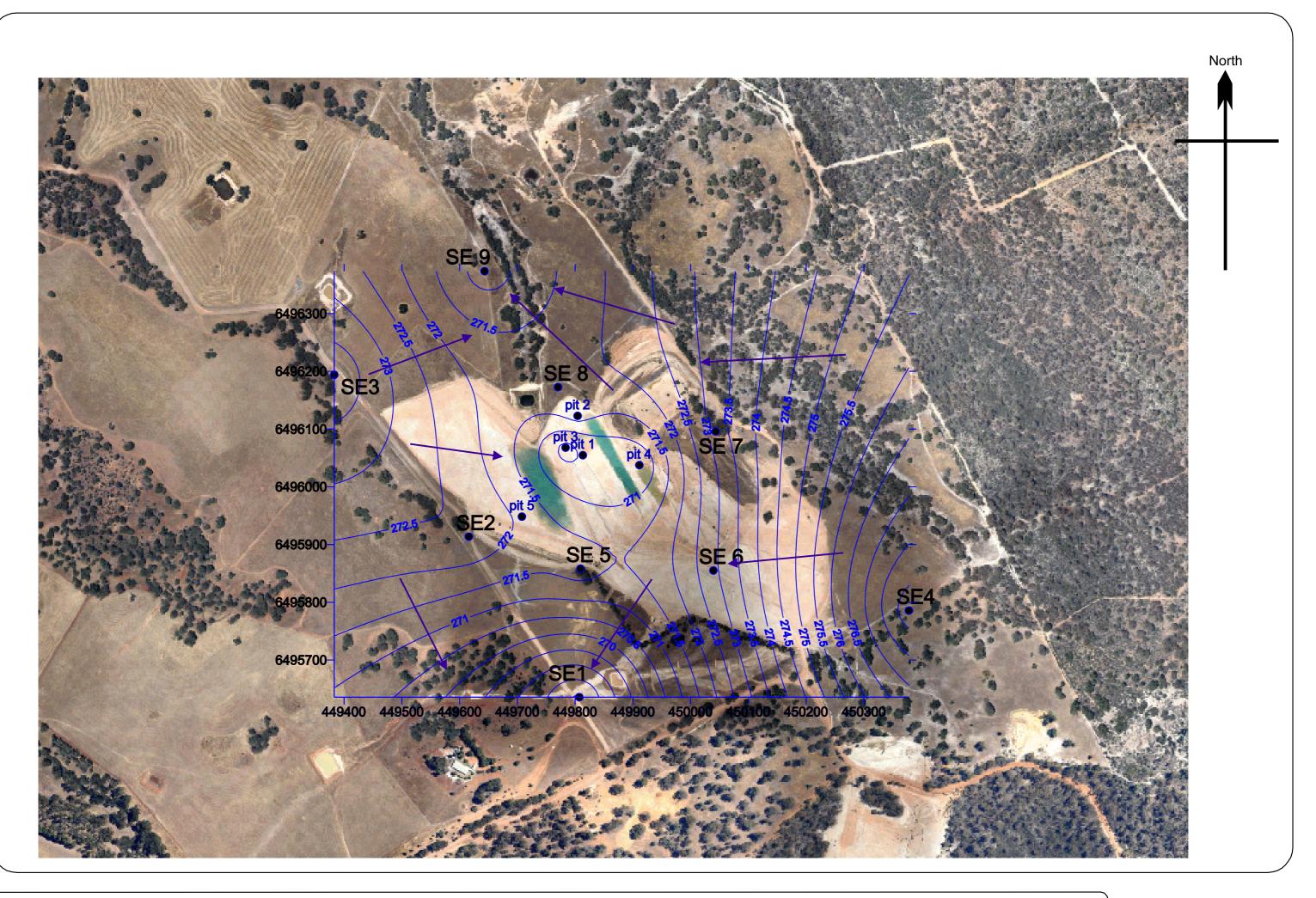



Figure 2 : Site Layout and Monitoring Bore Locations



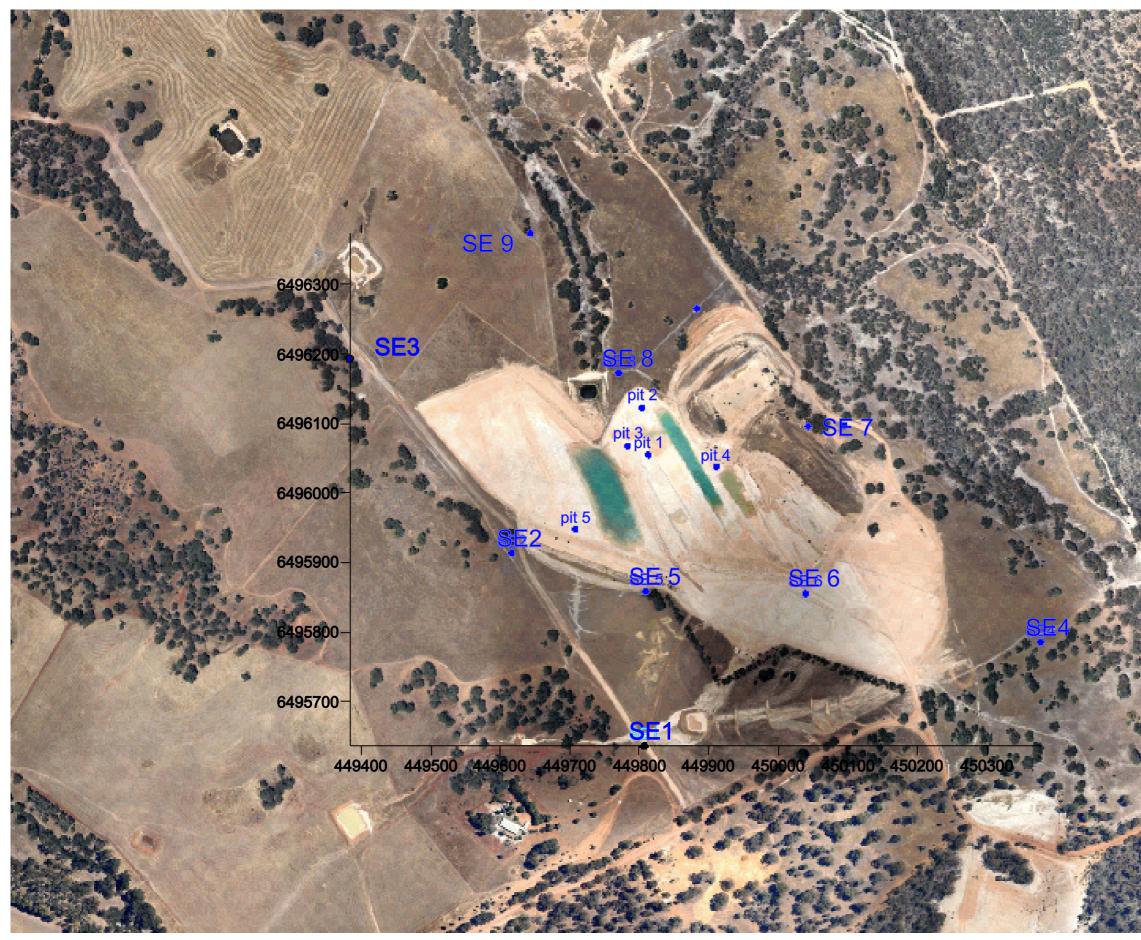

Figure 4 : Highest recorded ground water levels, 2011 to 2014, and flow directions

Figure 5 : Depth to water strikes recorded during drilling

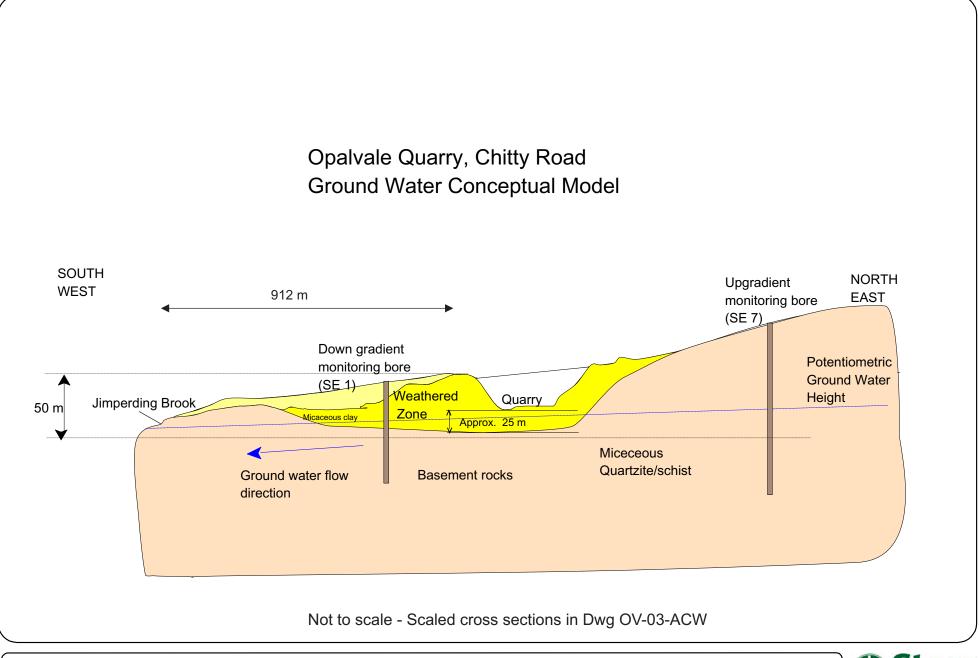


Figure 6 : Location of all bores installed at the site, from 2011 to 2013

	North
A CONTRACTOR OF A	
And a property in the	
	
and the second	
the second states and the	
The second second	
The set	
Ser Assess	
Colores Colores	
·····································	
an all the add	
· · · · · · · · · · · · · · · · · · ·	
a state at a	
ALL PART	
- 6 MAR 14 4	
New York Control	
AN ALL AND THE	

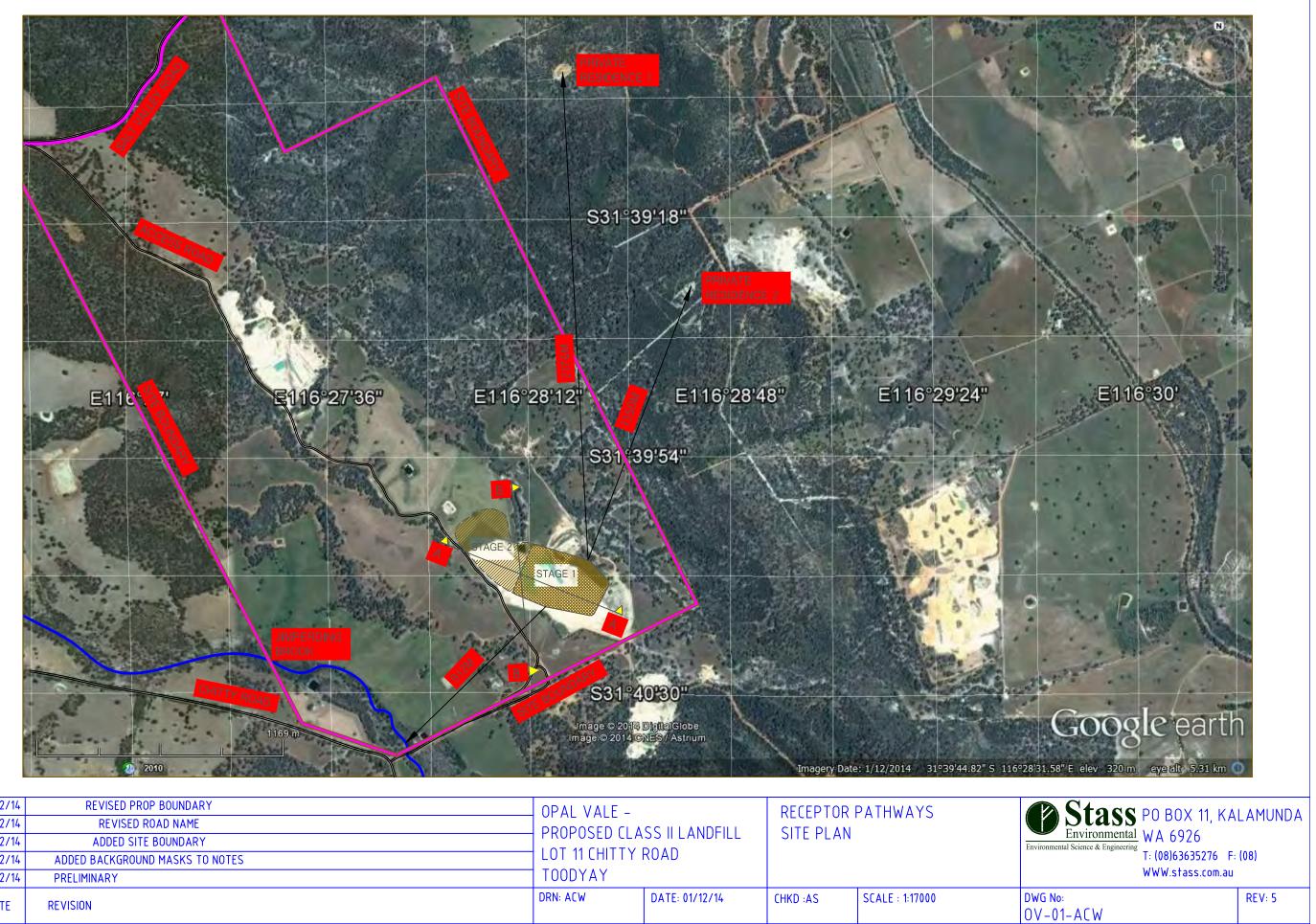
		-	Coords	s: 449807.2 Ea	st 649563	6 North				
	S Envir	onmental	Drill R	ig: Mick Lewis	Drilling Dł	HH Da	te Drilled: 27 June 2011	Logged By: A. Stass		
			Boring	g Dia: Auger 15	50 mm	Bo	ring Number: Bore SE 1			
Sample	Casing Type	Completion	SWL Metres	Depth Meters	Lithology		Description			
	Surface					Sandy, r material,	nedium grained brown colour. Co humus. Well sorted.	ntains organic		
	Blank Casing			— 5 –	-	30% silts	ter level at 7.41 m below the surfa			
				- 10 -	-	Lithology	-			
	Gravel packed			- 15 -		-	to white fine grained clay. Some r ning of quartz grains - approx 2 to	·		
			- 20 -			intermixed with muscovite flakes. Up to 50% quartz/muscovite at defined zones, up to 2 m thick. Creamy/ beigeto white fine grained clay. Some muscovite				
	Slotted Casing			— 25 —		present.	rike at 28 m below the surface.	some muscovite		
	Cap at base			- 30 -	-	Medium to 80%	grained sand, leight beige/yellow content.	coloured clay up		
				— 35 –	-					
				- 40 -	-					
				- 45 -	-					
C	ompletion Notes	5:					Sito			
CI CI	iezometer SE1 lass 12, 55 mm ass 12, 55 mm, olar is set at 0.5	blank PVC casir slotted, PVC ca 5 m above gs	ng from 0 sing fron) to 26m bgs; n 26 to 32 mbg	IS;		Site: Opalvale Clay Quarry 11 Chitty Road Toodyay			
	Ē	0H = 4.28, EC = 406 REDOX = 145 mV	0 uS/cm, T	DS 2340 mg/l						
Pi	iezometer was c	apped at base.					Project No.: Ovale 001	Page 1		

	D Ci		Coords	s: 449616.1Ea	ist by 6495	914 North				
	B St Envir	Onmental	Drill Ri	g: Mick Lewis	Drilling DI	H Da	te Drilled: 27 June 2011	Logged By: A. Stass		
			Boring	Dia: DHH 150	0 mm	Во	ring Number: Bore SE 2			
Sample	Casing Type	Completion	SWL Metres	Depth Meters	Lithology	Description				
	Surface					Grey to b	rey to beige medium grained sand. 30% clay.			
	Blank Casing		-	- 6 -	_	Grey to b 30% silts.	eige fine grained clay. Some m	nuscovite present		
				- 12 -	-	Static water level at 13.39 below the surface (measured 3 days after drilling) Lithology as above				
	Gravel packed			- 18 -		_	y as above, some colour chang	e to more beige		
	Slotted Casing			- 24 -						
	Cap at base			— 30 —	_					
			-	- 36 -	-					
				- 42 -						
			-	48		— Water s	trike at 48 m below the surface.			
				- 54 -	-					
Pi Cl Cl	ompletion Notes ezometer SE 2 ass 12, 55 mm ass 12, 55 mm, olar is set at 0.5	blank PVC ca , slotted, PVC	casing from	to 47 mbgs; 1 47 to 53 mbg	gs;		Site: Opalvale Clay Quarry 11 Chitty Road Toodyay			
Water field quality: pH = 4.99, EC = 4890 uS/cm, TDS 2830 mg/l REDOX = 105 mV										
Pi	ezometer was o	capped at base	Э.				Project No.: Ovale001	Page 1		

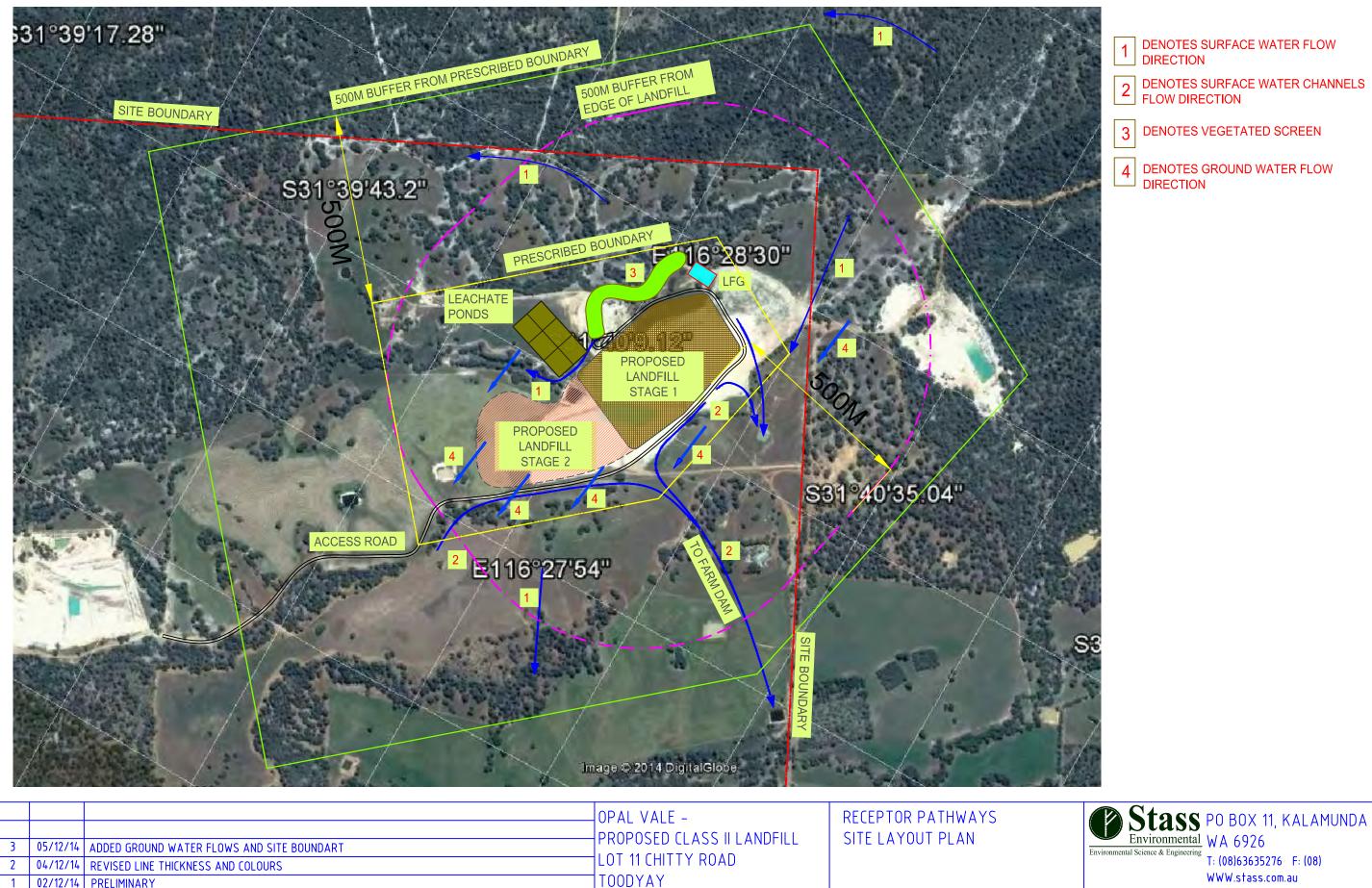
			CC	Coord	ls: 449382.96	East by 64	96193 Nor	th, RL 291.64 mAHD		
	B St Envir	O nme	ental	Drill F	Rig: Mick Lewi	s Drilling Dl	HH Da	ate Drilled: 30 June 2011	Logged By: A. S	Stass
				Boring	g Dia: DHH 15	50 mm	Bo	ring Number: Bore SE 3		
Sample	Casing Type	Comp	oletion	SWL Metres	Depth Meters	Lithology		Description		
	Surface						Grey to beige medium grained sand. 30% clay.			
	Blank Casing				— 6	-	Creamy	white clay. Some muscovite pres	eent 30% silts.	
					- 12	12 - Static water level at 14.52 below the surface (measured 1 day after drilling)				
	Gravel packed Slotted Casing				— 18	-		r, some visible mica, then some colour change to ge/cream		
					— 24	-	Yellow to beige clay			
	Cap at base				— 30 - — 36	_		r to beige clay - visible mica uscovite mica 1mm to 15 mm acr	oss	
					- 42	-	plagiocla	to grey clay, gritty with quartz gra ase feldspar. coming moist at 47 m depth	ains, also some	
				•	48	-	— Water s	trike at 48 m below the surface.		
					— 54	_	Wet greg of conte	y clay very gritty with quartz grair nt. Grit at approx 1 mm diameter	ns - grit up to 40%	
					58					
Pi Ci Ci	Completion Notes: Piezometer SE 2 Class 12, 55 mm blank PVC casing from 0 to 46 ml Class 12, 55 mm, slotted, PVC casing from 46 to 54 Colar is set at 0.55 m above g.s.							Site: Opalvale Clay Quarry 11 Chitty Road Toodyay		
Water field quality: pH = 4.41, EC = 8090 uS/cm, TDS 4790 mg/l REDOX = 135 mV					TDS 4790 mg/l					
P	iezometer was o	capped a	at base.					Project No.: Ovale001	Page	3

			CC	Coords	s: 450377.89	East by 64	195785.76 North, RL 299.86 mAHD		
	B St Envir	O nme	SS ental	Drill R	ig: Mick Lewis	B Drilling D	HH Date Drilled: 29 June 2011 Logged By: A. Stass		
				Boring	Dia: DHH 15	0 mm	Boring Number: Bore SE 4		
Sample	Casing Type	Com	pletion	SWL Metres	Depth Meters	Lithology	Description		
	Surface						Coffee rock. Yellopw to orange laterite pebbles		
	Blank Casing				- 6		Dark beige clay. Very gritty 30% grit. Grit diameter at an average of 2 mm		
				-	[—] 12 ^{··}		White to grey clay, some grit approx 20% content		
							Coarse white to creamy sand. Quartz grit at 80% some clay		
	Gravel packed				— 18 ·	-	Static water level at 18.21 below the surface(measured 2 days after drilling)		
							Very coarse grit, mostly quartz		
	Slotted Casing				- 24 -	-	Creamy to grey clay, gritty with quartz grains, also some plagioclase feldspar. 10% mica, 50% quartz grains, 40% clay		
					— 30 —		First water strike at 30 m		
	Cap at base			-	— 36 ·	-	Coarse white quartz grit, grains at 1mm to 8mm. Clay 10% by content, patches of orange clay. Uniform to 40m depth. Dry to moist ground.		
					- 42 -	-	Quartz gravel. 2mm to 20mm diameter. Average 5mm diameter. Fractured quartzite rock, no mica. White to translucent quartz fragments.		
					- 48 -		Water strike at 46 m below the surface. Clay, getting finer, no grit. White to grey clay.		
			∃		- 54 -	-			
					58				
Pi Cl Cl Cc	ompletion Notes ezometer SE 2 ass 12, 55 mm ass 12, 55 mm, olar is set at 0.5 ater field quality: F	blank F slotted 5 m ab	l, PVC ca ove g.s.	asing from	to 42 mbgs; 1 42 to 53mbg	js;	Site: Opalvale Clay Quarry 11 Chitty Road Toodyay		
1	Piezometer was capped at base.								
							Project No.: Ovale001 Page 4		

	S	ass	Drill Ri	ig: Mick Lewis	s Drilling D	н	Date Drilled: 20 March 2013	Logged By: N G	robler
		onnentar	Boring	Dia: DHH 15	50 mm	E	Boring Number: Bore SE 5		
Sample	Casing Type	Completion	SWL Metres	Depth Meters	Lithology		Description		
	Surface Blank Casing		_			rock. Brown to orange laterite pel eige clay. Very gritty 30% grit. G e of 2 mm			
				- 12 -	_	Static v	o grey clay, some red grit vater level at 15.44m below the su fter drilling)	rface (measured 2	
	Gravel packed Slotted Casing			- 18 -	_	- Coarse	white to creamy sand. Quartz gri	t at 80% clay	
	Cap at base		_	plagioclase feldspar.		y to grey clay, gritty with quartz gra lase feldspar. ica, 50% quartz grains, 40% clay	ains, also some		
			-	- 36 -		by cont Dry to ו	Coarse white quartz grit, grains at 1mm to 8mm. Cla by content, patches of orange clay. Uniform to 40m Dry to moist ground.		
				- 42 -		Cream	m grey clayey a clayey material - getting moist clayey balls cream in colour wet		
				- 48 -	-	Water	strike at 47 m below the surface.		
				- 54 -	-				
Pi C C W	lass 12, 55 mm olar is set at 0.6 /ater field quality:p⊦	blank PVC casi , slotted, PVC c	asing from	n 38 to 47mbg	Js;		Site: Opalvale Clay Quarry 11 Chitty Road Toodyay		
	EDOX = 157 mV Viezometer was o	capped at base.	-				Project No.: Ovale001	Page	5


	BSI	onmental	Drill Ri	g: Mick Lewis	s Drilling D	нн	Date Drilled: 20 March 2013	Logged By: N Groble	
			Boring	Dia: DHH 15	i0 mm		Boring Number: Bore SE 6		
oaiiibic	Casing Type	Completion	SWL Metres	Depth Meters	Lithology		Description	1	
	Surface Blank Casing		_	- 6 -		Red me average	Brown sand and mica Red medium clay. Very gritty 80% grit. Grit diameter a average of 2 mm. Quartz cuttings. White to cream clay cuttings, some red grit		
	Gravel packed			- 12 -	-	Static v . days a _	vater level at 16.700 m below the fter drilling)	surface (measured 2	
	Slotted Casing			- 24 -	_		Fine browny red clayey cuttings, 60% clay Purple sandy cuttings, quartz pieces evident. Coarse white quartz grit, grains at 1mm to 8mm. Clay 109 by content, patches of red clay. Dry to moist ground.		
	Cap at base		-	- 36 -	-	by con			
				- 42 -			im grey clayey, a lot of mica		
				- 48 -			n mud at 35 m r strike at 31 m below the surface.		
				- 54 -					
Pi CI CI Ca	ompletion Note ezometer SE 5 lass 12, 55 mm lass 12, 55 mm olar is set at 0.6 'ater field quality:ph	blank PVC cas , slotted, PVC c 5 m above g.s.	asing from	38 to 47mbg	gs;	<u> </u>	Site: Opalvale Clay Quarry 11 Chitty Road Toodyay		
	EDOX = 210 mV iezometer was o	capped at base.					Project No.: Ovale001	Page 6	

(200	Coord	s: 450043.12	2 Ea	ast by 649	96095.83 N	lorth, RL 292.86 mAHD		
	B St Envir	onmental	Drill R	ig: Mick Lev	wis [Drilling D	HH Da	te Drilled: 20 March 2013	Logged By: N G	robler
			Boring	g Dia: DHH ′	150	mm	Во	ring Number: Bore SE 7		
Sample	Casing Type	Completion	SWL Metres	Depth Meters		Lithology		Description		
	Surface Blank Casing Gravel and cement grout packed 1 m bentonite clay seal Slotted Casing	Cap at base		- 6 - 12 - 18 - 24 - 30 - 36 - 42 - 48 - 48 - 54 58			Fine white Brown to o Fine crear Static wat days afte Fine yellow Coarse w creamy c Moist gro	w to grey clayey cuttings, 60% cla hite quartz grit, grains at 1mm to lay by content, patches of red clay	face (measured 2 ay. Very dusty. 10mm. Clay 80% /.	
Pi Cl	ompletion Notes ezometer SE 7 lass 12, 55 mm	blank PVC casir	ig from 0) to 22 mbgs	5;			Site:		
CI 1	lass 12, 55 mm, m bentonite sea	slotted, PVC ca al above slotted o	sing fron	n 23.5 to 29	.500) mbgs		Opalvale Clay Quarry 11 Chitty Road Toodyay		
W RE	EDOX = 230 mV	= 4.4, EC =5260 uS	S/cm, TDS	2620 mg/l						
P	iezometer was o	apped at base.						Project No.: Ovale001	Page	7


		266	Coord	s: 449770.44	1 East by 6	496172.63	North, RL 278.62 mAHD			
	B St Envir	ass	Drill R	ig: Mick Lew	is Drilling	онн с	ate Drilled: 19 March 2013	Logged By: N G	Grobler	
		onnentar	Boring	g Dia: DHH 1	150 mm	В	oring Number: Bore SE 8			
Sample	Casing Type	Completion	SWL Metres	Depth Meters	Litholog	/	Description			
	Surface Blank Casing Gravel and cement grout packed 1 m bentonite clay seal Slotted Casing	Cap at base		- 6 - 12 - 18 - 24 - 30 - 36 - 42 - 48 - 48 - 54		Fine wh Static w days af Brown to Creamy Water	dusty sand, very little mica ite clayey and increased mica cu ater level at 7.700 m below the su ter drilling) o cream clay cuttings, 20% mica coloured sand with some moica o strike at 17.00 below the surface edium grained mica and clay cutt	rface (measured 2 suttings.		
C	ompletion Notes	S:		58						
Pi Cl Cl Cl Cl Cl V	ezometer SE 8 lass 12, 55 mm ass 12, 55 mm, m bentonite sea olar is set at 0.6	blank PVC casir slotted, PVC ca al above slotted o	sing fron casing;	n 12 to 18 m			Site: Opalvale Clay Quarry 11 Chitty Road Toodyay	Opalvale Clay Quarry 11 Chitty Road		
	iezometer was o	apped at base.					Project No.: Ovale001	Page	8	

/		200	Coord	s: 449643.15	5 East by 64	96373.32 1	North, RL 274.89 mAHD		
	Envir	ass	Drill R	ig: Mick Lew	is Drilling D	HH Da	ate Drilled: 19 March 2013	Logged By: N G	robler
			Boring	g Dia: DHH 1	50 mm	Вс	oring Number: Bore SE 9		
Sample	Casing Type	Completion	SWL Metres	Depth Meters	Lithology		Description		
	Surface Blank Casing Gravel and cement grout packed 1 m bentonite clay seal Slotted Casing			- 6 - 12 - 18		Static wa days aft Cream to Dark bro Water s	grained brown sand, clay and som ter level at 5.200 m below the surf er drilling) o white clay cuttings, a lot of mica wn cuttings, clay and lot of mica cu trike at 14.00 below the surface clay, wet.	face (measured 2	-
		Cap at base		— 18 — 24 — 30	_				-
				— 36 — 42 — 48	_				
				— 54 58	_				
	ompletion Notes	3:					Site:		
C C 1 C W	lass 12, 55mm lass 12, 55mm, m bentonite sea olar is set at 0.6	, slotted, PVC ca al above slotted c	-				Opalvale Clay Quarry 11 Chitty Road Toodyay		
	iezometer was o	apped at base.					Project No.: Ovale001	Page	9

L

5	06/12/14	REVISED PROP BOUNDARY	OPAL VALE -		RECEPTOR PATHWAYS		
4	06/12/14	REVISED ROAD NAME	PROPOSED CLASS II LANDFILL LOT 11 CHITTY ROAD		SITE PLAN		
3	05/12/14	ADDED SITE BOUNDARY			SILPLAN		
2	03/12/14	ADDED BACKGROUND MASKS TO NOTES					
1	02/12/14	PRELIMINARY	TOODYAY				
No	DATE	REVISION	DRN: ACW	DATE: 01/12/14	CHKD :AS	SCALE : 1:17000	

DRN: ACW

DATE: 01/12/14

02/12/14 PRELIMINARY

DATE

REVISION

1

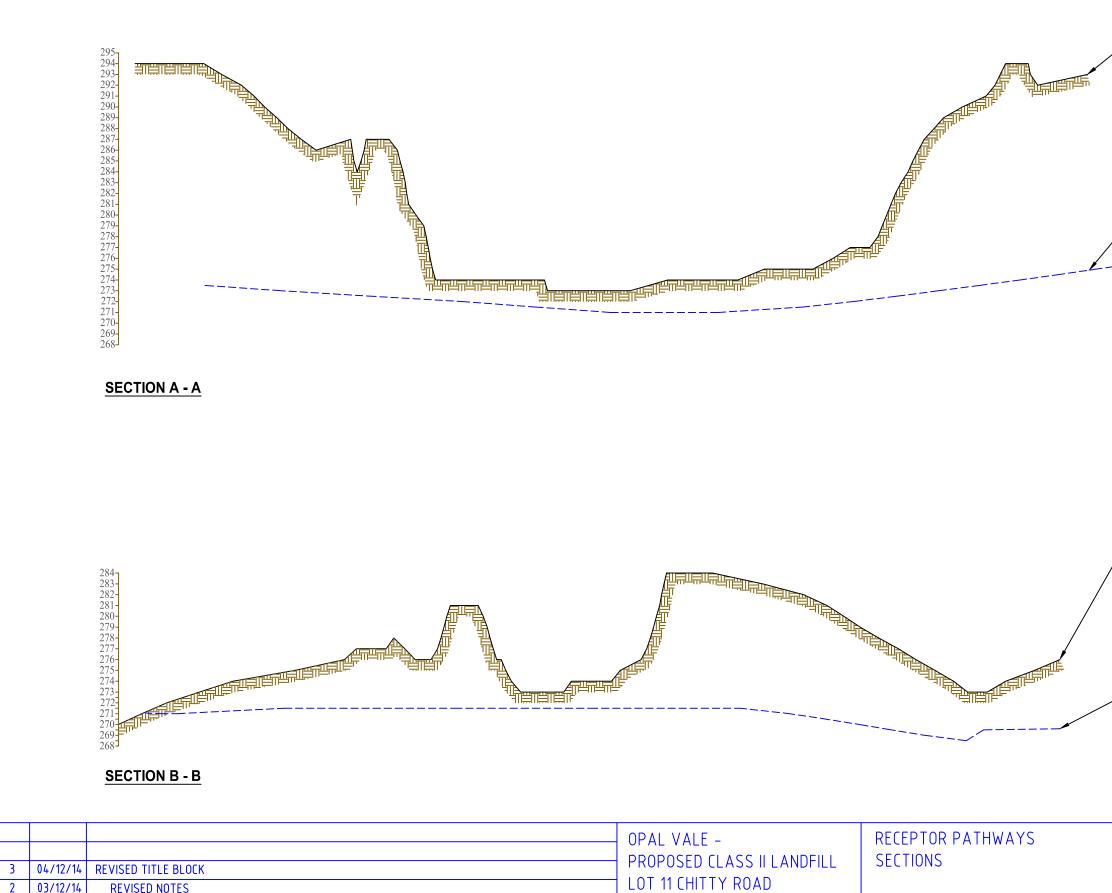
No

DENOTES SURFACE WATER FLOW

2 DENOTES SURFACE WATER CHANNELS FLOW DIRECTION

3 DENOTES VEGETATED SCREEN

4 DENOTES GROUND WATER FLOW DIRECTION


T: (08)63635276 F: (08) WWW.stass.com.au

DWG No: OV-02-ACW

SCALE : 1:9500

CHKD :AS

REV: 3

 2
 03/12/14
 REVISED NOTES
 LOT 11 CHITTY ROAD

 1
 02/12/14
 PRELIMINARY
 TOODYAY

 No
 DATE
 REVISION
 DRN: ACW
 DATE: 01/12/14
 CHKD :AS
 SCALE : 1:3500 HORIZONTAL 1:350 VERTICAL
 -EXISTING GROUND LEVEL

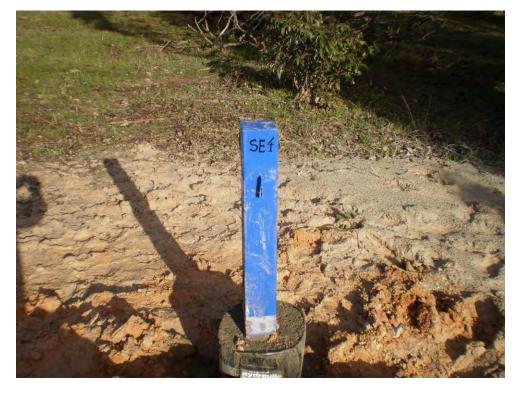
HIGHEST POTENTIOMETRIC GROUNDWATER SURFACE

-EXISTING GROUND LEVEL

HIGHEST POTENTIOMETRIC GROUNDWATER SURFACE

DWG No: 0V-03-ACW REV: 3

APPENDIX B Photographs


Drilling at depth showing dry conditions

Bore logging

1 m interval sample record showing water intersected at the last 4 samples (46 m below the surface)

Finished bore - example

APPENDIX C Water Quality Summaries

	SE1	SE2	SE3	SE4	SE5	SE6	SE7	SE8	SE9	NG2
24-Jul-13										
Chloride	1100	1600	4200	310	1600	1700	3700	53	120	1800
Conductivity (at 25°C)	3600	5200	12000	1100	4900	5400	9900	520	910	5200
рН	3.7	4.6	4.2	6	5	4.8	4	7.2	5.1	4.7
Sulphate (as S)	45	87	220	17	71	94	59	13	85	89
Total Dissolved Solids	1900	3000	7300	600	2800	3100	5400	360	650	3100
Alkali Metals										
Calcium	2.2	11	5.7	2.2	4.3	5.7	6	< 0.5	< 0.5	11
Magnesium	42	140	350	15	130	68	180	0.8	4.2	150
Potassium	8	36	56	3.7	25	9.6	6.4	5	3.9	34
Sodium	610	750	1800	160	690	940	1700	120	200	760
Heavy Metals										
Arsenic (filtered)	0.001	< 0.001	0.004	< 0.001	< 0.001	< 0.001	0.002	< 0.001	< 0.001	< 0.001
Cadmium (filtered)	0.0003	0.0007	0.019	< 0.0002	0.015	0.0013	< 0.0002	< 0.0002	0.0002	0.0007
Chromium (filtered)	0.001	< 0.001	0.002	< 0.001	< 0.001	0.002	0.003	< 0.001	0.001	< 0.001
Copper (filtered)	0.37	0.22	1.1	0.011	0.18	0.065	0.12	0.002	0.004	0.23
Lead (filtered)	0.074	0.024	0.085	< 0.001	0.012	0.008	0.011	< 0.001	< 0.001	0.023
Manganese (filtered)	0.081	0.7	0.64	0.03	1.7	0.18	0.041	< 0.005	< 0.005	0.73
Mercury (filtered)	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel (filtered)	0.096	0.37	2.1	0.014	0.9	0.084	0.049	0.001	0.001	0.38
Zinc (filtered)	0.12	0.52	1.4	0.056	0.73	0.15	0.038	0.007	0.019	0.54
Total Nitrogen Set (as N)										
Nitrate & Nitrite (as N)	0.07	< 0.05	< 0.05	5.3	< 0.05	0.17	1.6		7.2	< 0.05
Total Kjeldahl Nitrogen (a		0.7	0.4	0.4	< 0.2	< 0.2	< 0.2	0.9	0.9	0.2
Total Nitrogen (as N)	0.8	0.7	0.4	5.7	< 0.2	< 0.2	1.6	9.5	8.1	0.2

	SE1	SE2	SE3	SE4	SE5	SE6	SE7	SE8	SE9	NG2
4-Oct-14										
Chloride	1000	2000	4100	99	1400	2300	3300	39	88	88
Conductivity (at 25°C)	3300	6100	11000	430	4300	7400	9000	480	790	770
рН	3.3	4.6	3.7	5.7	4.7	4.2	3.6	6.7	4.9	4.8
Sulphate (as S)	45	110	230	< 5	75	120	52	18	85	86
Total Dissolved Solids	1900	3400	7000	240	2600	3700	4800	320	560	560
Alkali Metals										
Calcium	1.3	10	5	1.1	5	2.6	5.7	< 0.5	< 0.5	< 0.5
Magnesium	43	170	370	11	110	110	170	0.8	2.7	2.7
Potassium	3.1	38	62	1.5	21	12	6.4	3.3	2.1	2.1
Sodium	570	890	1900	71	640	1300	1700	130	57	160
Heavy Metals										
Arsenic (filtered)	< 0.001	0.002	0.003	< 0.001	< 0.001	0.001	0.002	< 0.001	< 0.001	< 0.001
Cadmium (filtered)	0.0004	0.0007	0.022	< 0.0002	0.0026	0.0003	0.0002	< 0.0002	< 0.0002	< 0.0002
Chromium (filtered)	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.001	0.002
Copper (filtered)	0.39	0.1	0.52	0.006	0.079	0.091	0.14	0.001	0.005	0.004
Lead (filtered)	0.083	0.021	0.076	< 0.001	0.006	0.012	0.006	< 0.001	< 0.001	< 0.001
Manganese (filtered)	0.08	0.95	0.79	0.019	1.5	0.057	0.12	< 0.005	< 0.005	< 0.005
Mercury (filtered)	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel (filtered)	0.064	0.45	1.4	0.011	0.46	0.02	0.013	< 0.001	0.001	0.001
Zinc (filtered)	0.077	0.5	1.3	0.031	0.51	0.047	0.025	0.004	0.012	0.008
Total Nitrogen Set (as N)										
Nitrate & Nitrite (as N)	< 0.05	0.08	0.07	5.7	0.06		1.6	6.2	6.1	6.1
Total Kjeldahl Nitrogen (a	0.8	< 0.2	< 0.2	< 0.2	0.2	< 0.2	0.9	1.6	< 0.2	< 0.2
Total Nitrogen (as N)	0.8	< 0.2	< 0.2	5.7	0.26	< 0.2	2.5	7.8	6.1	6.1

	SE1	SE2	SE3	SE4	SE5	SE6	SE7	SE8	SE9	NG2
14-Mar-14										
Chloride	1100	4200	2400	130	3200	2600	4100	160	98	130
Conductivity (at 25°C)	3400	13000	7300	400	9800	8200	11000	630	790	890
рН	3.6	4.1	3.4	5.8	5.2	4.5	3.7	6.5	5.3	5.3
Sulphate (as S)	47	190	160	< 5	140	120	62	17	69	65
Total Dissolved Solids	1900	7200	4000	240	5500	4600	6000	420	530	580
Alkali Metals										
Calcium	< 5	16	5.8	< 5	7.4	< 5	5.4	< 5	< 5	< 5
Magnesium	42	310	240	11	170	110	190	< 5	< 5	< 5
Potassium	< 5	43	47	< 5	26	7.7	< 5	< 5	< 5	< 5
Sodium	630	2100	1200	69	1800	1500	2200	140	170	190
Heavy Metals										
Arsenic (filtered)	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Cadmium (filtered)	0.0003	0.0021	0.022	< 0.0002	0.0005	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Chromium (filtered)	< 0.001	0.002	0.001	< 0.001	0.001	0.004	0.003	< 0.001	< 0.001	0.001
Copper (filtered)	0.39	1.2	0.15	0.004	0.043	0.062	0.096	0.002	0.004	0.004
Lead (filtered)	0.09	0.47	0.043	< 0.001	0.011	0.013	0.01	< 0.001	< 0.001	< 0.001
Manganese (filtered)	0.12	1.1	1.1	0.014	1.3	0.042	0.13	< 0.005	0.015	0.026
Mercury (filtered)	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel (filtered)	0.096	1	2.6	0.008	0.31	0.017	0.04	< 0.001	0.002	0.003
Zinc (filtered)	0.14	0.92	2.6	0.022	0.35	0.057	0.086	0.006	0.032	0.039
Total Nitrogen Set (as N)										
Nitrate & Nitrite (as N)	< 0.05	0.06	2.1	7.2	0.06	0.12	0.82	7.8	7.9	7.8
Total Kjeldahl Nitrogen (as l	< 0.2	< 0.2	< 0.2	0.7	< 0.2	< 0.2	< 0.2	0.8	0.6	0.8
Total Nitrogen (as N)	< 0.2	< 0.2	2.1	7.9	< 0.2	< 0.2	0.8	8.6	8.5	8.6

	SE1	SE2	SE3	SE4	SE5	SE6	SE7	SE8	SE9	NG2
17-Jul-14										
Chloride	1000	4400	2900	160	1100	2800	3900	220	58	110
Conductivity (at 25°C)	3900	14000	11000	680	3900	9300	12000	1100	730	710
рН	3.6	3.7	2.9	5.1	5.1	4.2	3.7	5.6	5.3	6
Sulphate (as S)	41	180	150	7.3	52	100	58	11	66	9.9
Total Dissolved Solids	1800	7300	4900	330	1800	4300	5800	520	450	360
Alkali Metals										
Calcium	1.1	21	4.9	0.8	2.9	2.8	6.7	< 0.5	< 0.5	< 0.5
Magnesium	39	390	310	12	74	130	200	2.1	2.1	2.1
Potassium	2.6	52	69	1.4	18	9.5	6.2	2.4	1.7	2.3
Sodium	620	2100	1400	99	590	1600	2100	100	120	110
Heavy Metals										
Arsenic (filtered)	< 0.001	< 0.005	< 0.005	< 0.001	< 0.001	0.001	< 0.005	< 0.001	< 0.001	< 0.001
Cadmium (filtered)	0.0003	0.0018	0.039	< 0.0002	0.001	< 0.0002	< 0.001	< 0.0002	< 0.0002	< 0.0002
Chromium (filtered)	< 0.001	< 0.005	< 0.005	< 0.001	< 0.001	0.003	< 0.005	< 0.001	< 0.001	< 0.001
Copper (filtered)	0.35	1.6	0.051	0.01	0.008	0.057	0.097	0.006	0.004	0.003
Lead (filtered)	0.086	0.61	0.11	< 0.001	< 0.001	0.015	< 0.025	< 0.001	< 0.001	< 0.001
Manganese (filtered)	0.069	1.1	1.4	0.015	1.6	0.044	0.095	0.008	< 0.005	< 0.005
Mercury (filtered)	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel (filtered)	0.069	1.1	4.2	0.011	0.44	0.02	0.047	0.004	0.001	0.002
Zinc (filtered)	0.077	0.91	3.8	0.02	0.39	0.04	0.074	0.009	0.013	0.006
Total Nitrogen Set (as N)										
Nitrate & Nitrite (as N)	< 0.05	0.06	0.27	7.4	0.12	0.2	0.91	7	7.9	7.1
Total Kjeldahl Nitrogen (as	< 0.2	3.8	3	3.6	2.8	2.9	9.4	0.3	3.5	3.2
Total Nitrogen (as N)	< 0.2	3.9	3.3	11	2.9	3.1	10	7.3	11	10

	SE1	SE2	SE3	SE4	SE5	SE6	SE7	SE8	SE9	NG2
12-Sep-14										
Chloride	1000	4800	2900	100	910	2800	3900	48	59	58
Conductivity (at 25°C)	3700	14000	9400	440	3300	8700	12000	400	700	700
рН	3.5	3.8	3.4	6.1	5.9	4.3	3.7	7.1	7.4	5.9
Sulphate (as S)	41	240	190	5.6	44	110	60	12	66	67
Total Dissolved Solids	1900	9000	5100	260	1800	4500	6800	270	490	480
Alkali Metals										
Calcium	1.1	25	3.7	0.9	1.7	2.2	5.5	< 0.5	< 0.5	< 0.5
Magnesium	40	420	300	9.9	70	100	100	1.3	1.8	1.9
Potassium	2.8	53	66	1.5	17	11	7.2	2.3	1.9	1.8
Sodium	550	2100	1200	70	470	1500	1800	81	130	130
Heavy Metals										
Arsenic (filtered)	0.001	0.002	0.004	< 0.001	< 0.001	0.001	0.002	< 0.001	< 0.001	< 0.001
Cadmium (filtered)	0.0003	0.0019	0.027	< 0.0002	0.0004	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Chromium (filtered)	0.001	0.004	< 0.001	< 0.001	< 0.001	0.005	0.002	< 0.001	< 0.001	< 0.001
Copper (filtered)	0.46	1.8	0.01	0.013	0.003	0.085	0.093	0.002	0.007	0.007
Lead (filtered)	0.096	0.66	0.1	< 0.001	< 0.001	0.014	0.003	< 0.001	< 0.001	< 0.001
Manganese (filtered)	0.093	1.2	1.8	0.017	1.6	0.055	0.1	< 0.005	< 0.005	< 0.005
Mercury (filtered)	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel (filtered)	0.098	1.2	3.8	0.014	0.49	0.029	0.046	< 0.001	0.003	0.003
Zinc (filtered)	0.1	0.91	3.2	0.024	0.38	0.052	0.058	0.004	0.038	0.039
Total Nitrogen Set (as N)						0.40	0.00			
Nitrate & Nitrite (as N)	< 0.05	< 0.05	< 0.05	7.7	< 0.05	0.13	0.98	5.7	7.5	8
Total Kjeldahl Nitrogen (as N)		0.3	< 0.2	0.3	< 0.2	< 0.2	< 0.2	< 0.2	0.2	< 0.2
Total Nitrogen (as N)	< 0.2	0.3	< 0.2	8	< 0.2	< 0.2	1	5.7	7.7	8

APPENDIX D Chain of Custody and Laboratory Certificates

	St Enviro	as			Kalar Ph	(08) 6	i, WA 6 36352 45476	76			HAIN ANAL					E	ST	•					LAB ADDF LAB	RESS CONT		ARL Page 1 1
NOJECT #	h 4	PROJECT NAM	E	0	ahala		ΓTV							<u> </u>	T	AN/	ALYSI	S REC	VIRE		ETHO	D COL	DE	1		
DILECTORS N				ILAB J		Chil														scan						FAX
	AWS	3										RS			TRAP)						Mn, Ni,	testing		2		Andre@stass.com.au FINAL REPORT BY:
AMPLE ID	DEPTH	LAB		MA	TRIX		P		RVATI	ON	SAMPLING DATE	OF CONTAINERS	ęs		05	33		ogen	ßM		л,	5		Conductivity (mS/m)		LAB QUOTE REF:
	(metres)	#	WATER		SWAB	SLUDGE		Diffed	OTHER	NONE	WPLIN	. OF C	PHENOL (Ŧ	BTEX (PURGE	соз нсоз	Ţ	Total Nitrogen	Na, Ca, K,	NO3, NH4	As, Cd, Cr, (Pb, Zn	FILTER PI		nducti	S (mg/l)	REMARKS
SCRETE S	AMPLE REC	QUEST:	1 S	то С	- S	8	ÿ	VCIDI	5	2	S.	° Ž	Ŧ	Her	6	8	PAH	2	R Z	ž	4 6	Ē	E	ပိ	TDS	
SE1			+ •				•		1		1-Jui-11	1						+			*	•	+	•	*	email results to
SE2			•				+				1-Jul-11	1						*			*		*	*	•	andre@stass.com.au
SE3			*				+				1-Jul-11	1		1				*			*	*	*	•	•	
SE4			*				+				4-Jul-11	1		1				*			*	*	*		•	
SE5			•				•				4-Jui-11	1						*			*	*	*	*	•	
					L.																					
			<u> </u>																							
				ļ				\square	<u> </u>						ļ											
			<u> </u>	 				_	ļ					<u> </u>	ļ											
	·			 	ļ		 		ļ	ļ					<u> </u>											
		ļ			 			<u> </u>		ļ				 												
							.			ļ					_							ļ		ļ		
MPOSITE	SAMPLE R	L EQUEST:	<u> </u>			1							L	I									[<u>c 1510</u>
	••	<u> </u>	T		T	1	1		1						<u> </u>											
		1	1		<u> </u>	1	1	+	1	<u> </u>				1										de i		Anasol
		t in the second se		1		1	1	1	1															• • • • •		5
		1	1	1	1	1	1		1	 				1										. •		9983335100
1		1	1	1	1	1	1		1					1												
		1	Τ				1	1	Ť		- <u> </u>			1												C
		<u> </u>	T	1		1		1					1	1										1.1		
nquished by dre Stasil	kowski 🖌	7		Data 6/-	2/1	1	Time		red by:	4	Ivan-H		•		107/2	on 1	40	Custo	ody Se	eals li	ntact?		Ye	s / N	lo	Additional Comments:
nquished by	H	!		Dete			Time	Recei	ed by:					Date 7	1		Time	Sam	ples R	eceiv	ed Ch	illed?	Ye	s / N	0	Queries to Andre at 6363 5276

	St	as	S		Kalaı	3ox 11 munda (08) 63					HAIN													RESS		ARL Page 1 1
	Envir	onment	al		Fx	(08) 9	45476	15		ſ	ANAL	YSI	SK	<i>KE</i>	Qι)E	51	,					LAB PHO		АСТ	
PROJECT #		PROJECT NAM	E													AN	ALYS	IS REC	UIRE	D & M	ЕТНО	D COI				PRELIM. RESULTS BY:
OV					alvale	e CHIT	ΤY				_									scan						FAX
COLLECTORS	NAME			LAB J	JOB #															sc						andre@stass.com.au
	AWS	5									ш	JERS			& TRAP)						Cu, Mn, Ni,	testing		S/m)		FINAL REPORT BY:
SAMPLE ID	DEPTH	LAB		MA	TRIX		P		RVATI THOD	ON	G DATI	ONTAIN	SP.		RGE &	3		ogen	Mg		r, Cu, N	ior to 1		/ity (m		LAB QUOTE REF:
	(metres)	#	WATER		AB	SLUDGE		ACIDIFIED	OTHER	ų	SAMPLING DATE	No. OF CONTAINERS	PHENOL :	Т	BTEX (PURGE	3 HCO3	т	Total Nitrogen	Na, Ca, K, Mg	NO3, NH4	, Cd, Cr, O	FILTER prior to		Conductivity (mS/m)	TDS (mg/l)	REMARKS
DISCRETE S	SAMPLE RE	QUEST:	WA ⁻	SOIL	SWAB	SLU	ICE	ACIE	OTH	NONE	SA	Ň	H	ТРН	ВТ	co3	PAH	Tot	Na,	N N	As, Pb,	FIL	Hd	ŝ	Ĩ	KLWARKS
SE1			*				*				18-Jan-12	1						*			*	*	*	*	*	email results to
SE2			*				*		_		18-Jan-12	1						*			*	*	*	*	*	andre@stass.com.au
SE3			*				*		_		18-Jan-12	1						*			*	*	*	*	*	
SE4			*				*		_		18-Jan-12	1						*			*	*	*	*	*	
SE5			*				*		_		18-Jan-12	1						*			*	*	*	*	*	
									_																	
									_																	
																										<u> </u>
									_	_																
																		-							-	
									-																-	
									-									-							-	
																									-	
COMPOSITE									-	1					ļ			ļ							-	L
																	1	1	1				1			Γ
				1		+		1	+						<u> </u>			1							+	<u> </u>
			1	1		1	1	1	1	1		1	1	1	1		1	1	1	1	1	t	1			[
Relinguished by Andre Stasi		1	1	Date	1	<u> </u>	Time	Recei	ved by:	1	1	1	1	Date	1	. <u> </u>	Time	Cust	ody S	eals I	ntact?	1	Ye	s / ľ	No	Additional Comments:
Relinquished by				Date		<u> </u>	Time	Recei	ved by:					Date			Time	Sam	ples F	Receiv	ved Ch	nilled?	Ye	s / N	No	Queries to Andre at 6363 5276

P	St	as	S		Kalar	Box 11 munda <mark>(08) 63</mark>					HAIN												LAB ADDI			MGT LabMark Page 1	1 1
	Enviro	onment	al		Fx	(08) 9	45476	15		ſ	ANAL	YSI	5 k	<i>KE</i>	Ųι)E	51	,					LAB PHO		ACT	Natalie	
PROJECT #		PROJECT NAM														AN	ALYS	IS REC		D & N	IETHO	D CO				PRELIM. RESULTS BY:	VERBAL
٥V					alvale	CHIT	ΤY													scan							FAX
COLLECTORS	NAME			LAB J	IOB #															sc							EMAIL
	Nolan Gr	obler	1								- ш	NERS			TRAP)						As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, Zn	testing		S/m)		FINAL REPORT BY:	
SAMPLE ID	DEPTH	LAB		MA	TRIX		P		RVATI THOD	ON	3 DAT	NTAI	SP.		RGE &			ogen	Mg		, Cu, F	ior to		ity (m		LAB QUOTE REF:	
SAWF LE ID	(metres)	#	ER		B	SLUDGE		ACIDIFIED	ER	Е	SAMPLING DATE	No. OF CONTAINERS	PHENOL 3	-	BTEX (PURGE	3 HCO3	_	Total Nitrogen	Na, Ca, K, Mg	CI, SO4	Cd, Cr Pb, Zn	FILTER prior		Conductivity (mS/m)	TDS (mg/l)		
DISCRETE S	SAMPLE RE	QUEST:	WATER	SOIL	SWAB	SLU	Ш	ACID	OTHER	NONE	SAI	No.	РН	трн	BTE	co3	PAH	Tot	Na,	Ū.	As, Ni,	E	Hd	Cor	Ĩ	REMARKS	
SE1			*				*				18-Jul-12	1						*	*	*	*	*	*	*	*	email results to	
SE2			*				*				18-Jul-12	1						*	*	*	*	*	*	*	*	andre@stass.com.au	
SE3			*				*				18-Jul-12	1						*	*	*	*	*	*	*	*		
SE4			*				*				18-Jul-12	1						*	*	*	*	*	*	*	*		
NG3			*				*				18-Jul-12	1						*	*	*	*	*	*	*	*		
																										<u> </u>	
											-			_												<u> </u>	
																										<u> </u>	
																										<u> </u>	
COMPOSITE	: SAMPLE R	EQUEST:									1							1	1	1				1		Г	
				-																					-	<u> </u>	
				-												<u> </u>				<u> </u>					-	<u> </u>	
				+		+		-										+				-			-	<u> </u>	
																										<u> </u>	
																										<u> </u>	
				+		-																			-	·	
		<u> </u>	+	+		+	+	+	-	+	+	-						+	+	+	+	+	+		-	· · · · · · · · · · · · · · · · · · ·	
Relinguished by	y:			Date			Time	Recei	ved by:					Date			Time									Additional Comments:	
Nolan Grob	ler																	Cust	ody S	ieals I	ntact?	?	Ye	es / I	No		
Relinquished by	y:			Date		1	Time	Recei	ved by:					Date			Time	Sam	ples F	Receiv	ved Cł	hilled	? Ye	es / I	No	Queries to Andre at 6363 527	'6

Nolan Grobler COMPOSITE SAMPLE REQUEST: DISCRETE SAMPLE REQUEST: COLLECTORS NAME Relinquished by: Relinquished by: SAMPLE ID ROJECT # DM 2 DM 1 OV04 Environmental DEPTH (metres) Nolan Grobler PROJECT NAME # LAB WATER * * Date Date LAB JOB # SOIL **Opalvale CHITTY** MATRIX Kalamunda, WA 6926 PO Box 11 Ph (08) 63635276 Fx (08) 94547615 SWAB SLUDGE Time Time ICE * * PRESERVATION Received Received by: ACIDIFIED METHOD MWWander 72 OTHER CHAIN OF CUSTODY & NONE ANALYSIS REQUEST 6-Aug-12 6-Aug-12 SAMPLING DATE 5 -No. OF CONTAINERS . PHENOL SP. 7/8/12/8:19 mm Samples Received Chilled? (Yes) / No 61517430m TPH BTEX (PURGE & TRAP) CO3 HCO3 PHONE PAH Custody Seals Intact? Total Nitrogen Na, Ca, K, Mg CI, SO4 scan * * As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, Zn * * **FILTER** prior to testing * * LAB ADDRESS LAB CONTACT Natalie Yest * * pH Conductivity (mS/m) * * TDS (mg/l) * * Additional Comments: FINAL REPORT BY: PRELIM. RESULTS BY: MGT LabMark AB QUOTE REF: andre@stass.com.au # 347203 Queries to Andre at 6363 5276 andre@stass.com.au email results to REMARKS Page 1 1 1 EMAIL VERBAL FAX

Chain of Custody

VIA WA

	Relinquished by:	Nolan Grobler											NG2	SE9	SE8	SE7	SE6	SE5	SE4	SE3	SE2	SE1	DISCRETE SAMPLE REQUEST:	SAMPLE ID DEPTH (metres)	Nola	COLLECTORS NAME	PROJECT # OV04	
																							E REQUEST:	TTH LAB	Nolan Grobler		PROJECT NAME	Stass Invironmenta
													*	*	*	*	*	*	*	*	*	*	WATI	ER			Æ	a n
	Date	Date																					SOIL	MATRIX		LAB JOB #	Opa	
	_	_																					SWA	B RIX		8#	Opalvale CHITTY	Kalamunda, WA 6926 Ph (08) 63635276 Fx (08) 94547615
	-	-				-		_				_											SLUD	GE			CHITT	<pre>{alamunda, WA 692 Ph (08) 63635276 Fx (08) 94547615</pre>
	Time R			_	\square	+		_				_	*	*	*	*	*	*	*	*	*	*	ICE				¥	NA 69; 35276 47615
	Received by:	Received by:		-	\square	+		_	L			_	-							_	_	_	ACIDI					8
	by:	Port		-		-		_	-										_	-	_	-	OTHE					
		F		-		_	$\left \right $	-	-	$\left \right $	_	_										-	NONE					AC
		erfue											24-Jul-13	24-Jul-13	SAM	IPLING DATE				ANALYSIS REQU								
2													ω	ω	ω	з	ω	ω	ω	ω	ω	ω	No.	OF CONTAIN	ERS			VSI VSI
Obain of Custodu								1			1	T							1	1	1		PHE	NOL SP.				SI
inter l	Date	Date		\top	\square	+			-			+		-		Η			+	1	+	+	трн				Т	REQU
		n -				\uparrow						1							1		1		BTE	X (PURGE &	TRAP)			QU
		8																		1			CO3	HCO3			A	JEST
	Time	Time																					РАН				ANALYSIS REQUIRED & METHOD CODE	
'\	Samp	Custo											*	*	*	*	*	*	*	*	*	*	Tota	I Nitrogen			IS REO	2
	Samples Received Chilled?	Custody Seals Intact?											*	*	*	*	*	*	*	*	*	*	Na, C	Ca, K, Mg			UIRE	
	eceive	als In											*	*	*	*	*	*	*	*	*	*	CI, S			sca	in [®] M	
1	ed Chi	tact?											*	*	*	*	*	*	*	*	*	*	As, C Ni, P	Cd, Cr, Cu, Hị b, Zn	g, Mn,		ETHO	
	lled?												*	*	*	*	*	*	*	*	*	*	FILT	ER prior to te	esting		COD	
	Yes	Yes											*	*	*	*	*	*	*	*	*	*	рН					ADDRESS LAB CONT PHONE
	Yes / No	/ No											*	*	*	*	*	*	*	*	*	*	_	ductivity (mS	/m)			ADDRESS LAB CONTACT Natalie PHONE
			+	+	-	-		-			+	+	*	*	*	*	*	*	*	*	*	*	TDS	(mg/l)	FIN	œ		CT Na
	Queries to Andre at 6363 5276	Additional Comments:																			andra@etaee com au	email results to	REMARKS	LAB QUOTE REF:		<u>د</u> (Natalie

V14 55.

Relinquished by:	Notan Grobler	Relinquished by:								COMONGITE CA					NG2	SE9	SE8	SE7	SE6	SE5	SE4	SE3	SE2	SE1	DISCRETE SAMPLE REQUEST			No	COLLECTORS NAME	PROJECT #		N N
									NT LL.	MDI F I		od principal over deservice services													LE RE	(metres)	DEPTH	Nolan Grobler		Annual Annual Martines Martines	Vin	
			1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.						ACCOLOT-	DECHEST															QUEST	*	LAB	obler		PROJECT NAME	Invironmental	UN
			-						_		_	-			\$	*	*	*		n	2	*	ø	*	WA	TER				ME	au	h
Date		Date		-			-																-		so	L.	M	F	LAB.	2		
				-									_						-						SW	AB	MATRIX	Ö	LAB JOB#	alvala	Ph (Fx	Kalamunda
	-	1							-																SLI	JDGE		402563	0.11	Onaluala CHITTY	Ph (08) 63635276 Fx (08) 94547615	Kalamunda, WA 6926
Time		Time													*	*	\$	æ	*	*	*	*	(x)	*	ICE		PR	0		R	635276 547618	WA 69
Received by:		Received by:																							ACI	DIFIED	METHOD	V			01.04	26
TO?	concerns on the second	hd by:																								HER	PRESERVATION					-
3											-								-						NO	NE	2				A	CH
3			and a second										A STRATEGY A SAME AND A STRATEGY AND A		4-Oct-13	4-Oct-13	4-0ct-13	4-Oct-13	4-Oct-13	4-Oct-13	4-Oct-13	4-Oct-13	4-Oct-13	4-Oct-13	S#	MPLIN	G DATE				ANALYSIS REQUEST	CHAIN OF CUSTODY
															3	w	w	w	3	ω	3	3	ω	ω	No	. OF C	ONTAIN	ERS			ISA	OF
									-	and the second se															Pł	HENOL	SP.				SI	0
J(Date	-	Date	+	-	-		_	-	-	4				-		_	-					-			TF	чн				Τ	E	Sin
12				1				1	-	-		1	-												B	TEX (PL	JRGE &	TRAP)			QL	TOT
5:43	1																								C	03 HC	03			ANA	E	D
-		Time																							P/	АН				ANALYSIS REQUIRED & METHOD CODE	T	V &
Samples Received Chilled		Custo													*	*	-		*	*		*	•	8	Te	otal Nitr	ogen			REQU		Rev
les Re		dy Se													*	*	*	*	*	*	*	*		*		a, Ca, K	, Mg			IRED		
ceive		Custody Seals Intact?		_	-					-			Construction of the local diversion of the local diversion of the local diversion of the local diversion of the		*	*	*	*	*	*	*	+		*	1	, SO4	r, Cu, H	la. Mn.	sca	s MET		
d Chill		act?	-	_	-	-		_	_	-		_		-	*	*	+	+	*	*	-	+	14	*	Ni	, Pb, Zi	n			HOD		
	worker to all the			_	-				_		-			-	*	*	*	*	*	*	-	-	*	*	pi		prior to t	esung	-	ODE	PH	ADD
Yes		Yes / No	-	-	-				and the second second						*	*	*	*	*	*	+	+	*	*			ivity (m	S/m)			LAB CON	ADDRESS
No		No	-	+	-					1	-			+	*	*	*			*			-			DS (mg					VTACT	^{cn}
Queries to Andre at 6363 5276	1	Additional Comments:													A Constructions were a characteristic of the second and the				and some and a second se	na deserá na con esta esta na constructiva de constructiva con esta esta esta esta esta esta de seconda de cons			andre@stass.com.au	email results to		REMARKS	LAB QUOTE REF:	FINAL REPORT BY:	andre@stass.com.au	PRELIM. RESULTS BY:	LAB CONTACT Dave PHONE	THE CONTRACT
6363 5276						and a second descent for the second se				And a second	these stars of the second s	Analysis and the second of second	and a second	weighting and the second se	a la promoção de com a contra de como de contra contra do antica de como de contra de como de como de como de c	extension of the second discount of the second seco	And the second se				ANNAL STATEMENT STATEMENT STATEMENT STATEMENT STATEMENT		ym.au	to			rapponent i interi più anti a preside agni ammendenza		C EMAR	FAX	a a second	

ARP 500620.

Nolan Grobler Relinquished by: DISCRETE SAMPLE REQUEST: SAMPLE ID COLLECTORS NAME PROJECT # COMPOSITE SAMPLE REQUEST telinquished by: NG2 SE3 SE5 SE6 SE7 SE8 SE9 SE1 0006 DEPTH (metres) Environmental Nolan Grobler 三日の ass PROJECT NAME # LAB WATER * * * * * * * * * * LAB JOB # Date Date SOIL **Opalvale CHITTY** MATRIX Kalamunda, WA 6926 Ph (08) 63635276 Fx (08) 94547615 PO Box 11 SWAB SLUDGE Time Time * ICE * * * * * * * * * PRESERVATION Received by: Received by: METHOD Tony ACIDIFIED OTHER CHAIN OF CUSTODY & NONE 3 ANALYSIS REQUEST 14-Mar-14 SAMPLING DATE No. OF CONTAINERS ω ω ω ω ω ω ω ω ω ω PHENOL SP. Date 17 2 Date TPH BTEX (PURGE & TRAP) A: Low Custody Seals Intact? CO3 HCO3 ANALYSIS REQUIRED & METHOD CODE Time Time PAH Samples Received Chilled? * * **Total Nitrogen** * * × * * * * * * * Na, Ca, K, Mg * * * * * * * * * * * * * CI, SO4 scan * 2 * * * As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, Zn * * * * * * * * * * FILTER prior to testing * * * * * * * * * * PHONE LAB CONTACT Dave LAB ADDRESS × * * * pH * * * * * * Yes / No Yes / No * * * * * Conductivity (mS/m) * * * * * TDS (mg/l) * * * * * * * * * * andre@stass.com.au FINAL REPORT BY: PRELIM. RESULTS BY: MGT Eurofinns AB QUOTE REF: Additional Comments: Queries to Andre at 6363 5276 Report: F12062 andre@stass.com.au email results to REMARKS Page 1 1 1 1 EMAIL FAX VERBAL

Obain of Ountariu

Apapoorola

	Mionmenta		PO Box 11 Kalamunda Ph (08) 6: Fx (08) 9	PO Box 11 Kalamunda, WA 6926 Ph (08) 63635276 Fx (08) 94547615	3926 76 15	. 0	CHAIN OF CUSTO	OF	S REQUI	EC	00	DY &	T&					ADDRES LAB CO PHONE	LAB MGI ADDRESS LAB CONTACT Dave PHONE	ACT	Dave
PROJECT # PR OV06	PROJECT NAME	0	Opalvale CHITTY	YITIY								ANAL	ANALYSIS REQUIRED & METHOD CODE	EQUIP	n 🖗	WETHO	- CO	- M			PRELIM. REGULTS BY:
COLLECTORS NAME		LAB	LAB JOB #									<u> </u>	-		sca						andre@stass.com.au
Nolan Grobler	er							ERS			(RAP)					, Mn,	sting		m)	17	
CAMPLE IN DEPTH	LAB	M	MATRIX	g	PRESERVATION	ATION OD	DATE	NTAINE	P.		RGE & 1	1				Cu, Hg	or to te		ty (mS/	-1	LAB QUOTE REF:
	*			DGE			IPLING	OF CO	NOL S	1	X (PUF	HCO	I Nitro	Ca, K, I		Cd, Cr, Pb, Zn			ductivi	(mg/l)	
DISCRETE SAMPLE REQUEST:	EST:	SOIL	SWA	ICE	ACIDI	OTHE	SAN	No.	PHE	трн	BTE	-	PAH		CI, S		1	рН	Con	TDS	REMARKS
		-										_	-	-	-						
SE1		*		*			17-Jun-14	ω				\square	14	*	*	*	*	*	*	*	email results to
SE2		*		*			17-Jun-14	ω			_	_	*	*	*	*	*	*	*	*	andre@stass.com.au
SE3		*		*			17-Jun-14	ω					20	*	+	*	1è	*	*	*	
SE4		*		*		_	17-Jun-14	ω					*	*	*	*	*	*	*	*	
SE5		*		*			17-Jun-14	ω			_	_	*	*	*	*	*	*	*	*	
SE6		*		*			17-Jun-14	ω				_	*	*	*	*		*	10	*	
SE7		*		*		_	17-Jun-14	ω					*	*	*	*	*	*	*	#	
SE8		*		*			17-Jun-14	ω		1	_	_	*	*	*	*	*	*	*	*	
SE9		*		*			17-Jun-14	ω			_	_	*	*	*	*	*	*	*	*	
NG2		*		*		_	17-Jun-14	ω				_	*	*	*	*	*	*	*	*	
		-		+		$\left \right $					\square	\vdash	H	Η	Η	Η	H				
		+	Ţ	+	Ţ	+					-	+	+	+	+	t	t	T			
		+	1	+		+					+	+	+	+	+	t	T	T			
				+		+					-	+	+	+	+	\dagger	1	T	T	-	
COMPOSITE SAMPLE REQUEST:	UEST:													ł	-	1	ł	ſ	ſ		
		-	-	+		+					-	+	+	+	+	\top	1				
						-				-	_	+	+	+	-	1	1			-	
												\square	\vdash	\vdash	\square		H				
				1		+					-	+	+	+	+	1	1			-	
						$\left \right $						$\left \right $	-							_	
incruishad hur		2				-						H		-							
Nolan Grobler		Date	_	Time	Received by:	6	E de	T	A7	Data 8	6 8	Time XX c		Custody Seals Intact?	Seals	Intact		Ye	Yes / No		Additional Comments:
	nt	Date	_	Time	Received by:	by:				Date	_			Samples Received Chilled?	Recei	ved C	hilled?	Yes	s / No	0	Oueries to Andre at 6363 5276

14 000 19 M

	St	as			Kalan Ph (ox 11 nunda, 08) 63 (08) 94	WA 6	6			HAIN ANALS					E	ST			5 8 M	ETHO	0.001	PHON	CONT	ACT	MGT Eurofinns F Dave PRELIM. RESULTS BY:	Page 1 1
ROJECT #)6	PROJECT NAM	E	On	alvale	CHIT	TY									AN	ALISI	SREG	UIREL			000			Γ		FAX
DLLECTORS N		obler		LAB J								S		-	TRAP)					scan	Mn,	testing		(andre@stass.com.au FINAL REPORT BY:	✓ EM/
	DEPTH	LAB		MA	TRIX		PF	RESER	RVATI	ON	DATE	OF CONTAINERS	d.		-05			gen	ßW		, Cu, Hg, Mn,	rto		Conductivity (mS/m)		LAB QUOTE REF:	_
AMPLE ID	(metres)	#	WATER	۹۲.	SWAB	SLUDGE		ACIDIFIED	OTHER	NONE	SAMPLING DATE	No. OF CO	PHENOL SP	HdT	BTEX (PURGE	CO3 HCO3	PAH	Total Nitrogen	Na, Ca, K, Mg	CI, SO4	As, Cd, Cr, (Ni, Pb, Zn	FILTER prior	Hd	onductiv	TDS (mg/l)	REMARKS	
ISCRETE S/	AMPLE REC	QUEST:	M	SOIL	SW	S	ICE	AC	-0	NO	ŝ	Ž	ā	4	<u>m</u>	Ö	4	F	2	0	AZ	<u>u</u>	4	0	F		
SE1			*	1	1		*				12-Sep-14	3						*	*	*	*	*	*	*	*	email results	s to
SE2			*	-			*				12-Sep-14	3				3		*	*	*	*	*	*	*	*	andre@stass.co	om.au
SE3			*				*				12-Sep-14	3						*	*	*	*	*	*	*	*		
SE4			*				*				12-Sep-14	3						*	*	*	*	*	*	*	*		
SE5			*				*				12-Sep-14	3						*	*	*	*	*	*	*	*		
SE6			*				*				12-Sep-14	3	-	-			-	*	*	*	*	*	*	*	*		
SE7			*	-	-		*		-		12-Sep-14	3		-			-	*	*	*	*	*	*	*	*		
SE8			*	-		-	*		-	-	12-Sep-14	3						*	*	*	*	*	*	*	*		
SE9			*	-	-	-	*	-			12-Sep-14	3			-	-	-	*	*	*	*	*	*	*	*		
NG2			*			-	*	-			12-Sep-14	3		-			-	-	-		-	-		-	-		
				+	-	-		-	-	-			-	-		-		-		-	-	-	1		1		
				+	-				-	-				-		-	-	-					-		1		51 ¹
			-	+	-	-	-			1			1	-			1				-				1		
			-	-			-	-	1	-			1				1				1				1		
OMPOSITE	SAMPLE R	EQUEST:	-	1	_			1	-	-	1																
		1	1	T																							_
														-		-	-	-				-	-	-	-		
													-			-	-	-			-	-	-	-	-		
				_						-			-			-	-	-	-	-		-	-	-	-		
						-			-	-			-			-	-	-			-			-	+		
			-	-		-		-	-	-				-	-	-					-	-	-	-	+		
elinquished by				Date		1	Time	Receiv	ved by:	Co	therine			Date	5/9	18	Time 32	Cust		eals I	ntact?	L	Ye	es / N	No	Additional Comments:	
Iolan Grob				Date		1	Time	Receiv	ved by:		- I JACK	10		Date	1.	1	Time	1	-	Receiv	ved Ch	nilled	? Ye	es / 1	No	Queries to Andre at	6363 5276

LABORATORY REPORT

ARL Lab No: 11-4452 Date: 25 July 2011

CLIENT:	Stass Environmental PO Box 11 KALAMUNDA WA 6926
ATTENTION:	Andre Stasikowski
SAMPLE DESCRIPTION:	Five water samples as received for analysis of conductivity, total nitrogen, pH, total dissolved solids and metals.
DATE RECEIVED:	06 July 2011
LOCATION / JOB NO:	OV01 - Opalvale CHITTY
PURCHASE ORDER:	NA

METHOD REFERENCES:

pH in Water Total Dissolved Solids in Water Conductivity and Salinity in Water Metals in Water Total Nitrogen ARL No. 014 ARL No. 017 ARL No. 019 ARL No. 402, 403 ARL No. 330

& RG-

Kim Rodgers Laboratory Manager

Metals Quality Control Data

	Matrix Spike	Certified Reference Material
		% Recovery
Arsenic	104%	122%
Cadmium	118%	114%
Chromium	89%	113%
Copper	94%	98%
Manganese	96%	97%
Nickel	98%	101%
Lead	104%	107%
Zinc	106%	101%

Nutrients Quality Control Data

	Matrix Spike	Certified Reference Material
		% Recovery
Total Nitrogen	104%	108%

Inorganics Quality Control Data

	Matrix Spike	Certified Reference Material
		% Recovery
рН	-	101%
Conductivity	-	105%
Total Dissolved Solids	-	97%

Nutrients

Date Prepared	6/07/2011
Date Analysed	7/07/2011

ARL Lab No	Method	11-4452-1	11-4452-2	11-4452-3	11-4452-4	11-4452-5
Sample Marks	Detection Limit	SE1	SE	SE3	SE4	SE5
	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
Total Nitrogen	0.2	0.4	0.3	0.4	7.1	< 0.2

<u>Metals</u>

Date Prepared	7/07/2011
Date Analysed	8/07/2011, 14/07/2011

ARL Lab No	Method	11-4452-1	11-4452-2	11-4452-3	11-4452-4	11-4452-5
Sample Marks	Detection Limit	SE1	SE	SE3	SE4	SE5
	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
Arsenic	0.001	0.002	0.006	0.002	0.001	< 0.001
Cadmium	0.002	< 0.002	< 0.002	0.037	< 0.002	< 0.002
Chromium	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Copper	0.01	0.45	0.30	4.4	0.01	0.01
Manganese	0.01	0.20	0.79	1.7	0.05	< 0.01
Nickel	0.01	0.17	0.48	3.4	0.01	< 0.01
Lead	0.01	0.06	0.02	0.03	< 0.01	< 0.01
Zinc	0.01	0.21	0.48	2.6	0.01	< 0.01

ARL Lab No	Date Analysed	Units	Method	11-4452-1	11-4452-2	11-4452-3	11-4452-4	11-4452-5
Sample Marks			Detection Limit	SE1	SE	SE3	SE4	SE5
рН	7/07/2011	#	-	4.4	4.9	4.3	6.4	7.5
Conductivity	7/07/2011	mS/cm	0.01	4.8	5.6	9.0	0.50	0.60
Total Dissolved Solids	7/07/2011	mg/l	5	2800	3500	5700	280	310

LABORATORY REPORT

Job Number: 12-0379 Revision: 00 Date: 7 February 2012

ADDRESS:	Stass Environmental PO Box 11 Kalamunda WA 6926
ATTENTION:	Andre Stasikowski

DATE RECEIVED: 18/01/2012

YOUR REFERENCE: OV02, Opalvale CHITTY

PURCHASE ORDER: N/A

APPROVALS:

Leigh Bermingham

Chemist - Inorganics

REPORT COMMENTS:

Samples are analysed on an as received basis unless otherwise noted.

METHOD REFERENCES:

ARL No. 040	Arsenic by Hydride Atomic Absorption
ARL No. 402/403	Metals in Water by ICPOES/MS
ARL No. 313	NOx in Water by Discrete Analyser
ARL No. 330	Persulphate Method for Simultaneous Determination of TN & TP
ARL No. 014	pH in Water
ARL No. 019	Conductivity and Salinity in Water
ARL No. 017	Total Dissolved Solids (At 105 ^o C)

LABORATORY REPORT

Stass Environmental ARL Job No: 12-0379

Revision: 00

Date: 7 February 2012

Metals in Water Sample No: Sample Description:	LOR	UNITS	12-0379-1 SE1	12-0379-2 SE2	12-0379-3 SE3	12-0379-4 SE4	12-0379-5 SE5
Arsenic - Dissolved	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Cadmium - Dissolved	0.002	mg/L	<0.002	0.005	0.038	<0.002	<0.002
Chromium - Dissolved	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Copper - Dissolved	0.01	mg/L	0.44	0.37	1.2	0.03	0.04
Manganese - Dissolved	0.01	mg/L	0.22	0.86	1.7	0.06	<0.01
Nickel - Dissolved	0.01	mg/L	0.19	0.64	2.7	0.01	<0.01
Lead - Dissolved	0.01	mg/L	0.12	0.07	0.22	<0.01	<0.01
Zinc - Dissolved	0.01	mg/L	0.24	0.72	2.5	0.07	<0.01

Nutrients in Water Sample No: Sample Description:	LOR	UNITS	12-0379-1 SE1	12-0379-2 SE2	12-0379-3 SE3	12-0379-4 SE4	12-0379-5 SE5
NOx-N	0.01	mg/L	<0.01	<0.01	<0.01	5.5	0.31
Total Nitrogen	0.2	mg/L	1.0	0.9	0.9	5.5	1.4

Misc. Inorganics in Water Sample No: Sample Description:	LOR	UNITS	12-0379-1 SE1	12-0379-2 SE2	12-0379-3 SE3	12-0379-4 SE4	12-0379-5 SE5
рН	0.1	pH units	3.6	4.1	3.9	6.2	8.3
Conductivity	0.01	mS/cm	4.1	5.6	7.7	0.48	0.85
Total Dissolved Solids	5	mg/L	2,400	4,000	5,800	300	480

Result Definitions

- LOR Limit of Reporting
- [NT] Not Tested
- [ND] Not Detected at indicated Limit of Reporting

[NR] Analysis Not Requested

(SS) Surrogate Standard Compound

Stass Environmental PO BOX 11 KALAMUNDA WA 6926

Certificate of Analysis NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:

Andre Stasikowski 387045-W

Report **Client Reference Received Date**

OPALVALE CHITTY OV04 Jul 25, 2013

Client Sample ID Sample Matrix			SE1 Water	SE2 Water	SE3 Water	SE4 Water
•			M13-JI18356	M13-JI18357	M13-JI18358	M13-JI18359
Eurofins mgt Sample No.						
Date Sampled			Jul 24, 2013	Jul 24, 2013	Jul 24, 2013	Jul 24, 2013
Test/Reference	LOR	Unit				
Chloride	1	mg/L	1100	1600	4200	310
Conductivity (at 25°C)	10	uS/cm	3600	5200	12000	1100
pH	0.1	units	3.7	4.6	4.2	6.0
Sulphate (as S)	5	mg/L	45	87	220	17
Total Dissolved Solids	10	mg/L	1900	3000	7300	600
Total Nitrogen Set (as N)						
Nitrate & Nitrite (as N)	0.05	mg/L	0.07	< 0.05	< 0.05	5.3
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	0.7	0.7	0.4	0.4
Total Nitrogen (as N)	0.2	mg/L	0.8	0.7	0.4	5.7
Heavy Metals						
Arsenic (filtered)	0.001	mg/L	0.001	< 0.001	0.004	< 0.001
Cadmium (filtered)	0.0002	mg/L	0.0003	0.0007	0.019	< 0.0002
Chromium (filtered)	0.001	mg/L	0.001	< 0.001	0.002	< 0.001
Copper (filtered)	0.001	mg/L	0.37	0.22	1.1	0.011
Lead (filtered)	0.001	mg/L	0.074	0.024	0.085	< 0.001
Manganese (filtered)	0.005	mg/L	0.081	0.70	0.64	0.030
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel (filtered)	0.001	mg/L	0.096	0.37	2.1	0.014
Zinc (filtered)	0.001	mg/L	0.12	0.52	1.4	0.056
Alkali Metals						
Calcium	0.5	mg/L	2.2	11	5.7	2.2
Magnesium	0.5	mg/L	42	140	350	15
Potassium	0.5	mg/L	8.0	36	56	3.7
Sodium	0.5	mg/L	610	750	1800	160

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled Test/Reference	LOR	Unit	SE5 Water M13-JI18360 Jul 24, 2013	SE6 Water M13-JI18361 Jul 24, 2013	SE7 Water M13-JI18362 Jul 24, 2013	SE8 Water M13-JI18363 Jul 24, 2013
Chloride	1	mg/L	1600	1700	3700	53

Client Sample ID Sample Matrix			SE5 Water	SE6 Water	SE7 Water	SE8 Water
Eurofins mgt Sample No.			M13-JI18360	M13-JI18361	M13-JI18362	M13-JI18363
Date Sampled			Jul 24, 2013	Jul 24, 2013	Jul 24, 2013	Jul 24, 2013
Test/Reference	LOR	Unit				
Conductivity (at 25°C)	10	uS/cm	4900	5400	9900	520
рН	0.1	units	5.0	4.8	4.0	7.2
Sulphate (as S)	5	mg/L	71	94	59	13
Total Dissolved Solids	10	mg/L	2800	3100	5400	360
Total Nitrogen Set (as N)						
Nitrate & Nitrite (as N)	0.05	mg/L	< 0.05	0.17	1.6	8.6
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	< 0.2	< 0.2	< 0.2	0.9
Total Nitrogen (as N)	0.2	mg/L	< 0.2	< 0.2	1.6	9.5
Heavy Metals						
Arsenic (filtered)	0.001	mg/L	< 0.001	< 0.001	0.002	< 0.001
Cadmium (filtered)	0.0002	mg/L	0.015	0.0013	< 0.0002	< 0.0002
Chromium (filtered)	0.001	mg/L	< 0.001	0.002	0.003	< 0.001
Copper (filtered)	0.001	mg/L	0.18	0.065	0.12	0.002
Lead (filtered)	0.001	mg/L	0.012	0.008	0.011	< 0.001
Manganese (filtered)	0.005	mg/L	1.7	0.18	0.041	< 0.005
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel (filtered)	0.001	mg/L	0.90	0.084	0.049	0.001
Zinc (filtered)	0.001	mg/L	0.73	0.15	0.038	0.007
Alkali Metals						
Calcium	0.5	mg/L	4.3	5.7	6.0	< 0.5
Magnesium	0.5	mg/L	130	68	180	0.8
Potassium	0.5	mg/L	25	9.6	6.4	5.0
Sodium	0.5	mg/L	690	940	1700	120

Client Sample ID Sample Matrix			SE9 Water	NG2 Water
Eurofins mgt Sample No.			M13-JI18364	M13-JI18365
Date Sampled			Jul 24, 2013	Jul 24, 2013
Test/Reference	LOR	Unit		
Chloride	1	mg/L	120	1800
Conductivity (at 25°C)	10	uS/cm	910	5200
рН	0.1	units	5.1	4.7
Sulphate (as S)	5	mg/L	85	89
Total Dissolved Solids	10	mg/L	650	3100
Total Nitrogen Set (as N)				
Nitrate & Nitrite (as N)	0.05	mg/L	7.2	< 0.05
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	0.9	0.2
Total Nitrogen (as N)	0.2	mg/L	8.1	0.2
Heavy Metals				
Arsenic (filtered)	0.001	mg/L	< 0.001	< 0.001
Cadmium (filtered)	0.0002	mg/L	0.0002	0.0007
Chromium (filtered)	0.001	mg/L	0.001	< 0.001
Copper (filtered)	0.001	mg/L	0.004	0.23
Lead (filtered)	0.001	mg/L	< 0.001	0.023

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			SE9 Water M13-JI18364 Jul 24, 2013	NG2 Water M13-JI18365 Jul 24, 2013
Test/Reference	LOR	Unit		
Heavy Metals				
Manganese (filtered)	0.005	mg/L	< 0.005	0.73
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001
Nickel (filtered)	0.001	mg/L	0.001	0.38
Zinc (filtered)	0.001	mg/L	0.019	0.54
Alkali Metals				
Calcium	0.5	mg/L	< 0.5	11
Magnesium	0.5	mg/L	4.2	150
Potassium	0.5	mg/L	3.9	34
Sodium	0.5	mg/L	200	760

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

Description	Testing Site	Extracted	Holding Time
Chloride	Melbourne	Jul 25, 2013	28 Day
- Method: MGT 1100A			
Conductivity (at 25°C)	Melbourne	Jul 25, 2013	28 Day
- Method: APHA 2510 Conductivity by Direct Measurement			
рН	Melbourne	Jul 25, 2013	0 Hours
- Method: APHA 4500 pH by Direct Measurement - ** Samples analysed outside holding time. Analysis should	d be performed in situ. Resul	ts for reference only.	
Sulphate (as S)	Melbourne	Jul 25, 2013	28 Day
- Method: In house MGT1110A (SO4 by Discrete Analyser)			
Total Dissolved Solids	Melbourne	Jul 31, 2013	7 Day
- Method: APHA 2540C Total Dissolved Solids			
Total Nitrogen Set (as N)			
Nitrate & Nitrite (as N)	Melbourne	Jul 25, 2013	28 Day
- Method: APHA 4500-NO3/NO2 Nitrate-Nitrite Nitrogen by FIA			
Total Kjeldahl Nitrogen (as N)	Melbourne	Jul 25, 2013	7 Day
- Method: APHA 4500 TKN			
Heavy Metals (filtered)	Melbourne	Jul 25, 2013	180 Day
- Method: USEPA 6020 Heavy Metals			
Mobil Metals : Metals M15	Melbourne	Jul 25, 2013	28 Day
- Method: USEPA 6010/6020 Heavy Metals & USEPA 7470/71 Mercury			
Alkali Metals	Melbourne	Jul 25, 2013	180 Day
- Method: USEPA 6010 Alkali Metals			

с С Р

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 **Sydney** Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Address:	Company Name:Stass EnvironmentalAddress:PO BOX 11KALAMUNDAWA 6926Client Job No.:OPALVALE CHITTY OV04				R P	Order No.:Report #:387045Phone:(08)6363 5276Fax:(08)9454 7615								Received: Due: Priority: Contact Name: Eurofins mot (Jul 25, 2013 8:21 AM Aug 1, 2013 5 Day Andre Stasikowski Client Manager: Natalie Krasselt							
		Sample Detail			Arsenic (filtered)	Cadmium (filtered)	Calcium	Chloride	Chromium (filtered)	Conductivity (at 25°C)	Copper (filtered)	Lead (filtered)	Magnesium	Manganese (filtered)	Mercury (filtered)	Nickel (filtered)	pH	Potassium	Sodium	Sulphate (as S)	Total Dissolved Solids	Zinc (filtered)	Total Nitrogen Set (as N)		
	ere analysis is c																								
	oratory - NATA		271		X	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		
	tory - NATA Site ratory - NATA Si							┨───┦	<u> </u>																
External Labor																									
Sample ID	Sample Date	Sampling Time	Matrix	LAB ID																					
SE1	Jul 24, 2013		Water	M13-JI18356	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		
SE2	Jul 24, 2013		Water	M13-JI18357	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		
SE3	Jul 24, 2013		Water	M13-JI18358	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		
SE4	Jul 24, 2013		Water	M13-JI18359	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		
SE5	Jul 24, 2013		Water	M13-JI18360	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		
SE6	Jul 24, 2013		Water	M13-JI18361	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		
SE7	Jul 24, 2013		Water	M13-JI18362	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		
SE8	Jul 24, 2013		Water	M13-JI18363	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		
SE9	Jul 24, 2013		Water	M13-JI18364	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		
NG2	Jul 24, 2013		Water	M13-JI18365	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		

ABN - 50 005 085 521 e.mail : enviro@mgtlabmark.com.au web : www.mgtlabmark.com.au

Eurofins | mgt Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual PQLs are matrix dependant. Quoted PQLs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Acknowledgment.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

UNITS

mg/kg: milligrams per Kilogram	mg/l: milligrams per litre
ug/l: micrograms per litre	ppm: Parts per million
ppb: Parts per billion	%: Percentage
org/100ml: Organisms per 100 millilitres	NTU: Units
MPN/100ml · Most Probable Number of organisms per 100 millilitres	

TERMS

CRM	Certified Reference Material - reported as percent recovery
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environment Protection Authority
APHA	American Public Health Association
ASLP	Australian Standard Leaching Procedure (AS4439.3)
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
CP	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

QC - ACCEPTANCE CRITERIA

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%

QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxophene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) - where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data.

Test			Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank							
Chloride			mg/L	< 1	1	Pass	
Sulphate (as S)			mg/L	< 5	5	Pass	
Total Dissolved Solids			mg/L	< 10	10	Pass	
Method Blank							
Total Nitrogen Set (as N) Total Nitro	ogen Set (as N)						
Nitrate & Nitrite (as N)			mg/L	< 0.05	0.05	Pass	
Total Kjeldahl Nitrogen (as N)			mg/L	< 0.2	0.2	Pass	
Method Blank							
Heavy Metals (filtered) USEPA 6020	0 Heavy Metals						
Arsenic (filtered)			mg/L	< 0.001	0.001	Pass	
Cadmium (filtered)			mg/L	< 0.0002	0.0002	Pass	
Chromium (filtered)			mg/L	< 0.001	0.001	Pass	
Copper (filtered)			mg/L	< 0.001	0.001	Pass	
Lead (filtered)			mg/L	< 0.001	0.001	Pass	
Manganese (filtered)			mg/L	< 0.005	0.005	Pass	
Mercury (filtered)			mg/L	< 0.0001	0.0001	Pass	
Nickel (filtered)			mg/L	< 0.001	0.001	Pass	
Zinc (filtered)			mg/L	< 0.001	0.001	Pass	
Method Blank			<u>g</u> / _	101001	0.001	1 400	
Alkali Metals USEPA 6010 Alkali M	etals						
Calcium			mg/L	< 0.5	0.5	Pass	
Magnesium			mg/L	< 0.5	0.5	Pass	
Potassium			mg/L	< 0.5	0.5	Pass	
Sodium			mg/L	< 0.5	0.5	Pass	
LCS - % Recovery			<u>g</u> , <u>_</u>	1 0.0	0.0	1 400	
Chloride			%	107	70-130	Pass	
Sulphate (as S)			%	107	70-130	Pass	
LCS - % Recovery			/0	107	10 100	1 400	
Total Nitrogen Set (as N) Total Nitro	ogen Set (as N)						
Nitrate & Nitrite (as N)	ogen det (as N)		%	124	70-130	Pass	
Total Kjeldahl Nitrogen (as N)			%	95	70-130	Pass	
LCS - % Recovery			70	35	70-130	1 855	
Heavy Metals (filtered) USEPA 6020	0 Hoavy Motals					-	
Arsenic (filtered)			%	93	80-120	Pass	
Cadmium (filtered)			%	93	80-120	Pass	
Chromium (filtered)			%	94	80-120	Pass	
Copper (filtered)			%	96	80-120	Pass	
				92	80-120		
Lead (filtered)			%			Pass	
Manganese (filtered)			%	93	80-120	Pass	
Mercury (filtered)			%	92	70-130	Pass	
Nickel (filtered)			%	92	80-120	Pass	
Zinc (filtered)			%	94	80-120	Pass	
LCS - % Recovery							
Alkali Metals USEPA 6010 Alkali Me	etals		~ /		70.10-		
Calcium			%	104	70-130	Pass	
Magnesium			%	107	70-130	Pass	
Potassium			%	113	70-130	Pass	
Sodium			%	98	70-130	Pass	
		QA			Acceptance	Pass	Qualifying

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Total Nitrogen Set (as N)				Result 1					
Nitrate & Nitrite (as N)	M13-JI16126	NCP	%	126			70-130	Pass	
Total Kjeldahl Nitrogen (as N)	M13-JI18036	NCP	%	96			70-130	Pass	
Spike - % Recovery				1			1	r	
Heavy Metals (filtered)	1			Result 1					
Arsenic (filtered)	M13-JI18987	NCP	%	88			75-125	Pass	
Cadmium (filtered)	M13-JI18987	NCP	%	83			75-125	Pass	
Chromium (filtered)	M13-JI18987	NCP	%	88			75-125	Pass	
Copper (filtered)	M13-JI18987	NCP	%	82			75-125	Pass	
Lead (filtered)	M13-JI18987	NCP	%	84			75-125	Pass	
Manganese (filtered)	M13-JI18987	NCP	%	87			75-125	Pass	
Mercury (filtered)	M13-JI20169	NCP	%	75			70-130	Pass	
Nickel (filtered)	M13-JI18987	NCP	%	82			75-125	Pass	
Zinc (filtered)	M13-JI18987	NCP	%	84			75-125	Pass	
Spike - % Recovery				I			1	1	
Alkali Metals	-			Result 1					
Calcium	B13-JI20045	NCP	%	105			70-130	Pass	
Magnesium	M13-JI18356	CP	%	99			70-130	Pass	
Potassium	M13-JI18356	CP	%	86			70-130	Pass	
Sodium	M13-JI18356	CP	%	107			70-130	Pass	
Spike - % Recovery							1		
	1			Result 1					
Chloride	M13-JI18361	CP	%	117			70-130	Pass	
Spike - % Recovery					1		1		
				Result 1					
Sulphate (as S)	M13-JI18362	CP	%	119			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate				1			I		
				Result 1	Result 2	RPD			
Conductivity (at 25°C)	M13-JI18030	NCP	uS/cm	7800	7700	2.0	30%	Pass	
Duplicate				1			-		
Total Nitrogen Set (as N)				Result 1	Result 2	RPD			
Nitrate & Nitrite (as N)	M13-JI16126	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Duplicate				1			-		
Heavy Metals (filtered)				Result 1	Result 2	RPD			
Arsenic (filtered)	M13-JI18987	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cadmium (filtered)	M13-JI18987	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium (filtered)	M13-JI18987	NCP	mg/L	0.0040	0.0044	<1	30%	Pass	
Copper (filtered)	M13-JI18987	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Lead (filtered)	M13-JI18987	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Manganese (filtered)	M13-JI18987	NCP	mg/L	0.016	0.016	<1	30%	Pass	
Nickel (filtered)	M13-JI18987	NCP	mg/L	0.0060	0.0052	5.1	30%	Pass	
Zinc (filtered)	M13-JI18987	NCP	mg/L	0.0080	0.0084	<1	30%	Pass	
Duplicate									
Alkali Metals				Result 1	Result 2	RPD			
Calcium	M13-JI18356	CP	mg/L	2.2	2.1	2.0	30%	Pass	
Magnesium	M13-JI18356	СР	mg/L	42	41	2.0	30%	Pass	
Potassium	M13-JI18356	СР	mg/L	8.0	8.0	<1	30%	Pass	
Sadium	M13-JI18356	СР	mg/L	610	600	2.0	30%	Pass	
Sodium									
Duplicate		1		Result 1	Result 2	RPD		Pass	

Duplicate									
				Result 1	Result 2	RPD			
Chloride	M13-JI18361	CP	mg/L	1700	1700	<1	30%	Pass	
Sulphate (as S)	M13-JI18361	CP	mg/L	94	93	<1	30%	Pass	
Duplicate									
Mobil Metals : Metals M15				Result 1	Result 2	RPD			
Mercury (filtered)	M13-JI18361	CP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Chloride	M13-JI18362	CP	mg/L	3700	3700	<1	30%	Pass	
Sulphate (as S)	M13-JI18362	CP	mg/L	59	59	<1	30%	Pass	
Duplicate									
Total Nitrogen Set (as N)				Result 1	Result 2	RPD			
Total Kjeldahl Nitrogen (as N)	M13-JI18364	CP	mg/L	0.9	0.9	4.4	30%	Pass	

Comments

Sample Integrity	Sampl	le l	nteg	grit	ty
------------------	-------	------	------	------	----

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	No
Organic samples had Teflon liners	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Authorised By

Natalie Krasselt	
Emily Rosenberg	
Huong Le	

Client Services Senior Analyst-Metal (VIC) Senior Analyst-Inorganic (VIC)

Glenn Jackson Laboratory Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins | mg shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Stass Environmental PO BOX 11 KALAMUNDA WA 6926

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

ttention:	
attention:	

Andre Stasikowski

Report
Client Reference
Received Date

402563-W OPALVALE CHITTY OV05 Dec 05, 2013

Client Sample ID Sample Matrix			SE1 Water	SE2 Water	SE3 Water	SE4 Water
Eurofins mgt Sample No.			M13-De05257	M13-De05258	M13-De05259	M13-De05260
Date Sampled			Dec 04, 2013	Dec 04, 2013	Dec 04, 2013	Dec 04, 2013
Test/Reference	LOR	Unit			,	,
	Lon	Onit				
Chloride	1	mg/L	1000	2000	4100	99
Conductivity (at 25°C)	10	uS/cm	3300	6100	11000	430
рН	0.1	units	3.3	4.6	3.7	5.7
Sulphate (as S)	5	mg/L	45	110	230	< 5
Total Dissolved Solids	10	mg/L	1900	3400	7000	240
Total Nitrogen Set (as N)						
Nitrate & Nitrite (as N)	0.05	mg/L	< 0.05	0.08	0.07	5.7
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	0.8	< 0.2	< 0.2	< 0.2
Total Nitrogen (as N)	0.2	mg/L	0.8	< 0.2	< 0.2	5.7
Heavy Metals						
Arsenic (filtered)	0.001	mg/L	< 0.001	0.002	0.003	< 0.001
Cadmium (filtered)	0.0002	mg/L	0.0004	0.0007	0.022	< 0.0002
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Copper (filtered)	0.001	mg/L	0.39	0.10	0.52	0.006
Lead (filtered)	0.001	mg/L	0.083	0.021	0.076	< 0.001
Manganese (filtered)	0.005	mg/L	0.080	0.95	0.79	0.019
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel (filtered)	0.001	mg/L	0.064	0.45	1.4	0.011
Zinc (filtered)	0.001	mg/L	0.077	0.50	1.3	0.031
Alkali Metals						
Calcium	0.5	mg/L	1.3	10	5.0	1.1
Magnesium	0.5	mg/L	43	170	370	11
Potassium	0.5	mg/L	3.1	38	62	1.5
Sodium	0.5	mg/L	570	890	1900	71

Client Sample ID Sample Matrix			SE5 Water	SE6 Water	SE7 Water	SE8 Water
Eurofins mgt Sample No.			M13-De05261	M13-De05262	M13-De05263	M13-De05264
Date Sampled		D		Dec 04, 2013	Dec 04, 2013	Dec 04, 2013
Test/Reference	LOR	Unit				
Chloride	1	mg/L	1400	2300	3300	39
Conductivity (at 25°C)	10	uS/cm	4300	7400	9000	480
рН	0.1	units	4.7	4.2	3.6	6.7
Sulphate (as S)	5	mg/L	75	120	52	18
Total Dissolved Solids	10	mg/L	2600	3700	4800	320

Client Sample ID			SE5	SE6	SE7	SE8
Sample Matrix			Water	Water	Water	Water
Eurofins mgt Sample No.			M13-De05261	M13-De05262	M13-De05263	M13-De05264
Date Sampled			Dec 04, 2013	Dec 04, 2013	Dec 04, 2013	Dec 04, 2013
Test/Reference	LOR	Unit				
Total Nitrogen Set (as N)						
Nitrate & Nitrite (as N)	0.05	mg/L	0.06	0.10	1.6	6.2
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	0.2	< 0.2	0.9	1.6
Total Nitrogen (as N)	0.2	mg/L	0.26	< 0.2	2.5	7.8
Heavy Metals						
Arsenic (filtered)	0.001	mg/L	< 0.001	0.001	0.002	< 0.001
Cadmium (filtered)	0.0002	mg/L	0.0026	0.0003	0.0002	< 0.0002
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Copper (filtered)	0.001	mg/L	0.079	0.091	0.14	0.001
Lead (filtered)	0.001	mg/L	0.006	0.012	0.006	< 0.001
Manganese (filtered)	0.005	mg/L	1.5	0.057	0.12	< 0.005
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel (filtered)	0.001	mg/L	0.46	0.020	0.013	< 0.001
Zinc (filtered)	0.001	mg/L	0.51	0.047	0.025	0.004
Alkali Metals						
Calcium	0.5	mg/L	5.0	2.6	5.7	< 0.5
Magnesium	0.5	mg/L	110	110	170	0.8
Potassium	0.5	mg/L	21	12	6.4	3.3
Sodium	0.5	mg/L	640	1300	1700	130

Client Sample ID Sample Matrix Eurofins mgt Sample No.			SE9 Water M13-De05265	NG2 Water M13-De05266
Date Sampled			Dec 04, 2013	Dec 04, 2013
Test/Reference	LOR	Unit		
Chloride	1	mg/L	88	88
Conductivity (at 25°C)	10	uS/cm	790	770
рН	0.1	units	4.9	4.8
Sulphate (as S)	5	mg/L	85	86
Total Dissolved Solids	10	mg/L	560	560
Total Nitrogen Set (as N)				
Nitrate & Nitrite (as N)	0.05	mg/L	6.1	6.1
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	< 0.2	< 0.2
Total Nitrogen (as N)	0.2	mg/L	6.1	6.1
Heavy Metals				
Arsenic (filtered)	0.001	mg/L	< 0.001	< 0.001
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002
Chromium (filtered)	0.001	mg/L	0.001	0.002
Copper (filtered)	0.001	mg/L	0.005	0.004
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001
Manganese (filtered)	0.005	mg/L	< 0.005	< 0.005
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001
Nickel (filtered)	0.001	mg/L	0.001	0.001
Zinc (filtered)	0.001	mg/L	0.012	0.008
Alkali Metals	·			
Calcium	0.5	mg/L	< 0.5	< 0.5
Magnesium	0.5	mg/L	2.7	2.7

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			SE9 Water M13-De05265 Dec 04, 2013	NG2 Water M13-De05266 Dec 04, 2013
Test/Reference	LOR	Unit		
Alkali Metals				
Potassium	0.5	mg/L	2.1	2.1
Sodium	0.5	mg/L	57	160

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time											
Chloride	Melbourne	Dec 06, 2013	28 Day											
- Method: MGT 1100A														
Conductivity (at 25°C)	Melbourne	Dec 09, 2013	28 Day											
- Method: APHA 2510 Conductivity by Direct Measurement														
pH	Melbourne	Dec 06, 2013	0 Hours											
- Method: APHA 4500 pH by Direct Measurement - ** Samples analysed outside holding time. Analysis should be performed in situ. Results for reference only.														
Sulphate (as S)	Melbourne	Dec 06, 2013	28 Day											
- Method: In house MGT1110A (SO4 by Discrete Analyser)														
Total Dissolved Solids	Melbourne	Dec 10, 2013	7 Day											
- Method: APHA 2540C Total Dissolved Solids														
Total Nitrogen Set (as N)														
Nitrate & Nitrite (as N)	Melbourne	Dec 06, 2013	28 Day											
- Method: APHA 4500-NO3/NO2 Nitrate-Nitrite Nitrogen by FIA														
Total Kjeldahl Nitrogen (as N)	Melbourne	Dec 06, 2013	7 Day											
- Method: APHA 4500 TKN														
Heavy Metals (filtered)	Melbourne	Dec 05, 2013	180 Day											
- Method: USEPA 6020 Heavy Metals														
Mobil Metals : Metals M15	Melbourne	Dec 05, 2013	28 Day											
- Method: USEPA 6010/6020 Heavy Metals & USEPA 7470/71 Mercury														
Alkali Metals	Melbourne	Dec 05, 2013	180 Day											
- Method: USEPA 6010 Alkali Metals														

Company Name:

Address:

402563

(08)6363 5276

(08)9454 7615

 Melbourne

 3-5 Kingston Town Close

 Oakleigh VIC 3166

 Phone : +61 3 8564 5000

 NATA # 1261

 Site # 1254 & 14271

Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

ABN - 50 005 085 521	e.mail : EnviroSales@eurofins.com.au	web : www.eurofins.com.au

Order No.:

Report #:

Phone:

Fax:

Melbourne

Received: Due:

Priority:

Contact Name:

Dec 5, 2013 8:43 AM Dec 12, 2013 5 Day Andre Stasikowski

Client Job No.:	OPALVALE CHITTY OV05																			
																Euro	fins	mgt	Clien	t N
		Arsenic (filte	Cadmium (fi	Calcium	Chloride	Conductivity	Copper (filte	Lead (filtere	Magnesium	Manganese	Mercury (filt	Nickel (filter	рH	Potassium	Sodium	Sulphate (a	Total Dissol	Zinc (filterec	Total Nitrog	

Stass Environmental

PO BOX 11

WA 6926

KALAMUNDA

Eurofins | mgt Client Manager: Mark Rodriquez

		Sample Detail			Arsenic (filtered)	Cadmium (filtered)	Calcium	Chloride	Chromium (filtered)	Conductivity (at 25°C)	Copper (filtered)	Lead (filtered)	Magnesium	Manganese (filtered)	Mercury (filtered)	Nickel (filtered)	рH	Potassium	Sodium	Sulphate (as S)	Total Dissolved Solids	Zinc (filtered)	Total Nitrogen Set (as N)
Laboratory wh	ere analysis is co	onducted																					
Melbourne Lab	poratory - NATA S	Site # 1254 & 14	271		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Sydney Labora	atory - NATA Site	# 18217																					
Brisbane Labo	oratory - NATA Sit	te # 20794																					
External Labor	ratory																						
Sample ID	Sample Date	Sampling Time	Matrix	LAB ID																			
SE1	Dec 04, 2013		Water	M13-De05257	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
SE2	Dec 04, 2013		Water	M13-De05258	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
SE3	Dec 04, 2013		Water	M13-De05259	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
SE4	Dec 04, 2013		Water	M13-De05260	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
SE5	Dec 04, 2013		Water	M13-De05261	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
SE6	Dec 04, 2013		Water	M13-De05262	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
SE7	Dec 04, 2013		Water	M13-De05263	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
SE8	Dec 04, 2013		Water	M13-De05264	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
SE9	Dec 04, 2013		Water	M13-De05265	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
NG2	Dec 04, 2013		Water	M13-De05266	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х

Eurofins | mgt Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual PQLs are matrix dependant. Quoted PQLs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Acknowledgment.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

UNITS

mg/kg: milligrams per Kilogram	mg/l: milligrams per litre
ug/l: micrograms per litre	ppm: Parts per million
ppb: Parts per billion	%: Percentage
org/100ml: Organisms per 100 millilitres	NTU: Units
MPN/100mL: Most Probable Number of organisms per 100 millilitres	

TERMS

IERINIS	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery
CRM	Certified Reference Material - reported as percent recovery
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
ASLP	Australian Standard Leaching Procedure (AS4439.3)
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within
TEQ	Toxic Equivalency Quotient

QC - ACCEPTANCE CRITERIA

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%.

QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxophene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data.

Content of the second s

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Chloride	mg/L	< 1	1	Pass	
Sulphate (as S)	mg/L	< 5	5	Pass	
Total Dissolved Solids	mg/L	< 10	10	Pass	
Method Blank					
Total Nitrogen Set (as N)					
Nitrate & Nitrite (as N)	mg/L	< 0.05	0.05	Pass	
Total Kjeldahl Nitrogen (as N)	mg/L	< 0.2	0.2	Pass	
Method Blank					
Heavy Metals					
Arsenic (filtered)	mg/L	< 0.001	0.001	Pass	
Cadmium (filtered)	mg/L	< 0.0002	0.0002	Pass	
Chromium (filtered)	mg/L	< 0.001	0.001	Pass	
Copper (filtered)	mg/L	< 0.001	0.001	Pass	
Lead (filtered)	mg/L	< 0.001	0.001	Pass	
Manganese (filtered)	mg/L	< 0.005	0.005	Pass	
Mercury (filtered)	mg/L	< 0.0001	0.0001	Pass	
Nickel (filtered)	mg/L	< 0.001	0.001	Pass	
Zinc (filtered)	mg/L	< 0.001	0.001	Pass	
Method Blank				1 400	
Alkali Metals				T	
Calcium	mg/L	< 0.5	0.5	Pass	
Magnesium	mg/L	< 0.5	0.5	Pass	
Potassium	mg/L	< 0.5	0.5	Pass	
Sodium	mg/L	< 0.5	0.5	Pass	
LCS - % Recovery	ing/E	0.0	0.0	1 400	
Chloride	%	102	70-130	Pass	
Sulphate (as S)	%	102	70-130	Pass	
LCS - % Recovery	70	100	10100	1 400	
Total Nitrogen Set (as N)					
Nitrate & Nitrite (as N)	%	96	70-130	Pass	
Total Kjeldahl Nitrogen (as N)	%	82	70-130	Pass	
LCS - % Recovery	70	02	70-130	1 435	
Heavy Metals				1	
Arsenic (filtered)	%	109	80-120	Pass	
Cadmium (filtered)	%	100	80-120	Pass	
Chromium (filtered)	%	100	80-120	Pass	
Copper (filtered)	%	102	80-120	Pass	
Lead (filtered)	%	98	80-120	Pass	
Manganese (filtered)	%	107	80-120	Pass	
Mercury (filtered)	%	92	70-130	Pass	
Nickel (filtered)	%	92 99	80-120	Pass	
Zinc (filtered)	%	102	80-120	Pass	
LCS - % Recovery	70		00-120	r ass	
Alkali Metals	0/	100	70.400	Deer	
Calcium	%	100	70-130	Pass	
Magnesium	%	106	70-130	Pass	
Potassium	%	91	70-130	Pass	
Sodium	%	118	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
				Result 1					
Chloride	M13-De05305	NCP	%	106			70-130	Pass	
Sulphate (as S)	M13-De05257	CP	%	101			70-130	Pass	
Spike - % Recovery									
Total Nitrogen Set (as N)				Result 1					
Nitrate & Nitrite (as N)	M13-De05257	CP	%	94			70-130	Pass	
Total Kjeldahl Nitrogen (as N)	M13-De05257	CP	%	97			70-130	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Chromium (filtered)	M13-De03873	NCP	%	96			70-130	Pass	
Nickel (filtered)	M13-De03873	NCP	%	91			70-130	Pass	
Zinc (filtered)	M13-De03873	NCP	%	100			70-130	Pass	
Spike - % Recovery									
Alkali Metals				Result 1					
Calcium	M13-De05488	NCP	%	104			70-130	Pass	
Magnesium	M13-De05257	CP	%	100			70-130	Pass	
Potassium	M13-De05488	NCP	%	92			70-130	Pass	
Sodium	M13-De05257	CP	%	110			70-130	Pass	
Spike - % Recovery	•							•	
				Result 1					
Sulphate (as S)	M13-De05258	CP	%	102			70-130	Pass	
Spike - % Recovery				· · · ·					
Total Nitrogen Set (as N)				Result 1					
Nitrate & Nitrite (as N)	M13-De05258	CP	%	80			70-130	Pass	
Spike - % Recovery					·				
Heavy Metals				Result 1					
Mercury (filtered)	M13-De05258	CP	%	75			70-130	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Arsenic (filtered)	M13-De05262	CP	%	93			70-130	Pass	
Cadmium (filtered)	M13-De05262	CP	%	83			70-130	Pass	
Copper (filtered)	M13-De05262	CP	%	82			70-130	Pass	
Lead (filtered)	M13-De05262	CP	%	82			70-130	Pass	
Manganese (filtered)	M13-De05262	CP	%	84			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
				Result 1	Result 2	RPD			
Chloride	M13-De05257	CP	mg/L	1000	1000	<1	30%	Pass	
Sulphate (as S)	M13-De05257	СР	mg/L	45	45	<1	30%	Pass	
Duplicate									
Total Nitrogen Set (as N)				Result 1	Result 2	RPD			
Nitrate & Nitrite (as N)	M13-De05257	CP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Total Kjeldahl Nitrogen (as N)	M13-De05257	СР	mg/L	0.8	0.3	94	30%	Fail	Q15
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Mercury (filtered)	M13-De05257	CP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Duplicate	·				·				
Alkali Metals				Result 1	Result 2	RPD			
Calcium	M13-De05257	CP	mg/L	1.3	1.4	1.0	30%	Pass	
Magnesium	M13-De05257	CP	mg/L	43	43	1.0	30%	Pass	
Potassium	M13-De05257	CP	mg/L	3.1	3.5	11	30%	Pass	
FUIDSIUIII									1

Duplicate									
·				Result 1	Result 2	RPD			
Chloride	M13-De05258	CP	mg/L	2000	1900	<1	30%	Pass	
Conductivity (at 25°C)	M13-De05258	CP	uS/cm	6100	6200	2.0	30%	Pass	
Sulphate (as S)	M13-De05258	CP mg/L		110	110	<1	30%	Pass	
Duplicate									
Total Nitrogen Set (as N)				Result 1	Result 2	RPD			
Nitrate & Nitrite (as N)	te & Nitrite (as N) M13-De05258 CP mg/L		0.08	0.07	17	30%	Pass		
Duplicate									
				Result 1	Result 2	RPD			
Total Dissolved Solids	M13-De05262	CP	mg/L	3700	3900	5.0	30%	Pass	
Duplicate							•		
Heavy Metals				Result 1	Result 2	RPD			
Arsenic (filtered)	M13-De05262	CP	mg/L	0.001	0.002	23	30%	Pass	
Cadmium (filtered)	M13-De05262	CP	mg/L	0.0003	0.0002	22	30%	Pass	
Chromium (filtered)	M13-De05262	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Copper (filtered)	M13-De05262	CP	mg/L	0.091	0.089	1.5	30%	Pass	
Lead (filtered)	M13-De05262	CP	mg/L	0.012	0.012	2.6	30%	Pass	
Manganese (filtered)	M13-De05262	CP	mg/L	0.057	0.056	1.9	30%	Pass	
Nickel (filtered)	M13-De05262	CP	mg/L	0.020	0.020	<1	30%	Pass	
Zinc (filtered)	M13-De05262	CP	mg/L	0.047	0.047	<1	30%	Pass	
Duplicate			-						
Total Nitrogen Set (as N)				Result 1	Result 2	RPD			
Nitrate & Nitrite (as N)	M13-De05265	CP	mg/L	6.1	6.1	1.0	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Organic samples had Teflon liners	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Description

Code

Q15 The RPD reported passes Eurofins | mgt's Acceptance Criteria as stipulated in SOP 05. Refer to Glossary Page of this report for further details

Authorised By

Mark Rodriquez Emily Rosenberg Huong Le Client Services Senior Analyst-Metal (VIC) Senior Analyst-Inorganic (VIC)

Glenn Jackson Laboratory Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Stass Environmental PO BOX 11 KALAMUNDA WA 6926

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:

Andre Stasikowski

Report
Client Reference
Received Date

412062-W OPALVALE CHITTY OV06 Mar 17, 2014

Client Sample ID			SE1	SE2	SE3	SE4
Sample Matrix			Water	Water	Water	Water
Eurofins mgt Sample No.			M14-Ma12755	M14-Ma12756	M14-Ma12757	M14-Ma12758
Date Sampled			Mar 14, 2014	Mar 14, 2014	Mar 14, 2014	Mar 14, 2014
Test/Reference	LOR	Unit				
Chloride	1	mg/L	1100	4200	2400	130
Conductivity (at 25°C)	10	uS/cm	3400	13000	7300	400
рН	0.1	units	3.6	4.1	3.4	5.8
Sulphate (as S)	5	mg/L	47	190	160	< 5
Total Dissolved Solids	10	mg/L	1900	7200	4000	240
Total Nitrogen Set (as N)						
Nitrate & Nitrite (as N)	0.05	mg/L	< 0.05	0.06	2.1	7.2
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	< 0.2	< 0.2	< 0.2	0.7
Total Nitrogen (as N)	0.2	mg/L	< 0.2	< 0.2	2.1	7.9
Heavy Metals						
Arsenic (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Cadmium (filtered)	0.0002	mg/L	0.0003	0.0021	0.022	< 0.0002
Chromium (filtered)	0.001	mg/L	< 0.001	0.002	0.001	< 0.001
Copper (filtered)	0.001	mg/L	0.39	1.2	0.15	0.004
Lead (filtered)	0.001	mg/L	0.090	0.47	0.043	< 0.001
Manganese (filtered)	0.005	mg/L	0.12	1.1	1.1	0.014
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel (filtered)	0.001	mg/L	0.096	1.0	2.6	0.008
Zinc (filtered)	0.001	mg/L	0.14	0.92	2.6	0.022
Alkali Metals						
Calcium	0.5	mg/L	^{G01} < 5	16	5.8	^{G01} < 5
Magnesium	0.5	mg/L	42	310	240	11
Potassium	0.5	mg/L	^{G01} < 5	43	47	^{G01} < 5
Sodium	0.5	mg/L	630	2100	1200	69

Client Sample ID Sample Matrix Eurofins mgt Sample No.			SE5 Water M14-Ma12759	SE6 Water M14-Ma12760	SE7 Water M14-Ma12761	SE8 Water M14-Ma12762
Date Sampled			Mar 14, 2014	Mar 14, 2014	Mar 14, 2014	Mar 14, 2014
Test/Reference	LOR	Unit				
Chloride	1	mg/L	3200	2600	4100	160
Conductivity (at 25°C)	10	uS/cm	9800	8200	11000	630
рН	0.1	units	5.2	4.5	3.7	6.5
Sulphate (as S)	5	mg/L	140	120	62	17
Total Dissolved Solids	10	mg/L	5500	4600	6000	420

Client Sample ID Sample Matrix			SE5 Water	SE6 Water	SE7 Water	SE8 Water
•						
Eurofins mgt Sample No.			M14-Ma12759	M14-Ma12760	M14-Ma12761	M14-Ma12762
Date Sampled			Mar 14, 2014	Mar 14, 2014	Mar 14, 2014	Mar 14, 2014
Test/Reference	LOR	Unit				
Total Nitrogen Set (as N)						
Nitrate & Nitrite (as N)	0.05	mg/L	0.06	0.12	0.82	7.8
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	< 0.2	< 0.2	< 0.2	0.8
Total Nitrogen (as N)	0.2	mg/L	< 0.2	< 0.2	0.8	8.6
Heavy Metals						
Arsenic (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Cadmium (filtered)	0.0002	mg/L	0.0005	< 0.0002	< 0.0002	< 0.0002
Chromium (filtered)	0.001	mg/L	0.001	0.004	0.003	< 0.001
Copper (filtered)	0.001	mg/L	0.043	0.062	0.096	0.002
Lead (filtered)	0.001	mg/L	0.011	0.013	0.010	< 0.001
Manganese (filtered)	0.005	mg/L	1.3	0.042	0.13	< 0.005
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel (filtered)	0.001	mg/L	0.31	0.017	0.040	< 0.001
Zinc (filtered)	0.001	mg/L	0.35	0.057	0.086	0.006
Alkali Metals						
Calcium	0.5	mg/L	7.4	^{G01} < 5	5.4	^{G01} < 5
Magnesium	0.5	mg/L	170	110	190	^{G01} < 5
Potassium	0.5	mg/L	26	7.7	^{G01} < 5	^{G01} < 5
Sodium	0.5	mg/L	1800	1500	2200	140

Client Sample ID Sample Matrix Eurofins mgt Sample No.			SE9 Water M14-Ma12763	NG2 Water M14-Ma12764
Date Sampled			Mar 14, 2014	Mar 14, 2014
Test/Reference	LOR	Unit		
Chloride	1	mg/L	98	130
Conductivity (at 25°C)	10	uS/cm	790	890
рН	0.1	units	5.3	5.3
Sulphate (as S)	5	mg/L	69	65
Total Dissolved Solids	10	mg/L	530	580
Total Nitrogen Set (as N)				
Nitrate & Nitrite (as N)	0.05	mg/L	7.9	7.8
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	0.6	0.8
Total Nitrogen (as N)	0.2	mg/L	8.5	8.6
Heavy Metals				
Arsenic (filtered)	0.001	mg/L	< 0.001	< 0.001
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002
Chromium (filtered)	0.001	mg/L	< 0.001	0.001
Copper (filtered)	0.001	mg/L	0.004	0.004
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001
Manganese (filtered)	0.005	mg/L	0.015	0.026
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001
Nickel (filtered)	0.001	mg/L	0.002	0.003
Zinc (filtered)	0.001	mg/L	0.032	0.039

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			SE9 Water M14-Ma12763 Mar 14, 2014	NG2 Water M14-Ma12764 Mar 14, 2014
Test/Reference	LOR	Unit		
Alkali Metals				
Calcium	0.5	mg/L	^{G01} < 5	^{G01} < 5
Magnesium	0.5	mg/L	^{G01} < 5	^{G01} < 5
Potassium	0.5	mg/L	^{G01} < 5	^{G01} < 5
Sodium	0.5	mg/L	170	190

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Chloride	Melbourne	Mar 17, 2014	28 Day
- Method: MGT 1100A			
Conductivity (at 25°C)	Melbourne	Mar 17, 2014	28 Day
- Method: APHA 2510 Conductivity by Direct Measurement			
pH	Melbourne	Mar 18, 2014	0 Hours
- Method: APHA 4500 pH by Direct Measurement - ** Samples analysed outside holding time. Analysis should	be performed in situ. Result	is for reference only.	
Sulphate (as S)	Melbourne	Mar 17, 2014	28 Day
- Method: In house MGT1110A (SO4 by Discrete Analyser)			
Total Dissolved Solids	Melbourne	Mar 21, 2014	7 Day
- Method: APHA 2540C Total Dissolved Solids			
Total Nitrogen Set (as N)			
Nitrate & Nitrite (as N)	Melbourne	Mar 18, 2014	28 Day
- Method: APHA 4500-NO3/NO2 Nitrate-Nitrite Nitrogen by FIA			
Total Kjeldahl Nitrogen (as N)	Melbourne	Mar 18, 2014	7 Day
- Method: APHA 4500 TKN			
Heavy Metals (filtered)	Melbourne	Mar 17, 2014	180 Day
- Method: USEPA 6020 Heavy Metals			
Mobil Metals : Metals M15	Melbourne	Mar 17, 2014	28 Day
- Method: USEPA 6010/6020 Heavy Metals & USEPA 7470/71 Mercury			
Alkali Metals	Melbourne	Mar 17, 2014	180 Day
- Method: USEPA 6010 Alkali Metals			

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 **Sydney** Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Address:	ompany Name: Stass Environmental ddress: PO BOX 11 KALAMUNDA WA 6926 lient Job No.: OPALVALE CHITTY OV06				F	Order No.:Report #:412062Phone:(08)6363 5276Fax:(08)9454 7615							Received: Due: Priority: Contact Name:				Mar 17, 2014 9:06 AM Mar 24, 2014 5 Day Andre Stasikowski							
																			E	Eurof	ins	mgt	Clien	t Manager: Natalie Krasselt
		Sample Detail			Arsenic (filtered)	Cadmium (filtered)	Calcium	Chloride	Chromium (filtered)	Conductivity (at 25°C)	Copper (filtered)	Lead (filtered)	Magnesium	Manganese (filtered)	Mercury (filtered)	Nickel (filtered)	рН	Potassium	Sodium	Sulphate (as S)	Total Dissolved Solids	Zinc (filtered)	Total Nitrogen Set (as N)	
	ere analysis is o																							
	oratory - NATA		4271		X	X	X	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	1
	atory - NATA Sit ratory - NATA S							<u> </u>	<u> </u>															1
External Labor		110 # 207 54						<u> </u>																
Sample ID	Sample Date	Sampling Time	Matrix	LAB ID																				
SE1	Mar 14, 2014		Water	M14-Ma12755	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	1
SE2	Mar 14, 2014		Water	M14-Ma12756	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	1
SE3	Mar 14, 2014		Water	M14-Ma12757	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	1
SE4	Mar 14, 2014		Water	M14-Ma12758	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	l
SE5	Mar 14, 2014		Water	M14-Ma12759	Х	-	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	l
SE6	Mar 14, 2014		Water	M14-Ma12760	Х	_	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	l
SE7	Mar 14, 2014		Water	M14-Ma12761	Х	-	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	l
SE8	Mar 14, 2014		Water	M14-Ma12762	Х	-	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	l
SE9	Mar 14, 2014		Water	M14-Ma12763	Х	-	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Ì
NG2	Mar 14, 2014		Water	M14-Ma12764	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	i

Eurofins | mgt Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual PQLs are matrix dependant. Quoted PQLs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Acknowledgment.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

UNITS

mg/kg: milligrams per Kilogram	mg/I: milligrams per litre
ug/l: micrograms per litre	ppm: Parts per million
ppb: Parts per billion	%: Percentage
org/100ml: Organisms per 100 millilitres	NTU: Units
MPN/100mL: Most Probable Number of organisms per 100 millilitres	

TERMS

IERINIS	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery
CRM	Certified Reference Material - reported as percent recovery
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
ASLP	Australian Standard Leaching Procedure (AS4439.3)
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within
TEQ	Toxic Equivalency Quotient

QC - ACCEPTANCE CRITERIA

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

 $Surrogate \ Recoveries: Recoveries \ must \ lie \ between \ 50-150\% \ - \ Phenols \ 20-130\%.$

QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxophene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data.

Content of the second s

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Chloride	mg/L	< 1	1	Pass	
Sulphate (as S)	mg/L	< 5	5	Pass	
Total Dissolved Solids	mg/L	< 10	10	Pass	
Method Blank					
Total Nitrogen Set (as N)					
Nitrate & Nitrite (as N)	mg/L	< 0.05	0.05	Pass	
Total Kjeldahl Nitrogen (as N)	mg/L	< 0.2	0.2	Pass	
Method Blank					
Heavy Metals					
Arsenic (filtered)	mg/L	< 0.001	0.001	Pass	
Cadmium (filtered)	mg/L	< 0.0002	0.0002	Pass	
Chromium (filtered)	mg/L	< 0.001	0.001	Pass	
Copper (filtered)	mg/L	< 0.001	0.001	Pass	
Lead (filtered)	mg/L	< 0.001	0.001	Pass	
Manganese (filtered)	mg/L	< 0.005	0.005	Pass	
Mercury (filtered)	mg/L	< 0.0001	0.0001	Pass	
Nickel (filtered)	mg/L	< 0.001	0.001	Pass	
Zinc (filtered)	mg/L	< 0.001	0.001	Pass	
Method Blank	1 3				
Alkali Metals					
Calcium	mg/L	< 0.5	0.5	Pass	
Magnesium	mg/L	< 0.5	0.5	Pass	
Potassium	mg/L	< 0.5	0.5	Pass	
Sodium	mg/L	< 0.5	0.5	Pass	
LCS - % Recovery		, 0.0	0.0	1 400	
Chloride	%	104	70-130	Pass	
Sulphate (as S)	%	100	70-130	Pass	
LCS - % Recovery	,,,			1 400	
Total Nitrogen Set (as N)					
Nitrate & Nitrite (as N)	%	110	70-130	Pass	
Total Kjeldahl Nitrogen (as N)	%	87	70-130	Pass	
LCS - % Recovery	,,,	0.		1 400	
Heavy Metals					
Arsenic (filtered)	%	93	80-120	Pass	
Cadmium (filtered)	%	96	80-120	Pass	
Chromium (filtered)	%	92	80-120	Pass	
Copper (filtered)	%	92	80-120	Pass	
Lead (filtered)	%	94	80-120	Pass	
Manganese (filtered)	%	95	80-120	Pass	
Mercury (filtered)	%	82	70-130	Pass	
Nickel (filtered)	%	93	80-120	Pass	
Zinc (filtered)	%	96	80-120	Pass	
LCS - % Recovery	/0		00-120	1 435	
Alkali Metals					
Calcium	%	86	70-130	Pass	
Magnesium	%	86	70-130	Pass	
Potassium	%	84	70-130	Pass	
Sodium	%	80	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery				-					
				Result 1					
Sulphate (as S)	M14-Ma15973	NCP	%	87			70-130	Pass	
Spike - % Recovery				1	1 1				
Total Nitrogen Set (as N)	-	,		Result 1					
Nitrate & Nitrite (as N)	M14-Ma11876	NCP	%	70			70-130	Pass	
Spike - % Recovery					1		I	1	
Heavy Metals		,		Result 1					
Mercury (filtered)	M14-Ma13777	NCP	%	81			70-130	Pass	
Spike - % Recovery								1	
Alkali Metals				Result 1					
Calcium	M14-Ma12756	CP	%	93			70-130	Pass	
Magnesium	M14-Ma12756	CP	%	109			70-130	Pass	
Potassium	M14-Ma12756	CP	%	93			70-130	Pass	
Sodium	M14-Ma12756	CP	%	114			70-130	Pass	
Spike - % Recovery				-	I I			1	
		,		Result 1					
Chloride	M14-Ma12757	CP	%	98			70-130	Pass	
Spike - % Recovery				-					
Heavy Metals				Result 1					
Arsenic (filtered)	M14-Ma12763	CP	%	86			70-130	Pass	
Cadmium (filtered)	M14-Ma12763	CP	%	84			70-130	Pass	
Chromium (filtered)	M14-Ma12763	CP	%	89			70-130	Pass	
Copper (filtered)	M14-Ma12763	CP	%	80			70-130	Pass	
Lead (filtered)	M14-Ma12763	CP	%	88			70-130	Pass	
Manganese (filtered)	M14-Ma12763	CP	%	92			70-130	Pass	
Nickel (filtered)	M14-Ma12763	CP	%	79			70-130	Pass	
Zinc (filtered)	M14-Ma12763	CP	%	101			70-130	Pass	
Spike - % Recovery				1				1	
Total Nitrogen Set (as N)		,		Result 1			_		
Total Kjeldahl Nitrogen (as N)	M14-Ma12764	CP	%	81			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate					1 1		1		
				Result 1	Result 2	RPD			
Total Dissolved Solids	M14-Ma12755	СР	mg/L	1900	2100	5.0	30%	Pass	
Duplicate	1	1		1					
Total Nitrogen Set (as N)				Result 1	Result 2	RPD			
Nitrate & Nitrite (as N)	M14-Ma12533	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Duplicate			<u> </u>				-		
Alkali Metals				Result 1	Result 2	RPD			
Calcium	M14-Ma12756	СР	mg/L	16	16	1.0	30%	Pass	
Magnesium	M14-Ma12756	CP	mg/L	310	310	1.0	30%	Pass	
Potassium	M14-Ma12756	CP	mg/L	43	43	<1	30%	Pass	
Sodium	M14-Ma12756	CP	mg/L	2100	2000	3.0	30%	Pass	
Duplicate			<u> </u>						
				Result 1	Result 2	RPD			
								_	
Chloride	M14-Ma12757	СР	mg/L	2400	2400	1.1	30%	Pass	
Chloride Sulphate (as S)	M14-Ma12757 M14-Ma12757	CP CP	mg/L mg/L	2400 160		<u> </u>	30%	Pass Pass	
		1 1			2400 160				
Sulphate (as S)		1 1							
Sulphate (as S) Duplicate Heavy Metals		1 1		160 Result 1	160 Result 2	<1			
Sulphate (as S) Duplicate Heavy Metals Arsenic (filtered)	M14-Ma12757	СР	mg/L	160 Result 1 < 0.001	160	<1 RPD	30%	Pass	
Sulphate (as S) Duplicate Heavy Metals	M14-Ma12757 M14-Ma12763	CP CP	mg/L mg/L	160 Result 1	160 Result 2 < 0.001	<1 RPD <1	30% 30%	Pass Pass	

Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Lead (filtered)	M14-Ma12763	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Manganese (filtered)	M14-Ma12763	CP	mg/L	0.015	0.016	4.7	30%	Pass	
Mercury (filtered)	M14-Ma12763	CP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel (filtered)	M14-Ma12763	CP	mg/L	0.002	0.002	2.8	30%	Pass	
Zinc (filtered)	M14-Ma12763	CP	mg/L	0.032	0.034	5.6	30%	Pass	
Duplicate									
Total Nitrogen Set (as N) Result 1 Result 2 RPD									
Total Kjeldahl Nitrogen (as N)	M14-Ma12764	CP	mg/L	0.8	0.9	6.4	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	No
Organic samples had Teflon liners	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code	Description
G01	The LORs have been raised due to matrix interference

Authorised By

Natalie Krasselt Emily Rosenberg Huong Le Client Services Senior Analyst-Metal (VIC) Senior Analyst-Inorganic (VIC)

Glenn Jackson Laboratory Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Stass Environmental PO BOX 11 KALAMUNDA WA 6926

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:	
------------	--

Andre Stasikowski

Report
Client Reference
Received Date

422159-W OPALVALE CHITTY OV06 Jun 18, 2014

Client Sample ID			SE1	SE2	SE3	SE4
Sample Matrix			Water	Water	Water	Water
Eurofins mgt Sample No.			M14-Jn14082	M14-Jn14083	M14-Jn14084	M14-Jn14085
Date Sampled			Jun 17, 2014	Jun 17, 2014	Jun 17, 2014	Jun 17, 2014
Test/Reference	LOR	Unit				
		-				
Chloride	1	mg/L	1000	4400	2900	160
Conductivity (at 25°C)	10	uS/cm	3900	14000	11000	680
рН	0.1	units	3.6	3.7	2.9	5.1
Sulphate (as S)	5	mg/L	41	180	150	7.3
Total Dissolved Solids	10	mg/L	1800	7300	4900	330
Total Nitrogen Set (as N)						
Nitrate & Nitrite (as N)	0.05	mg/L	< 0.05	0.06	0.27	7.4
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	< 0.2	3.8	3.0	3.6
Total Nitrogen (as N)	0.2	mg/L	< 0.2	3.9	3.3	11
Heavy Metals						
Arsenic (filtered)	0.001	mg/L	< 0.001	< 0.005	< 0.005	< 0.001
Cadmium (filtered)	0.0002	mg/L	0.0003	0.0018	0.039	< 0.0002
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.005	< 0.005	< 0.001
Copper (filtered)	0.001	mg/L	0.35	1.6	0.051	0.010
Lead (filtered)	0.001	mg/L	0.086	0.61	0.11	< 0.001
Manganese (filtered)	0.005	mg/L	0.069	1.1	1.4	0.015
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel (filtered)	0.001	mg/L	0.069	1.1	4.2	0.011
Zinc (filtered)	0.001	mg/L	0.077	0.91	3.8	0.020
Alkali Metals						
Calcium	0.5	mg/L	1.1	21	4.9	0.8
Magnesium	0.5	mg/L	39	390	310	12
Potassium	0.5	mg/L	2.6	52	69	1.4
Sodium	0.5	mg/L	620	2100	1400	99

Client Sample ID			SE5 Water	SE6 Water	SE7 Water	SE8 Water	
Sample Matrix			1				
Eurofins mgt Sample No.			M14-Jn14086	M14-Jn14087	M14-Jn14088	M14-Jn14089	
Date Sampled			Jun 17, 2014	Jun 17, 2014	Jun 17, 2014	Jun 17, 2014	
Test/Reference	LOR	Unit		-			
		1					
Chloride	1	mg/L	1100	2800	3900	220	
Conductivity (at 25°C)	10	uS/cm	3900	9300	12000	1100	
рН	0.1	units	5.1	4.2	3.7	5.6	
Sulphate (as S)	5	mg/L	52	100	58	11	
Total Dissolved Solids	10	mg/L	1800	4300	5800	520	
Total Nitrogen Set (as N)							
Nitrate & Nitrite (as N)	0.05	mg/L	0.12	0.20	0.91	7.0	
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	2.8	2.9	9.4	0.3	
Total Nitrogen (as N)	0.2	mg/L	2.9	3.1	10	7.3	
Heavy Metals							
Arsenic (filtered)	0.001	mg/L	< 0.001	0.001	< 0.005	< 0.001	
Cadmium (filtered)	0.0002	mg/L	0.0010	< 0.0002	< 0.001	< 0.0002	
Chromium (filtered)	0.001	mg/L	< 0.001	0.003	< 0.005	< 0.001	
Copper (filtered)	0.001	mg/L	0.008	0.057	0.097	0.006	
Lead (filtered)	0.001	mg/L	< 0.001	0.015	< 0.025	< 0.001	
Manganese (filtered)	0.005	mg/L	1.6	0.044	0.095	0.008	
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001	
Nickel (filtered)	0.001	mg/L	0.44	0.020	0.047	0.004	
Zinc (filtered)	0.001	mg/L	0.39	0.040	0.074	0.009	
Alkali Metals							
Calcium	0.5	mg/L	2.9	2.8	6.7	< 0.5	
Magnesium	0.5	mg/L	74	130	200	2.1	
Potassium	0.5	mg/L	18	9.5	6.2	2.4	
Sodium	0.5	mg/L	590	1600	2100	100	

Client Sample ID Sample Matrix			SE9 Water	NG2 Water
Eurofins mgt Sample No.			M14-Jn14090	M14-Jn14091
Date Sampled			Jun 17, 2014	Jun 17, 2014
Test/Reference	LOR	Unit		
Chloride	1	mg/L	58	110
Conductivity (at 25°C)	10	uS/cm	730	710
pH	0.1	units	5.3	6.0
Sulphate (as S)	5	mg/L	66	9.9
Total Dissolved Solids	10	mg/L	450	360
Total Nitrogen Set (as N)				
Nitrate & Nitrite (as N)	0.05	mg/L	7.9	7.1
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	3.5	3.2
Total Nitrogen (as N)	0.2	mg/L	11	10
Heavy Metals				
Arsenic (filtered)	0.001	mg/L	< 0.001	< 0.001
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001
Copper (filtered)	0.001	mg/L	0.004	0.003
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001
Manganese (filtered)	0.005	mg/L	< 0.005	< 0.005

Client Sample ID Sample Matrix Eurofins mgt Sample No.			SE9 Water M14-Jn14090	NG2 Water M14-Jn14091
Date Sampled			Jun 17, 2014	Jun 17, 2014
Test/Reference	LOR	Unit		
Heavy Metals				
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001
Nickel (filtered)	0.001	mg/L	0.001	0.002
Zinc (filtered)	0.001	mg/L	0.013	0.006
Alkali Metals				
Calcium	0.5	mg/L	< 0.5	< 0.5
Magnesium	0.5	mg/L	2.1	2.1
Potassium	0.5	mg/L	1.7	2.3
Sodium	0.5	mg/L	120	110

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Chloride	Melbourne	Jun 18, 2014	28 Day
- Method: MGT 1100A			
Conductivity (at 25°C)	Melbourne	Jun 18, 2014	28 Day
- Method: APHA 2510 Conductivity by Direct Measurement			
pH	Melbourne	Jun 18, 2014	0 Hours
- Method: APHA 4500 pH by Direct Measurement - ** Samples analysed outside holding time. Analysis should	be performed in situ. Result	s for reference only.	
Sulphate (as S)	Melbourne	Jun 18, 2014	28 Day
- Method: In house MGT1110A (SO4 by Discrete Analyser)			
Total Dissolved Solids	Melbourne	Jun 18, 2014	7 Day
- Method: APHA 2540C Total Dissolved Solids			
Total Nitrogen Set (as N)			
Nitrate & Nitrite (as N)	Melbourne	Jun 18, 2014	28 Day
- Method: APHA 4500-NO3/NO2 Nitrate-Nitrite Nitrogen by FIA			
Total Kjeldahl Nitrogen (as N)	Melbourne	Jun 18, 2014	7 Day
- Method: APHA 4500 TKN			
Heavy Metals (filtered)	Melbourne	Jun 18, 2014	180 Day
- Method: USEPA 6020 Heavy Metals			
Mobil Metals : Metals M15	Melbourne	Jun 18, 2014	28 Day
- Method: USEPA 6010/6020 Heavy Metals & USEPA 7470/71 Mercury			
Alkali Metals	Melbourne	Jun 18, 2014	180 Day
- Method: USEPA 6010 Alkali Metals			

Stass Environmental

PO BOX 11

WA 6926

KALAMUNDA

Company Name:

Address:

422159

(08)6363 5276

(08)9454 7615

3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Received:

Priority:

Due:

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

ABN - 50 005 085 521	e.mail : EnviroSales@eurofins.com.au	web : www.eurofins.com.au
----------------------	--------------------------------------	---------------------------

Order No.:

Report #:

Phone:

Fax:

m.au	NATA # 1261 Site # 1254 & 14271

Melbourne

Jun 18, 2014 8:38 AM Jun 25, 2014 5 Day

Contact Name: Andre Stasikowski

Client Job N	o.: OPALVA	LE CHITTY OV	06																					
					-	-	-	-	-	-	-	-	-		-	-	-	-	1	Euro	fins	mgt	Clier	nt Manager: Natalie Krasselt
		Sample Detail			Arsenic (filtered)	Cadmium (filtered)	Calcium	Chloride	Chromium (filtered)	Conductivity (at 25°C)	Copper (filtered)	Lead (filtered)	Magnesium	Manganese (filtered)	Mercury (filtered)	Nickel (filtered)	рH	Potassium	Sodium	Sulphate (as S)	Total Dissolved Solids	Zinc (filtered)	Total Nitrogen Set (as N)	
Laboratory wh	ere analysis is co	onducted																						
Melbourne Lat	ooratory - NATA S	Site # 1254 & 14	4271		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
	atory - NATA Site																							
Brisbane Labo	oratory - NATA Sit	te # 20794																						-
External Labor				1				<u> </u>					-				<u> </u>							-
Sample ID	Sample Date	Sampling Time	Matrix	LAB ID																				
SE1	Jun 17, 2014		Water	M14-Jn14082	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
SE2	Jun 17, 2014		Water	M14-Jn14083	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	_
SE3	Jun 17, 2014		Water	M14-Jn14084	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	_
SE4	Jun 17, 2014		Water	M14-Jn14085	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	_
SE5	Jun 17, 2014		Water	M14-Jn14086	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
SE6	Jun 17, 2014		Water	M14-Jn14087	Х	-	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
SE7	Jun 17, 2014		Water	M14-Jn14088	Х	-	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
SE8	Jun 17, 2014		Water	M14-Jn14089	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
SE9	Jun 17, 2014		Water	M14-Jn14090	Х	-	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
NG2	Jun 17, 2014		Water	M14-Jn14091	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	

Eurofins | mgt Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual PQLs are matrix dependant. Quoted PQLs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Acknowledgment.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

UNITS

mg/kg: milligrams per Kilogram	mg/I: milligrams per litre
ug/l: micrograms per litre	ppm: Parts per million
ppb: Parts per billion	%: Percentage
org/100ml: Organisms per 100 millilitres	NTU: Units
MPN/100mL: Most Probable Number of organisms per 100 millilitres	

TERMS

IERINIS	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery
CRM	Certified Reference Material - reported as percent recovery
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
ASLP	Australian Standard Leaching Procedure (AS4439.3)
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within
TEQ	Toxic Equivalency Quotient

QC - ACCEPTANCE CRITERIA

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

 $Surrogate \ Recoveries: Recoveries \ must \ lie \ between \ 50-150\% \ - \ Phenols \ 20-130\%.$

QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxophene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data.

eurofins mgt

Quality Control Results

Test	Units	Result 1	Acceptance Limits	e Pass Limits	Qualifying Code
Method Blank					
Chloride	mg/L	< 1	1	Pass	
Sulphate (as S)	mg/L	< 5	5	Pass	
Total Dissolved Solids	mg/L	< 10	10	Pass	
Method Blank					
Total Nitrogen Set (as N)					
Nitrate & Nitrite (as N)	mg/L	< 0.05	0.05	Pass	
Total Kjeldahl Nitrogen (as N)	mg/L	< 0.2	0.2	Pass	
Method Blank					
Heavy Metals					
Arsenic (filtered)	mg/L	< 0.001	0.001	Pass	
Cadmium (filtered)	mg/L	< 0.0002	0.0002	Pass	
Chromium (filtered)	mg/L	< 0.001	0.001	Pass	
Copper (filtered)	mg/L	< 0.001	0.001	Pass	
Lead (filtered)	mg/L	< 0.001	0.001	Pass	
Manganese (filtered)	mg/L	< 0.005	0.005	Pass	
Mercury (filtered)	mg/L	< 0.0001	0.0001	Pass	
Nickel (filtered)	mg/L	< 0.001	0.001	Pass	
Zinc (filtered)	mg/L	< 0.001	0.001	Pass	
Method Blank	1119/2	40.001	0.001	1 400	
Alkali Metals					
Calcium	mg/L	< 0.5	0.5	Pass	
Magnesium	mg/L	< 0.5	0.5	Pass	
Potassium	mg/L	< 0.5	0.5	Pass	
Sodium	mg/L	< 0.5	0.5	Pass	
LCS - % Recovery	ing/L	0.0	0.0	1 400	
Chloride	%	103	70-130	Pass	
Sulphate (as S)	%	108	70-130	Pass	
LCS - % Recovery	70	100	10100	1 400	
Total Nitrogen Set (as N)					
Nitrate & Nitrite (as N)	%	110	70-130	Pass	
Total Kjeldahl Nitrogen (as N)	%	86	70-130	Pass	
LCS - % Recovery	70	00	70-130	1 833	
Heavy Metals					
Arsenic (filtered)	%	97	80-120	Pass	
Cadmium (filtered)	%	97	80-120	Pass	
Chromium (filtered)	%	90	80-120	Pass	
Copper (filtered)	%	94	80-120	Pass	
Lead (filtered)	%	100	80-120	Pass	
Manganese (filtered)	%	90	80-120	Pass	
Manganese (intered) Mercury (filtered)	%	102	70-130	Pass	
Nickel (filtered)	%	93	80-120	Pass	
Zinc (filtered)	%	93	80-120	Pass	
LCS - % Recovery	70	30	00-120	Fass	
Alkali Metals	0/	00	70.400	Beer	
Calcium	%	99	70-130	Pass	
Magnesium	%	103	70-130	Pass	
Potassium	%	99	70-130	Pass	
Sodium	%	101	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery					-				
Total Nitrogen Set (as N)				Result 1					
Nitrate & Nitrite (as N)	M14-Jn13515	NCP	%	111			70-130	Pass	
Total Kjeldahl Nitrogen (as N)	M14-Jn14082	CP	%	70			70-130	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Mercury (filtered)	M14-Jn14082	CP	%	93			70-130	Pass	
Spike - % Recovery									
Alkali Metals				Result 1					
Calcium	M14-Jn14759	NCP	%	101			70-130	Pass	
Magnesium	M14-Jn14759	NCP	%	99			70-130	Pass	
Potassium	M14-Jn14759	NCP	%	93			70-130	Pass	
Spike - % Recovery									
				Result 1					
Chloride	M14-Jn14086	CP	%	116			70-130	Pass	
Sulphate (as S)	M14-Jn14086	CP	%	111			70-130	Pass	
Spike - % Recovery									
				Result 1					
Chloride	M14-Jn14088	CP	%	111			70-130	Pass	
Spike - % Recovery		0.	70	1			10.00	1 0.00	
Heavy Metals				Result 1					
Arsenic (filtered)	M14-Jn14091	СР	%	92			70-130	Pass	
Cadmium (filtered)	M14-Jn14091	CP	%	92			70-130	Pass	
Chromium (filtered)	M14-Jn14091	CP	%	84			70-130	Pass	
Copper (filtered)	M14-Jn14091	CP	%	88			70-130	Pass	
Lead (filtered)	M14-Jn14091	CP	%	96			70-130	Pass	
Manganese (filtered)	M14-Jn14091	CP	%	86			70-130	Pass	
Nickel (filtered)	M14-Jn14091	CP	%	85			70-130	Pass	
Zinc (filtered)	M14-Jn14091	CP	%	90			70-130	Pass	
Spike - % Recovery	10114-51114051		70				70-130	1 835	
Alkali Metals				Result 1	I			[
Sodium	M14-Jn14091	CP	%	100			70-130	Pass	
Test	Lab Sample ID	QA	Units	Result 1			Acceptance	Pass	Qualifying
Develies of a		Source					Limits	Limits	Code
Duplicate				Deput 4	Result 2	000			
Total Nitrogen Set (as N)	M14 Indacas	NOD	m a /l			RPD	2007	Bass	
Nitrate & Nitrite (as N)	M14-Jn13525	NCP	mg/L	7.9	8.0	1.0	30%	Pass	
Total Kjeldahl Nitrogen (as N)	M14-Jn14082	СР	mg/L	< 0.2	< 0.2	<1	30%	Pass	
Duplicate				Decult	Desult 0	000	1		
Heavy Metals	M44 1-44000	0.5		Result 1	Result 2	RPD	2001	Drit	
Mercury (filtered)	M14-Jn14082	CP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Duplicate				Dec. 11.6	Durke	000			
		0.5		Result 1	Result 2	RPD	0.001		
Chloride	M14-Jn14086	CP	mg/L	1100	1100	<1	30%	Pass	
Sulphate (as S)	M14-Jn14086	CP	mg/L	52	52	1.1	30%	Pass	
Total Dissolved Solids	M14-Jn14086	CP	mg/L	1800	1900	2.0	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Chloride	M14-Jn14091	CP	mg/L	110	110	<1	30%	Pass	
Sulphate (as S)	M14-Jn14091	CP	mg/L	9.9	9.8	<1	30%	Pass	

Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic (filtered)	M14-Jn14091	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cadmium (filtered)	M14-Jn14091	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium (filtered)	M14-Jn14091	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Copper (filtered)	M14-Jn14091	CP	mg/L	0.003	0.003	<1	30%	Pass	
Lead (filtered)	M14-Jn14091	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Manganese (filtered)	M14-Jn14091	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Nickel (filtered)	M14-Jn14091	CP	mg/L	0.002	0.002	2.8	30%	Pass	
Zinc (filtered)	M14-Jn14091	CP	mg/L	0.006	0.006	2.9	30%	Pass	
Duplicate									
Alkali Metals				Result 1	Result 2	RPD			
Calcium	M14-Jn14091	CP	mg/L	< 0.5	< 0.5	<1	30%	Pass	
Magnesium	M14-Jn14091	CP	mg/L	2.1	2.1	<1	30%	Pass	
Potassium	M14-Jn14091	CP	mg/L	2.3	2.4	2.0	30%	Pass	
Sodium	M14-Jn14091	CP	mg/L	110	110	2.0	30%	Pass	

🔅 eurofins

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	No
Organic samples had Teflon liners	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

mgt

Authorised By

Natalie Krasselt Emily Rosenberg Huong Le Client Services Senior Analyst-Metal (VIC) Senior Analyst-Inorganic (VIC)

Glenn Jackson Laboratory Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofines | mg shall not be liable for loss, cost, damages or expenses incurred by the client, or any other prevision or more many nesting from the use of any information or interpretation given in this report. In or case shall Eurofines | mg be liable for consequential damages including, but not initiated to iterpretation expension and additiones and to structure or production arising from this report. In this report. In or case shall Eurofines | mg be liable for consequential damages including, but not initiated to iterpretation expension and additiones and to structure on the structure expension and additiones and to structure on the structure expension and additiones and to structure on the structure expension and additiones and to structure on the structure expension and additiones and to structure on the structure expension and additiones and to structure on the structure expension and additiones and to structure on the structure expension and additiones and to structure expension additiones ad

Stass Environmental PO BOX 11 KALAMUNDA WA 6926

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:

Andre Stasikowski

Report
Client Reference
Received Date

432062-W OPALVALE CHITTY OV06 Sep 15, 2014

Client Sample ID Sample Matrix			SE1 Water	SE2 Water	SE3 Water	SE4 Water
Eurofins mgt Sample No.			M14-Se11684	M14-Se11685	M14-Se11686	M14-Se11687
Date Sampled			Sep 12, 2014	Sep 12, 2014	Sep 12, 2014	Sep 12, 2014
Test/Reference	LOR	Unit				
Chloride	1	mg/L	1000	4800	2900	100
Conductivity (at 25°C)	10	uS/cm	3700	14000	9400	440
рН	0.1	pH Units	3.5	3.8	3.4	6.1
Sulphate (as S)	5	mg/L	41	240	190	5.6
Total Dissolved Solids	10	mg/L	1900	9000	5100	260
Total Nitrogen Set (as N)						
Nitrate & Nitrite (as N)	0.05	mg/L	< 0.05	< 0.05	< 0.05	7.7
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	< 0.2	0.3	< 0.2	0.3
Total Nitrogen (as N)	0.2	mg/L	< 0.2	0.3	< 0.2	8.0
Heavy Metals						
Arsenic (filtered)	0.001	mg/L	0.001	0.002	0.004	< 0.001
Cadmium (filtered)	0.0002	mg/L	0.0003	0.0019	0.027	< 0.0002
Chromium (filtered)	0.001	mg/L	0.001	0.004	< 0.001	< 0.001
Copper (filtered)	0.001	mg/L	0.46	1.8	0.010	0.013
Lead (filtered)	0.001	mg/L	0.096	0.66	0.10	< 0.001
Manganese (filtered)	0.005	mg/L	0.093	1.2	1.8	0.017
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel (filtered)	0.001	mg/L	0.098	1.2	3.8	0.014
Zinc (filtered)	0.001	mg/L	0.10	0.91	3.2	0.024
Alkali Metals						
Calcium	0.5	mg/L	1.1	25	3.7	0.9
Magnesium	0.5	mg/L	40	420	300	9.9
Potassium	0.5	mg/L	2.8	53	66	1.5
Sodium	0.5	mg/L	550	2100	1200	70

Client Sample ID Sample Matrix			SE5 Water	SE6 Water	SE7 Water	SE8 Water
Eurofins mgt Sample No.			M14-Se11688	M14-Se11689	M14-Se11690	M14-Se11691
Date Sampled			Sep 12, 2014	Sep 12, 2014	Sep 12, 2014	Sep 12, 2014
Test/Reference	LOR	Unit				
Chloride	1	mg/L	910	2800	3900	48
Conductivity (at 25°C)	10	uS/cm	3300	8700	12000	400
рН	0.1	pH Units	5.9	4.3	3.7	7.1
Sulphate (as S)	5	mg/L	44	110	60	12
Total Dissolved Solids	10	mg/L	1800	4500	6800	270
Total Nitrogen Set (as N)						
Nitrate & Nitrite (as N)	0.05	mg/L	< 0.05	0.13	0.98	5.7
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	< 0.2	< 0.2	< 0.2	< 0.2
Total Nitrogen (as N)	0.2	mg/L	< 0.2	< 0.2	1.0	5.7
Heavy Metals						
Arsenic (filtered)	0.001	mg/L	< 0.001	0.001	0.002	< 0.001
Cadmium (filtered)	0.0002	mg/L	0.0004	< 0.0002	< 0.0002	< 0.0002
Chromium (filtered)	0.001	mg/L	< 0.001	0.005	0.002	< 0.001
Copper (filtered)	0.001	mg/L	0.003	0.085	0.093	0.002
Lead (filtered)	0.001	mg/L	< 0.001	0.014	0.003	< 0.001
Manganese (filtered)	0.005	mg/L	1.6	0.055	0.10	< 0.005
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel (filtered)	0.001	mg/L	0.49	0.029	0.046	< 0.001
Zinc (filtered)	0.001	mg/L	0.38	0.052	0.058	0.004
Alkali Metals						
Calcium	0.5	mg/L	1.7	2.2	5.5	< 0.5
Magnesium	0.5	mg/L	70	100	100	1.3
Potassium	0.5	mg/L	17	11	7.2	2.3
Sodium	0.5	mg/L	470	1500	1800	81

Client Sample ID Sample Matrix Eurofins mgt Sample No.			SE9 Water M14-Se11692	NG2 Water M14-Se11693
Date Sampled			Sep 12, 2014	Sep 12, 2014
Test/Reference	LOR	Unit		
Chloride	1	mg/L	59	58
Conductivity (at 25°C)	10	uS/cm	700	700
рН	0.1	pH Units	7.4	5.9
Sulphate (as S)	5	mg/L	66	67
Total Dissolved Solids	10	mg/L	490	480
Total Nitrogen Set (as N)				
Nitrate & Nitrite (as N)	0.05	mg/L	7.5	8.0
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	0.2	< 0.2
Total Nitrogen (as N)	0.2	mg/L	7.7	8.0
Heavy Metals				
Arsenic (filtered)	0.001	mg/L	< 0.001	< 0.001
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001
Copper (filtered)	0.001	mg/L	0.007	0.007
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001
Manganese (filtered)	0.005	mg/L	< 0.005	< 0.005

Client Sample ID Sample Matrix			SE9 Water	NG2 Water
Eurofins mgt Sample No.			M14-Se11692	M14-Se11693
Date Sampled			Sep 12, 2014	Sep 12, 2014
Test/Reference	LOR	Unit		
Heavy Metals				
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001
Nickel (filtered)	0.001	mg/L	0.003	0.003
Zinc (filtered)	0.001	mg/L	0.038	0.039
Alkali Metals				
Calcium	0.5	mg/L	< 0.5	< 0.5
Magnesium	0.5	mg/L	1.8	1.9
Potassium	0.5	mg/L	1.9	1.8
Sodium	0.5	mg/L	130	130

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Chloride	Melbourne	Sep 16, 2014	28 Day
- Method: MGT 1100A			
Conductivity (at 25°C)	Melbourne	Sep 16, 2014	28 Day
- Method: APHA 2510 Conductivity by Direct Measurement			
pH	Melbourne	Sep 16, 2014	0 Hours
- Method: APHA 4500 pH by Direct Measurement - ** Samples analysed outside holding time. Analysis should	be performed in situ. Result	s for reference only.	
Sulphate (as S)	Melbourne	Sep 16, 2014	28 Day
- Method: In house MGT1110A (SO4 by Discrete Analyser)			
Total Dissolved Solids	Melbourne	Sep 19, 2014	7 Day
- Method: APHA 2540C Total Dissolved Solids			
Total Nitrogen Set (as N)			
Nitrate & Nitrite (as N)	Melbourne	Sep 16, 2014	28 Day
- Method: APHA 4500-NO3/NO2 Nitrate-Nitrite Nitrogen by FIA			
Total Kjeldahl Nitrogen (as N)	Melbourne	Sep 16, 2014	7 Day
- Method: APHA 4500 TKN			
Heavy Metals (filtered)	Melbourne	Sep 15, 2014	180 Day
- Method: USEPA 6020 Heavy Metals			
Mobil Metals : Metals M15	Melbourne	Sep 15, 2014	28 Day
- Method: USEPA 6010/6020 Heavy Metals & USEPA 7470/71 Mercury			
Alkali Metals	Melbourne	Sep 15, 2014	180 Day
- Method: USEPA 6010 Alkali Metals			

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Address:	Company Name:Stass EnvironmentalAddress:PO BOX 11KALAMUNDAWA 6926Client Job No.:OPALVALE CHITTY OV06					R P	rder epor hone ax:	t #:			6363	5276 7615							Due Prio Con	ority: tact l	Name:	S 5 A	Sep 22, Day andre S	2014 Stasikov			
					Arsenic (filtered)	Cadmium (filtered)	0	0	0	0		7	2	7	рН	G	Ч	N			ins mg	t Clief	nt Man	lager: I	vatalle	riasse	HT.
Sample Detail							Chloride	Chromium (filtered)	Conductivity (at 25°C)	Copper (filtered)	Lead (filtered)	Manganese (filtered)	Mercury (filtered)	Nickel (filtered)	Н	Sulphate (as S)	Total Dissolved Solids	Zinc (filtered)	Alkali Metals	Total Nitrogen Set (as N)							
	ere analysis is c																										
	oratory - NATA		271		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х							
	atory - NATA Site																										
External Labor	ratory - NATA Si	te # 20794																									
Sample ID	Sample Date	Sampling Time	Matrix	LAB ID																							
SE1	Sep 12, 2014		Water	M14-Se11684	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х							
SE2	Sep 12, 2014		Water	M14-Se11685	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х							
SE3	Sep 12, 2014		Water	M14-Se11686	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х							
SE4	Sep 12, 2014		Water	M14-Se11687	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х							
SE5	Sep 12, 2014		Water	M14-Se11688	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х							
SE6	Sep 12, 2014		Water	M14-Se11689	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х							
SE7	Sep 12, 2014		Water	M14-Se11690	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х							
SE8	Sep 12, 2014		Water	M14-Se11691	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х							
SE9	Sep 12, 2014		Water	M14-Se11692	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х							
NG2	Sep 12, 2014		Water	M14-Se11693	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х							

Eurofins | mgt Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

UNITS

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Nephelometric Turbidity Units

 MPN/100mL: Most Probable Number of organisms per 100 millilitres
 Here the second sec

TERMS

IERINIS	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery
CRM	Certified Reference Material - reported as percent recovery
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
ASLP	Australian Standard Leaching Procedure (AS4439.3)
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
CP	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within
TEQ	Toxic Equivalency Quotient

QC - ACCEPTANCE CRITERIA

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

 $Surrogate \ Recoveries: Recoveries \ must \ lie \ between \ 50-150\% \ - \ Phenols \ 20-130\%.$

QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxophene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data.

Content of the second s

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Chloride	mg/L	< 1	1	Pass	
Sulphate (as S)	mg/L	< 5	5	Pass	
Total Dissolved Solids	mg/L	< 10	10	Pass	
Method Blank					
Total Nitrogen Set (as N)					
Nitrate & Nitrite (as N)	mg/L	< 0.05	0.05	Pass	
Total Kjeldahl Nitrogen (as N)	mg/L	< 0.2	0.2	Pass	
Method Blank					
Heavy Metals					
Arsenic (filtered)	mg/L	< 0.001	0.001	Pass	
Cadmium (filtered)	mg/L	< 0.0002	0.0002	Pass	
Chromium (filtered)	mg/L	< 0.001	0.001	Pass	
Copper (filtered)	mg/L	< 0.001	0.001	Pass	
Lead (filtered)	mg/L	< 0.001	0.001	Pass	
Manganese (filtered)	mg/L	< 0.005	0.005	Pass	
Mercury (filtered)	mg/L	< 0.0001	0.0001	Pass	
Nickel (filtered)	mg/L	< 0.001	0.001	Pass	
Zinc (filtered)	mg/L	< 0.001	0.001	Pass	
Method Blank				1 400	
Alkali Metals					
Calcium	mg/L	< 0.5	0.5	Pass	
Magnesium	mg/L	< 0.5	0.5	Pass	
Potassium	mg/L	< 0.5	0.5	Pass	
Sodium	mg/L	< 0.5	0.5	Pass	
LCS - % Recovery	ing, =	V 0.0		1 400	
Chloride	%	108	70-130	Pass	
Sulphate (as S)	%	106	70-130	Pass	
LCS - % Recovery	//	100	10100	1 400	
Total Nitrogen Set (as N)					
Nitrate & Nitrite (as N)	%	95	70-130	Pass	
Total Kjeldahl Nitrogen (as N)	%	80	70-130	Pass	
LCS - % Recovery	70		10 130	1 435	
Heavy Metals				1	
Arsenic (filtered)	%	111	80-120	Pass	
Cadmium (filtered)	%	102	80-120	Pass	
Chromium (filtered)	%	102	80-120	Pass	
Copper (filtered)	%	109	80-120	Pass	
Lead (filtered)	%	109	80-120	Pass	
Manganese (filtered)	%	104	80-120	Pass	
Mercury (filtered)	%	103	70-130	Pass	
Nickel (filtered)	%	103	80-120	Pass	
Zinc (filtered)	%	110	80-120	Pass	
LCS - % Recovery	70		00-120	rass	
Alkali Metals	0/	05	70.400	Dean	
Calcium	%	95	70-130	Pass	
Magnesium	%	104	70-130	Pass	
Potassium	%	95	70-130	Pass	
Sodium	%	99	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery				1	1		I		
	1			Result 1					
Chloride	M14-Se12214	NCP	%	118			70-130	Pass	
Spike - % Recovery				1			1	1	
Total Nitrogen Set (as N)		<u>г</u>		Result 1					
Total Kjeldahl Nitrogen (as N)	M14-Se11684	CP	%	71			70-130	Pass	
Spike - % Recovery				1					
Heavy Metals				Result 1					
Arsenic (filtered)	M14-Se11684	CP	%	95			70-130	Pass	
Cadmium (filtered)	M14-Se11684	CP	%	88			70-130	Pass	
Chromium (filtered)	M14-Se11684	CP	%	92			70-130	Pass	
Copper (filtered)	M14-Se12246	NCP	%	99			70-130	Pass	
Lead (filtered)	M14-Se11684	CP	%	86			70-130	Pass	
Manganese (filtered)	M14-Se11684	CP	%	83			70-130	Pass	
Mercury (filtered)	M14-Se12246	NCP	%	97			70-130	Pass	
Nickel (filtered)	M14-Se11684	CP	%	81			70-130	Pass	
Zinc (filtered)	M14-Se11684	CP	%	80			70-130	Pass	
Spike - % Recovery				1	1			[
Alkali Metals		1		Result 1					
Calcium	M14-Se14251	NCP	%	95			70-130	Pass	
Magnesium	M14-Se14251	NCP	%	90			70-130	Pass	
Potassium	M14-Se14251	NCP	%	91			70-130	Pass	
Spike - % Recovery					I 1				
				Result 1				_	
Sulphate (as S)	M14-Se11689	CP	%	109			70-130	Pass	
Spike - % Recovery				D 1 1					
Total Nitrogen Set (as N)		0.0	04	Result 1			70.400		
Nitrate & Nitrite (as N)	M14-Se11690	CP	%	92			70-130	Pass	
Spike - % Recovery				D #4				[
Alkali Metals	M44.0-44000	0.0	0/	Result 1			70.400	Dese	
Sodium	M14-Se11693	CP	%	99			70-130	Pass	O
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
				Result 1	Result 2	RPD			
рН	M14-Se11684	CP	pH Units	3.5	3.5	pass	30%	Pass	
Duplicate									
Total Nitrogen Set (as N)				Result 1	Result 2	RPD			
Total Kjeldahl Nitrogen (as N)	M14-Se11684	CP	mg/L	< 0.2	< 0.2	<1	30%	Pass	
Duplicate									
Heavy Metals		-		Result 1	Result 2	RPD			
Arsenic (filtered)	M14-Se11684	CP	mg/L	0.001	0.001	4.0	30%	Pass	
Cadmium (filtered)	M14-Se11684	CP	mg/L	0.0003	0.0003	7.0	30%	Pass	
Chromium (filtered)	M14-Se11684	CP	mg/L	0.001	0.001	13	30%	Pass	
Copper (filtered)	M14-Se11684	CP	mg/L	0.46	0.46	<1	30%	Pass	
Lead (filtered)	M14-Se11684	CP	mg/L	0.096	0.094	2.0	30%	Pass	
Manganese (filtered)	M14-Se11684	CP	mg/L	0.093	0.093	1.0	30%	Pass	
Mercury (filtered)	M14-Se11684	CP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel (filtered)	M14-Se11684	CP	mg/L	0.098	0.097	1.0	30%	Pass	
Zinc (filtered)	M14-Se11684	CP	mg/L	0.10	0.11	2.0	30%	Pass	
Duplicate									
Alkali Metals				Result 1	Result 2	RPD			
Calcium	M14-Se13657	NCP	mg/L	9.6	9.6	<1	30%	Pass	
Magnesium	M14-Se13657	NCP	mg/L	18	18	<1	30%	Pass	
		-		-					

Duplicate											
				Result 1	Result 2	RPD					
Total Dissolved Solids	M14-Se11686	CP	mg/L	5100	5200	3.0	30%	Pass			
Duplicate											
				Result 1	Result 2	RPD					
Chloride	M14-Se11689	CP	mg/L	2800	2800	<1	30%	Pass			
Sulphate (as S)	M14-Se11689	CP	mg/L	110	110	1.2	30%	Pass			
Duplicate											
Total Nitrogen Set (as N)				Result 1	Result 2	RPD					
Nitrate & Nitrite (as N)	M14-Se11690	CP	mg/L	0.98	0.94	4.0	30%	Pass			
Duplicate											
Alkali Metals	Alkali Metals Result 1 Result 2 RPD										
Sodium	M14-Se11693	CP	mg/L	130	130	3.0	30%	Pass			

🔅 eurofins

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

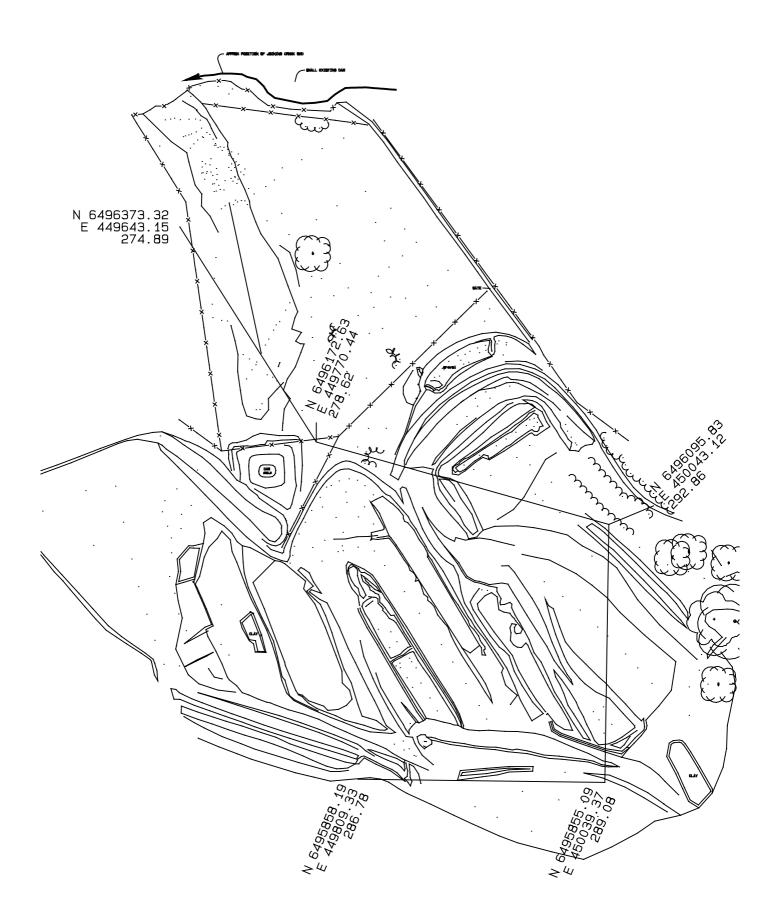
mgt

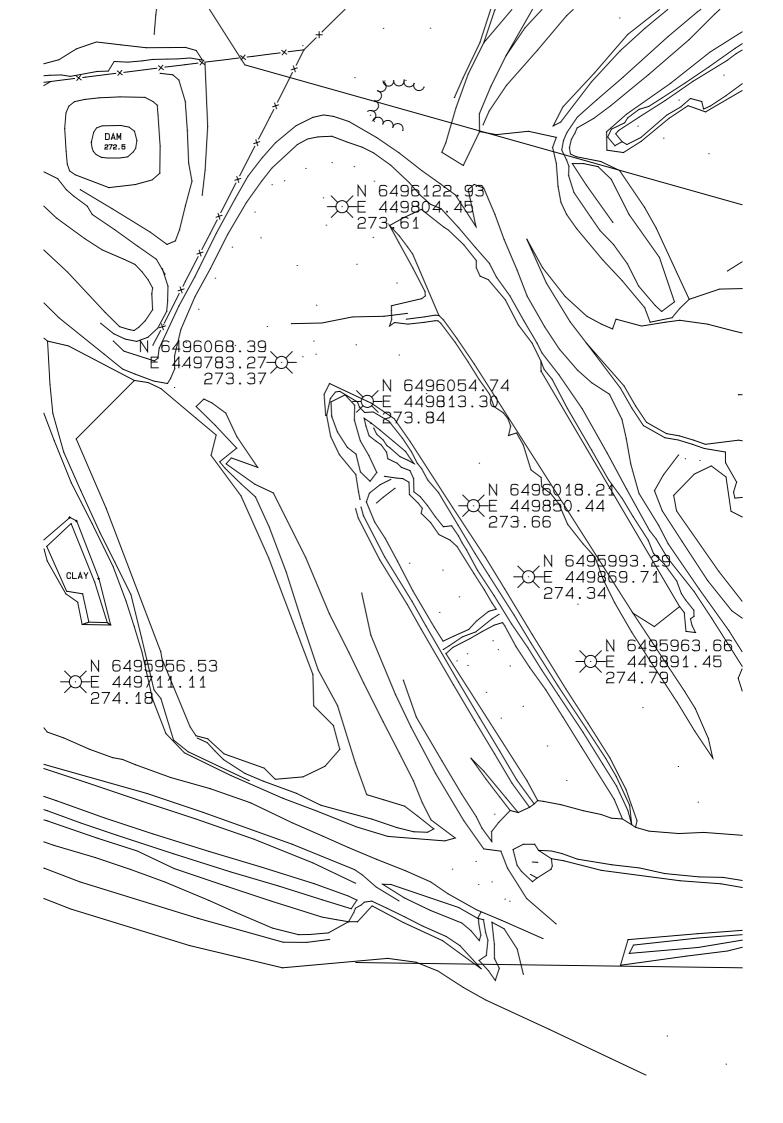
Authorised By

Natalie Krasselt Emily Rosenberg Huong Le Client Services Senior Analyst-Metal (VIC) Senior Analyst-Inorganic (VIC)

Glenn Jackson Laboratory Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested


* Indicates NATA accreditation does not cover the performance of this service

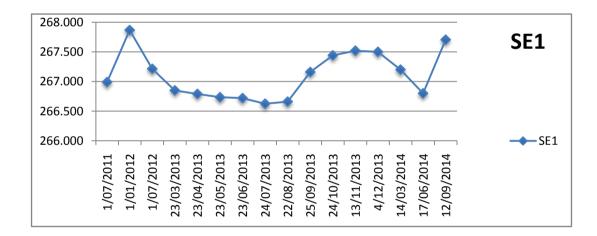

Uncertainty data is available on request

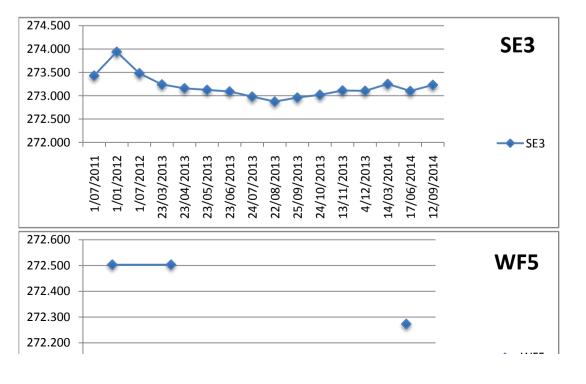
Eurofines | rag shall not be liable for loss, cost, damages or expenses incurred by the client, or any other preson or company, resulting from the use of any information or interpretation given in this report. In or case shall Eurofine is may be liable for cost, out of the second o

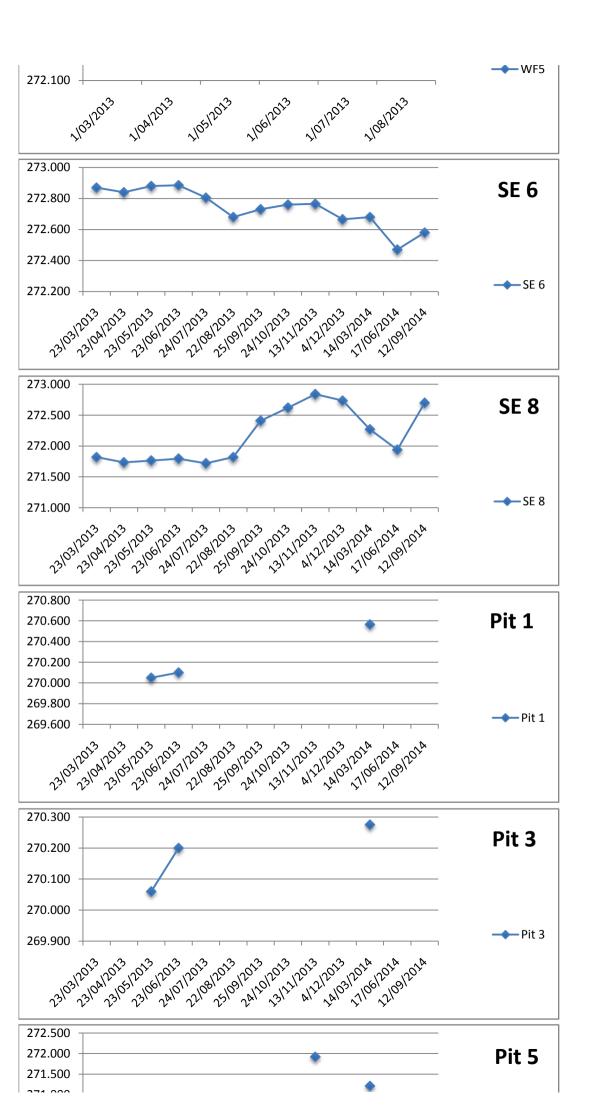
APPENDIX E Survey Reports

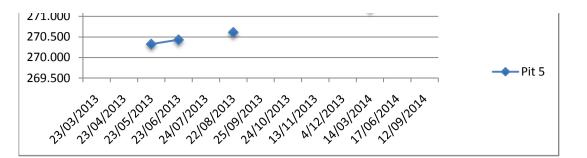
Ł .gravel B DAM 272.5 ß N 6496122.84 E 449804.30 279.23 لررر N 6496067.80 449783.51 272.84 1 N 6496017.54 K 6496017.54 K 6496017.29 278.04 273.01 N N 6496054.78 E 449813.33 &73.23 N 6495992 62 X E 449869 61 273.50 N 6495963.88 × E 449891.40 274.22 N 6495948.38 × E 449707.85 275.11 Note: heights shown are ground level or pit floor level at the pit bore locations

APPENDIX F Field water quality and level data

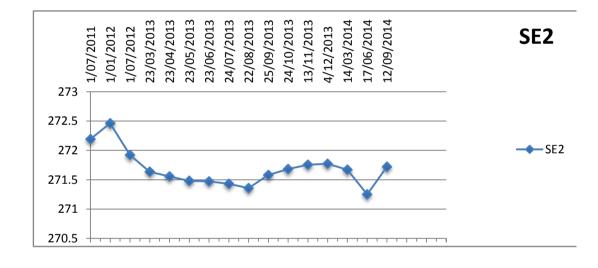

Bore ID	SE1	SE2	SE3	SE4	SE 5	SE 6	SE 7	SE 8	SE 9
Northings	6495635.667	6495913.7	6496193.886	6495786	6495858	6495855.090	6496096	6496173	6496373
Eastings	449807.222	449616.1	449382.966	450377.9	449809.3	450039.370	450043.1	449770.4	449643.2
1/07/2011									
18/01/2012	3.590	4.03	3.910	6.23					
18/07/2012	4.620	6.4	4.360	8.89					
13/01/2013	3.740	4.4	4.720	6.15					
23/03/2013	4.050	5.630	3.870	6.140	5.860	5.170	4.300	6.760	6.370
24/07/2013	3.190	4.650	36.980	5.360	4.730	4.510	3.620	6.15	4.93
24/10/2013	3.750	4.300	4.220	4.710	4.780	4.450	3.620	6.020	5.130
13/11/2013	3.800	4.270	3.540	5.410	4.640	4.660	3.520	5.550	6.150
4/12/2013	3.340	4.240	3.890	5.070	4.520	3.980	3.410	5.650	4.860
14/03/2014	3.630	4.000	3.350	5.680	5.000	4.220	3.660	6.530	5.350
17/06/2014	3.520	3.330	3.450	5.080	4.620	4.240	3.530	5.670	4.620
12/09/2014	3.520	3.700	3.550	5.260	4.710	4.270	3.650	5.790	4.420
Average	3.705	4.450	6.895	5.816	4.858	4.438	3.664	6.015	5.229

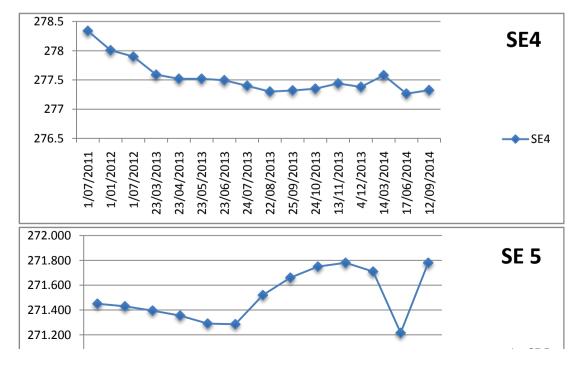

Bore ID	SE1	SE2	SE3	SE4	SE 5	SE 6	SE 7	SE 8	SE 9
Northings	6495635.667	6495913.7	6496193.886	6495786	6495858	6495855.090	6496096	6496173	6496373
Eastings	449807.222	449616.1	449382.966	450377.9	449809.3	450039.370	450043.1	449770.4	449643.2
18/01/2012	4300	6070	7690	327					
18/07/2012	3920	5200	7880	473					
9/01/2013	3750	5670	7750	540					
23/03/2013	3620	5600	8500	532	5090	5870	6480	1358	597
24/07/2013	3770	5440	12490	507	5260	5640	11230	570	952
24/10/2013	3650	5860	5570	479	4130	5570	11600	529	2310
13/11/2013	3620	5790	5450	504	3990	5640	10960	527	841
4/12/2013	3600	6080	12260	452	4270	6950	10950	523	852
14/03/2014	3710	10200	8770	453	3830	7900	11350	635	3320
17/06/2014	3640	12880	9650	644	3680	8610	11180	979	700
12/09/2014	3600	14110	9030	455	3250	8510	11270	415	698
Average	3744	7536	8640	488	4188	6836	10628	692	1284

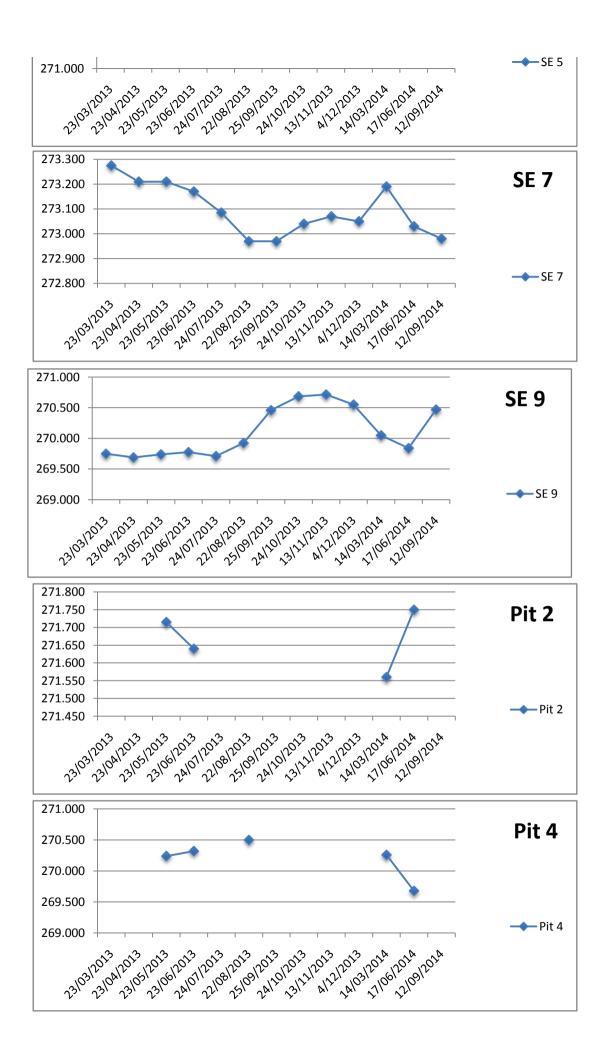

Bore ID	SE1	SE2	SE3	SE4	SE 5	SE 6	SE 7	SE 8	SE 9
Northings	6495635.667	6495913.7	6496193.886	6495786	6495858	6495855.090	6496096	6496173	6496373
Eastings	449807.222	449616.1	449382.966	450377.9	449809.3	450039.370	450043.1	449770.4	449643.2
18/01/2012	2976	4231	5315	327					
1/01/2012	1310	2880	4430	236					
1/07/2012	1840	2810	3800	260					
23/03/2013	1810	2800	4250	261	2470	2890	3240	675	3000
24/07/2013	1890	2720	6290	252	2620	2830	5540	285	474
24/10/2013	1830	2940	2790	239	2080	2790	5800	260	1170
13/11/2013	1810	2900	2740	251	2000	2820	5480	262	422
4/12/2013	1800	3040	6130	226	2140	3470	5500	263	426
14/03/2014	1860	5120	4300	227	3830	3950	5680	321	1660
17/06/2014	1820	6440	4830	323	1840	4310	1820	490	350
12/09/2014	1800	7060	4520	228	1630	4260	5630	208	349
Average	1886	3904	4490	257	2326	3415	4836	346	981


Opal Vale Class II Landfill - Groundwater Levels (n	ו AHD)
--	--------

Bore ID	SE1	SE2	SE3	SE4	WF5	SE 5	SE 6
Northings	6495635.667	6495913.67	6496193.886	6495785.76	6496265.311	6495858.19	6495855.090
Eastings	449807.222	449616.098	449382.966	450377.899	449882.903	449809.33	450039.370
1/07/2011	266.990	272.19	273.430	278.34			
1/01/2012	267.868	272.46	273.940	278.008			
1/07/2012	267.215	271.92	273.480	277.9			
23/03/2013	266.850	271.635	273.240	277.590	272.503	271.450	272.870
23/04/2013	266.790	271.555	273.160	277.520	272.503	271.430	272.840
23/05/2013	266.735	271.480	273.125	277.520		271.395	272.880
23/06/2013	266.720	271.470	273.090	277.495		271.355	272.885
24/07/2013	266.625	271.430	272.980	277.400		271.290	272.805
22/08/2013	266.660	271.355	272.875	277.300	272.273	271.285	272.680
25/09/2013	267.160	271.580	272.960	277.320		271.520	272.730
24/10/2013	267.440	271.680	273.020	277.350		271.660	272.760
13/11/2013	267.520	271.755	273.110	277.440		271.750	272.765
4/12/2013	267.500	271.770	273.105	277.380		271.780	272.665
14/03/2014	267.200	271.670	273.250	277.580		271.710	272.680
17/06/2014	266.800	271.250	273.100	277.265		271.215	272.470
12/09/2014	267.705	271.720	273.230	277.325		271.780	272.580







SE 7	SE 8	SE 9	Pit 1	Pit 2	Pit 3	Pit 4	Pit 5
6496095.83	6496172.63	6496373.32	6496055	6496123	6496068	6496038	6495948
450043.12	449770.44	449643.15	449813.3	449804.3	449783.5	449911.2	449707.9
273.275	271.820	269.750					
273.210	271.735	269.690					
273.210	271.765	269.740	270.050	271.715	270.060	270.240	270.325
273.170	271.795	269.775	270.100	271.640	270.200	270.320	270.430
273.085	271.72	269.71					
272.970	271.82	269.925				270.5	270.61
272.970	272.410	270.460					
273.040	272.620	270.685					
273.070	272.840	270.715					271.920
273.050	272.735	270.550					
273.190	272.270	270.050	270.565	271.560	270.275	270.260	271.210
273.030				271.750		269.680	
272.980	272.700	270.470					

